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ON PROPERTIES OF RINGS THAT CAN BE CHARACTERIZED
BY INFINITE LATTICE IDENTITIES

GABOR CZEDLI
Dedicated to the memory of Ldszlé Rédei (1900—1980)

1. Introduction

Suppose R is a ring with 1 (throughout the paper rings always have 1), and
%(R) denotes the class of lattices that are isomorphic to the lattice of submodules of
some (unitary left) R-module. ¥(R) consists of algebraic lattices. The submodule
lattice and the lattice of congruences of an arbitrary R-module are isomorphic (cf.
BIrkHOFF {1, Theorem 1, p. 159)), therefore ¥(R) can also be defined as the class of
lattices that are isomorphic to the congruence lattices of R-modules. A lattice variety
% is said to be a congruence variety (cf. JoNssoN [7]) if it is generated by the congru-
ence lattices of members of some variety ¥~ of universal algebras. Let Con (R) denote
the lattice variety generated by €(R). Since .# (R), the class of unitary left R-modules,
is a variety, Con (R) is a congruence variety.

In the present paper in lattice terms and identities infinitary join and infinitary
meet operations are also allowed. l.e., a lattice term or identity can be finite, if it is
a lattice term or identity in the usual sense, or infinite, otherwise. We can mention the
join infinite distributive identity (cf. GRATZER [3, Lemma II. 4. 10]) as a classical
example for infinite lattice identities.

Our aim is to investigate the connection between properties of rings R and
lattice identities holding in €(R). Investigations of this kind for finite lattice identities
were started in HERRMANN and HUHN’s paper [5]. The case of finite lattice identities
was settled in [6]. The results of the present paper are taken from the author’s thesis [2].

2. Lattice terms and identities

In this section an appropriate definition of lattice terms and identities is given.
Let K be an index set with power %=2 and let X be a nonempty set of variables.
We define the K-terms over X by the following recursion. Set T,(K, X)=X. Suppose
Ty(K, X) has already been defined for all ordinals f being less than «. Then let
T «(K, X) be the set of all V(p,: 1€I) and A(p,: 1€]) where IS K, 2=|I|, and for
all 1] there is an ordinal f,<a such that p,cT; (K, X). (Note that V(p,: 1€])

can be considered as the abbreviation of the more precise pair (V, U{{p,}lzel})

where U stands for the disjoint union. Thus the operation symbols V and A are
commutative by definition.) Finally, let T(K, X)=U {T,(K, X)| |¢|<max (x*, w)}
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where x* denotes the smallest cardinal greater than »=|K| and w is the smallest
infinite cardinal. Now T'(K, X) is the set of K-terms over X. Note that for IS K,
P.ET(K, X) V(p,: :icI)and A(p,: 1€]) also belong to T(K, X), as it follows from an
easy calculation, with gawdie=ls 6y Tiftice ferm p over X there corresponds a
polynomial p: LX L, also denoted by p, which is defined via the following natural
recursion: for geLX and p=A(p,: 1€l) set p(g)=A(p,(g): 1€I), the case of
V is similar, and p(g)=g(p) for pcX.

Now, lattice identities (over X)) are defined to be strings p=gq where p and ¢
are lattice terms (over X). A lattice identity p=g over X is said to hold in a complete
lattice L, in notation Li=p=gq, if p(g)=q(g) for any gecLX.

Finally we mention that, disregarding the commutativity of operations, lattice
terms in the usual sense over X and K-terms over X, where K is two-element, coincide,

3. Mal’cev type conditions for lattice identities

The procedure to be presented here is a transfinite generalization of WILLE's
one [9] (cf. also PixLEy [8]). However, we have chosen a pictorial approach.

Given a lattice term p, we define Rd(p), the set of reduced terms of p, by the
following recursion: Rd(p)={p} for p variable;

RA(A(p,: 1€D)) = {A(p/: 1€])|p/€Rd(p,) for all :€T}; and

RA(V (p,: 1€D)) = {V(p;: 1€¢)JE1, J is finite and at least

two-element, and p]cRd(p) for all 1€¢J}U UI Rd(p,).
1€

A term p is said to be reduced if pcRd(p).
A binary relation =, can be introduced on Rd(p) as follows: p,=,p, iff

P1ERA(PY) (71, P2€RA(D)).

ProrosiTiON 3.1. Let p be a lattice term. The relation =, is a quasi-ordering
(i.e., a reflexive and transitive relation) over the set Rd(p). Moreover, this relation is
directed, i.e., for any p;, p;€RA(p) there exists p;€ RA(p) such that p,=,py and
Pa=,Ds-

Proor. The proof is an easy induction, therefore only one step will be detailed.
Suppose p=V (p,: 1€I) and Rd(p,) is directed for :€l. Let p, p’éRd(p). Then
p=V(@,: 1€J) and p’=V(p!: 1€K) where J,KSI, 1=|/|, |[K|<w, p,€Rd(p)
for 1€J, and p/cRd(p,) for :€K. (In case |J|=1 or |K|=1 p=p, or p'=p] is
the precise form.) By the induction hypothesis, for any :€JNK, there exists
preRdA(p,) such that p,, p/eRdA(p}). Define p*=V(g,: 1c¢JUK) where 4.=p}
for zeJﬂK q,-—p, for 1€J\K, and g,=p; for :€¢K\J. Then p*¢Rd(p), p=,
p* and p’=,p* le. p is directed. The omitted part of the proof is even more
trivial. Q. e. d.

Now with any reduced term p over X a graph G(p) will be associated. The edges
of G(p) will be coloured by the elements of X i.e., by the variables of p. Two vertices,
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the left and right endpoints, will have special role. In the figures these endpoints will
always be placed on the left-hand side and on the right-hand side, respectively.
If p is a variable then let G(p) be the following graph which consists of a

single edge coloured by p. o P o

We obtain G(A(p,: 1€1)) from the graphs G(p,) by the following way: take
the disjoint union of the graphs G(p,), €1, and identify the left (right, resp.) end-
points of G(p,), 1€1. The obtained graph is G(p), in which the identified endpoints
of G(p,) have turned into the new ones.

Now suppose I is a finite at least two-element set and G(p,), 1¢1, has already
been defined. Choose an arbitrary ordering of I, say I={i, 13, ..., 1,}, take the dis-
joint union of the graphs G(p,) (j=1,...,n), and for j=1,...,n—1 identify the
right endpoint of G(p, ) and the left endpoint of G(p,, ,,). The graph we have obtained
is G(V (p,: 1€1)), its left (right, resp.) endpoint is the left (right, resp.) endpoint of
G(p,,) (of G(p,), resp.). o

Since, as it is easy to check, reduced terms do not contain infinitary joins {(and
conversely), G(p) has been defined. Although this definition of G(p) is not quite
unique, it depends on the ordering of 7, the lack of uniqueness is not important. In
what follows G(p) will mean an arbitrarily fixed graph that corresponds to the above
definition, rhe graph of p. (The definition of G(p) could be completely unique, but
this is not worth the complication. )

For example, for p=((x;Ax))V(xAx))A (1 Axx)V(x2AXp)), G(p) is the
graph given in Figure 1. (The vertices of G(p) are denoted by ordinals. )

Given two reduced terms p, g over X, G(p=gq), the graph associated with the
identity p=g, will be defined as follows. (This definition is not unique again, but any
graph obtained by it can be consi-
dered the graph G(p=gq)). Suppose
the ordinal y= {aja<y} is the vertex
set of G(p) so that 0 is the left end-
point and 1 is the right one. For x¢ X
let @, be the smallest equivalence
relation over y under which the two
endpoints of any x-coloured edge
of G(p) collapse. Now we obtain
G(p=q) from G(g) by preserving
the edges and vertices of G(gq) but,
for all x¢X, replacing the colour
x by @, on all x-coloured edges.
For example, if g={(x; Ax;)V(x3Axy)
and p is the term defined in the pre-
vious example then G(p=gq) is the
graph given in Figure 2.

In Figure 2 the equivalences are given by the corresponding partitions, and
a partition over y={0, 1, 2, 3} is given by listing its non-trivial blocks. Le., {{0, 2, 3},
{11)=023, {{0, 2}, {1, 3}}=03, 13, etc.

In connection with G(p=g) a Mal’cev type condition M(p=gq) will be defined
as follows. Let F={f,: 1<d} be the vertex set of G(p=¢q) such that f is the left
endpoint and f; is the right one. For any equivalence relation » over y and a€y we
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set an=mun {f|(, f)€x}. The elements f, of F will be considered as y-ary terms of
an unspecified type. (For the definition of y-ary terms cf. GRATZER [4]. Any y-ary
term contains only finitely many relevant variables.) With any @,-coloured edge
connecting the vertices f, and f, we associate the identity

Si(Vae i @ <) = fuVes,: @ < 7).

Now let M(p=q) be the following condition for varieties of algebras:

“For any f,¢F there exists a y-ary term f,(y,: a<7y) such that the endpoint
identities f,(y,: a<7y)=y,, 1=0,1, and all the identities associated with edges of
G(p=q) are satisfied”.

For example, for G(p=gq) from Figure 2, M(p=gq) is the following condition:

“There are quaternary terms f;, fi, f; such that the identities

JoQlos Y15 Y25 ¥a) = Yo, f1(¥os Y15 Yas ¥8) = »1,
Jo(os Y15 Yor Y0) = S2(¥os 15> Yo Yo)s
Jo(o, y1, Y15 ¥ = f2(Po> Y15 Y15 V1),
J2(o> Y15 Yo, Y1) = /L(Bos Y15 Yo Y1)

J2e(Yos> Y15 Y15 Yo) = fL(Pos V1> Y1, Yo} are satisfied”.

One can consider the graph G(p=gq) as a tool for describing M(p=gq) in a
shorter and more handlable way. A variety ¥ is said to be congruence permutable if
any of its algebras has permutable congruences. The congruence lattice of an algebra
A will be denoted by Con (4). Now we can formulate the following

THEOREM 3.2. For any lattice identity p=q and an arbitrary congruence permu-
table variety ¥~ the following two conditions are equivalent:

(i) The identity p=q holds in Con(A) for all Ac¥;

(i) For any PcRA(p) there exists GeRdA(q) such that the condition M(p=g)
holds in V..

Moreover, the Mal’ cev type condition M(F=4g) is strengthening in p and weaken-
ing in g. Le., whenever p’=,p, §=,9’c¢Rd(q) and U is a variety satisfying M(p=7q),
then M(p’=q) and M(p=q’) also hold in %.

ReMARK. For a finite lattice identity p=gq the theorem is a special case of
WILLE’s one ([9], cf. also PIXLEY [8]). A very similar, formally the same theorem that
holds for any (not necessarily congruence permutable) variety could be also stated by
changing the definitions of Rd(p) and G(p), but now we intend to deal with con-
gruence permutable varieties only.

The proof is a transfinite generalization of Wille’s one, the only essential dif-
ference is the use of transfinite induction instead of simple induction. Therefore our
approach will be sketchy. The proof requires several preliminary statements.

CLAaM 3.3. If p is a lattice term and PeRA(p), then the identity p=p holds
in any complete lattice.

The proof, an easy induction, will be omitted.
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CLAM 3.4. Suppose p is a lattice term over X, A is a universal algebra with per-
mutable congruences, ®,cCon(4) for x€X, and ay,a,cA. Then (a,,a)€
€p(D,: xeX) if and only if (ay, a)€p(DP,: x€X) for some PcRA(p).

Since V(®,: 1€)= U V (P,: 1€J) holds for &,¢Con (4), Claim 3.3 makes

J ﬁmte
the proof a trivial induction.

Cram 3.5. Suppose p is a reduced lattice term over X, A is an algebra with permu-
table congruences, ®.cCon(A4) for xcX, and a,,a,€A. Then (ag,a)€
ep(P,: x€X) iff there exist elements a,cA for 1<a<y such that for any edge
of G(p), say o = B, we have the corresponding (a,, ag)€ @,. (Here
the ordinal y means the vertex set of G( p))

The proof, which is a trivial induction, is omitted.
The following lemma is not only the main step in the proof, it gives stronger
result for certain lattice identities.

LeMMA 3.6. Suppose p=gq is a lattice identity over X and p is reduced. Let the
ordinal y be the vertex set of G(p) (0 and 1 are the endpoints), and consider the equiva-
lence relations O, over y that we have introduced defining graphs associated with lattice
identities. Then for an arbitrary congruence permutable variety ¥ the following three
conditions are equivalent:

(i) The identity p=q holds in the congruence lattice of any member of ¥V,

(ii) There exists gcRd(q) such that the condition M(p=q) holds in V",

(i) Let F,(y) be the free ¥ -algebra generated by the set y={ula<y}, and
let @ be the congruence relation of Fy(y) generated by the relation ©,. Then
p(O5: xeX)=q(O;: xcX).

Moreover, if q is also reduced then (ii) can be replaced by

(ii") M(p=q) holds in ¥".

ProoF. Only (iii) ~(ii) and (11)-»(1) have to be shown.

(iii) implies (ii). Suppose ¥ is of type t and (iii) holds. Lemma 3.4 yields
0, Dep(O;: x€X), thus (0, )eq(@;: x€X). Therefore, by Claim 3.4, there exists
g<Rd(g) (and, moreover, Claim 3.3 yields that we can choose §=gq if ¢ is reduced)
such that (0, )€3(@;: x€X). Let the ordinal é={alx=6} be the vertex set of
G(9), 0 and 1 being the endpoints. By Claim 3.5 there are elements a,€ F,.(y), a<,
such that 4,=0, 4,=1, and (a,, a,)€ O holds for any x-coloured edge connecting
the vertices u and v in G(g). Smce y generates F,,(y), a,= f, (a: a<y) holds for some
y-ary T-terms f,, 1<d. Fix an arbitrary edge po—— e v of G(§) and
consider the map ¢: y—y, ap=a0,.=min {B|(«, f)€6O,}. Evidently, Ker ¢=0,. Set
Z={z,: a=<y}, Z'={z,,: a<p}, and Y’ = {agla<y}=yp. Consider W(Z) and
W(Z’), the absolutely free -algebras generated by Z and Z’, respectively, and the free
¥ -algebras Fy(y) and F,(y"). Let us define the following four epimorphisms:

@’ Fy(y) = Fy(¥), fla: a <)o’ = f(ap: a <7y);
@: W@Z)~W(Z), fz,;: a<9)¢=[f(z,: a<7);

Y: W(Z) ~ Fy(y), f(z.: a<y)Y=f(a: a<7y); and
n: W(Z) ~ Fy(¥)s f(2ap: a <11 = fo@: a<7y).

Then the following diagram commutes.

4
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W(2) ¢ W(Z")
ly ,
Fp(H) Y Fulp)

Since ©,SKer ¢’ implies @S Ker ¢’, we obtain a,¢’=a,¢’. By the commutati-
vity of the diagram we can compute: f,(xp: a<y)=f,(Zsp: a<VIn=f(Z,;a<7)Pn=
=f(z.: a=<Yo'=f(a: a<p)@’=a,¢'=a,¢’=f(0: a<y)¢'=£,(z: a<Y¢'=
=£,(z,: a<PPn=1(2ep: a=<IN=f(0p: a<y), ie., f(ap: a<y)=f(ap: a<y)
holds in ¥". Since f,(a: a<y)=1 also holds for 1=0, 1, ¥ satisfies (ii) (and (ii’) in
case ¢ is reduced).

(ii") implies (i). Suppose (ii) holds in ¥, A€V, ®.cCon(4) for x¢X, and
(ay, a)ep(P,: x€X). By Claim 3.5 there exist q,€4, l<a<y, such that
a,,a,)ed, for any edge pe— u e v of G(p). Consider the elements
fi(a,: a<?y), 1=<8, that we obtain by M(p=g). If f, e s o f, isan
edge of G(p=q) then, by making use of the corresponding identity,

ful@: 0 <P)D, f,(a,0,: & <D= f,(00,: @ <7)P.fi(a,: a <)
Thus, by Claims 3.5 and 3.3,

(a0, a1) = (fola,: a<7), fi(a,: a<y))EG(P,: x€X) & ¢(P,: x€X).
Q.e.d.

Now we can prove Theorem 3.2. Suppose (i) holds. Then, by Claim 3.3, for any
PERA(p) p=4q holds in Con (4) for all A¢¥". Hence (ii) follows from Lemma 3.6.
Now let (i1) be assumed, and consider an arbitrary family of congruences @,, x€X,
from Con (A), Ac¥", and a pair (a,,a,) in p(®P,: x€X). Then, by Claim 3.4,
(a,, a)ep(P,: xeX) for some pcRd (p). But, by (ii) and Lemma 3.6, p=g¢ holds
in Con (4), whence (a,, a)€q(®P,: x€X). Condition (i) has been shown.

Suppose now that peRd (p), GcRd (g), p'=,p, §=,9'¢Rd (g), and ¥ is a
variety satisfying M(p=q). By making use of Lemma 3.6 and Claim 3.3 we obtain
that both p’=p and p=¢" hold in Con (4) for all Ac%. Now Lemma 3.6 (ii")
yields that M(p’=g3) and M(P=q’) hold in #. Theorem 3.2 has been proved.

- 4, The main theorem

Before stating the main theorem some preliminaries are needed. Remember that
rings always have 1 and modules are unitary left modules. For integers m, n=0 let
D(m, n) denote the sentence (in the first-order language of rings with 1) “(3x)(mx=
n-1)” where k-y or ky is an abbreviation for y+y+ ... +y (k times) or 0 (if k=0).
D(m, n) is called a divisibility condition. The concept of weakening divisibility condi-
tion is defined as follows. We say that a set H of divisibility conditions holds in a ring
R if any member of H holds in R. Suppose we are given a nonempty, directed partially
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ordered set (/, =) and, for all 1€, a set H, of divisibility conditions such that whenever
1=x¢I and H, holds in a ring R then H,, also holds in R. Then the sentence *there
exists 7€/ such that H, holds” is called a weakening divisibility condition.

HurcHINsON [6, Corollary 3] has shown that the lattice varieties Con (R),
R is a ring, form a lattice under the inclusion. Moreover, in this lattice the joins are
the usual joins of varieties. To describe this lattice it is worth using the notion of
spectrum. Let P denote the set of prime numbers. Then S, the spectrum of a ring R,
is the function Sg: {0}UP—[0, w] defined by

Skr(0) = the characteristic of R = min {#|{l =n < w and D(0, n) holds in R}
(where min §=0), and, for p¢P,
Sg(p) = min {n|0 = n < w and D(p"*%, p" holds in R}

(where min @=w). Hutchinson [6, Propositions 1 and 4] has shown that a function
S: {0}UP—[0, @] is the spectrum of some ring if and only if either S(0)=0 or
for any peP S(p)=max {k|p* divides S(0)}. Let L be the set of all possible spec-
tra, i.e.,

= {S|S: {0}UP —[0, w} and S(0) = 0 implies

S(p) = max {k|p* divides S(0)} for all pcP}.

We make L a lattice by introducing the following partial ordering: for Sy, S,€L
let S;=S8, mean that S,(0) divides S,(0) and S,(p)=S,(p) for any pcP. The
join Sof S, (yeI) in L can be described as follows. If {S,(0)lyeI'} is a bounded set
of integers not containing zero then let S(0) be the least common multiple of S, (0)
(yer). Otherwise S(0)=0 and, for peP, S(p) is the supremum of {S, (p)]yel"}

Now the map Con(R)—>Sy is an lsomorphlsm from the lattice of varieties
Con(R) (R is a ring) onto L (cf. Hutchinson [6, Propositions 1, 4, and Theorem 5]).
Therefore the lattice {Con (R)|R ring} is satisfactorily described by L, and it is ad-
vantageous to use the latter. Moreover, any of Con(R), Sk, and {D(m, n)|D(m, n)
holds in R} uniquely determines the two others (cf. [6, Corollary 2 and Proposition
6]). |

A lattice identity 4 is said to be correct if, for any two rings R,, R,, Con(R)=
=Con(R;) and %(R,)i=2 implies ¥(R,) = A.

The following theorem states that exactly the weak divisibility conditions are the
ring properties that can be characterized by correct lattice identities.

THEOREM 4.1. For any nonempty subset I of L the following three conditions are
equivalent:
(1) There is a correct lattice identity A such that, for any ring R, Sgx€l iff A
holds in €(R);
(ii) There is a weak divisibility condition D such that, for any ring R, Sgel
if and only if D holds in R;
(iil) I is an ideal of the lattice L.

This theorem will be sharpened in the following sections, e.g., for any ideal
a suitable 1; will be constructed. ;

4‘
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S. (iii) implies (i)

In this section the first part of the proof of Theorem 4.1 will be presented.

Consider two reduced lattice terms p and g over X. The following system of
ring equations, denoted by E(p=g¢q), will be associated with the Mal’cev type con-
dition M(p=gq). Let {rfla<y, B<J} be the set of variables of E(p=g) where the
ordinals y and § are the vertex sets of G(p) and G(g), respectively. Let E(p=g)
consist of the equations ri=1, ri=0 (1=0, 1, a>%1), which are the so-called end-
point equations, and, for any edge f, e z o f, of the graph G(p=q)
and any block C of the partition determined by the equivalence =, of the equation
> rt= 3 r:. Asystem {rfla<y, <3} of elements of a ring R is said to be a

€C

a€C -1
solution of E(p=q), if for any B<é {a|rf =0 and a<y} is finite and the equations
of E(p=qg) hold.

CLAIM 5.1. Let p and q be reduced lattice terms and R be a ring. Then M(p=q)
holds in #(R) iff E(p=q) is solvable in R.

PrOOF. If {rflx<y, B<6&} is a solution of E(p=q) in R, then M(p=g)
is satisfied in #(R) by the module terms fp(x,: a<y)= 3 rfx, (B<J). To check
<y

the converse note that for any term fp(x,: a<y) in #(R) there exist a unique
system of coefficients (rf: a<y) such that fz(x,: a<yp)= 3 rfx, identically holds

a<y
in #(R) and {a|rf0, a<y} is finite. Thus the identities of M(p=gq) yield that
{rfla<y, a<d} is a solution of E(p=gq) in R. Q.e. d.

Let us mention that Claim 5.1 has the following surprising consequence (com-
pare with the consequence to Corollary 2 in [6]): ¥(R)=A (and, in particular,
Con (R)) depends only on the additive group structure of R. Indeed, if E(y; p=q)
denotes the system of equations obtained from E(p=gq) by replacing 1 by y every-
where, then E(p=g) is solvable in R iff for any y¢R E(y: p=gq) is solvable in R.
(If the elements rf form a solution of E(p=gq) then yrf form a solution of
E(y; p=q).) But the solvability of E(y; p=q) depends merely on the additive
group structure of R. Thus Theorem 3.2 and Claim 5.1 apply.

Now the quaternary lattice terms p, e, and d,, , over X={x,, X, X;, X3}
will be defined for non-negative integers m, n by the following recursion:

P =X Vx)A(xVxs), € = X,
er+1 = (VXA (1 V X5))V P)A(xoV X), and
dm,n = ((en/\(emvxovxs))vxlvxz)/\P-

DEFINITION. Given a ring R, a'=(d, d, al, af)eR* (7=0,1) and a reduced
lattice term g over X= {x,, X1, X2, x3}. Let E(a% g, a') denote the system of equa-
tions which is obtained from E(p=g) by omitting the endpoint equations and adding
the new equations ri=a} (i=0,1, j=0,1,2,3).

PROPOSITION 5.2. For any ring R, non-negative integer n, and a° alcR*
E(a% e,, aY) is solvable in R if and only if there exists reR such that ay=a3—(n+ r,
ai=a}, ay=a)+r, and ay=d}+nr.
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Proor. The proof goes via induction. Since G(p=e,)is f, » b

E(a’ ey, a') conmsists of ri=d) (i<2, j<4), r{+ri=ri+r}, ri=r}, r}=r}.
the case n=0 is trivial.
Suppose the statement is true for # and consider G(p=e,,,) on Figure 3.

Fig. 3

(The vertices f3, fy, ..., if they exist, are inside of G(p=e,).) A reference to an equa-
tion of E(a’, e, ,, a) assoc1ated with the edge f; —————————s f often will be
denoted by «»,

Suppose the components of the vectors a‘=(al, al, 4., a})cR* form a solution
of E(a%e,,,, a’). By the induction hypothesis

¢3) ad=al—(n+1r, ai=4ad, ai=al+r, ai=al+nr
hold for some r¢R. Compute: a,,+a3——¢10+¢23--—a.,+a3 and al+a 2ot
+at2 £ &°+4l. On the other hand, a2 g2 S @—(n+1)r and a2 2 22 e U ay+r.

Comparing these equations we obtain

al=al+ad—al =al+a}—(ad+r) =al—-

and
, ai = a}+aj—af = aj+a3—(ad—(n+1)r) = a3 +(n+r,
ie.,
2 ad=ad—(n+D)r, ad=al-r, ai=al4r, ai=al+@m+r.
Similarly,
1 07 16 636 30
a=ai=adi, di=a=a=a+r
15 535 3@
ay= a3 = ay= ay+(n+1r,
and so

= (@b +a! +ai+al)—(at +as+a) = (a}+d} + ) +a}) —
—(@+ @+ r+a+(n+ 1)) = (a+ad+ a3 +al) —
—(a}+ a3+ a3+ (n+2)r) = ag—(n+2)r.

We have obtained all the four required equations between a® and a'.
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Conversely, suppose ay=ad—(n+2)r, ai=a}, ai=a}+r, and agy=al+(n+1)r.
Define a% by a2=da}—(n+1)r, ai=a?, ai=ad+r, ai=dl+nr. By the induction
hypothesis there exist a;€R (i=8, j<4) such that the equations associated with the
edges of the subgraph G(p=e,) are satisfied. Defining

ad=al—~(n+Dr, ad=al—~r, ai=al+r, ai=a3+@n+r,
as=al, al=al-r, ai=al+r, ai=al,
al=ad—(n+2)r, at=ad—r, a}=ad+2r, ai=al+(n+Dr,
ad=ay—(m+2r, at=al—r, al=ad+r, a=ad+(n+2)r,
ag=aj—r, aj=a}, aj=a}+r, ai=aj
and using Figure 3 it is easy to check that all the remaining equations of
E(a% e, ,a') are satisfied. Q. e. d.

PROPOSITION 5.3. For any ring R, non-negative integers m,n and a° alcR*
E(a% d,, ,, aY) is solvable in R if and only if there exist r,s€R such that ms=nr
and ay=d}—r, ai=a}+r, ay=a}, ai=dj.

Proor. Consider the graph G(p=d,,) on Figure 4. (The vertices f;, f;, ...
are inside of G(p=e,) or G(p=e,).)

First let us assume that E(a’ d,, ,, a") is solvable in R, and the components of
the vectors a’=(al, al, a}, al)cR* form a solution. By Proposition 5.2 there are
clements r,s in R such that

ay=ag—(n+1)r, a}=al, a}=a)+r, aj=aj+nr,

3)

ad=a}—(m+1)s, al=a?, ad=al+s, a=al+ms.
Compute: :

117 707 o 116 ¢ 06 o 1 i, 1 115 /5 5
Qy= A== 43, a3~ a3==4da3, ao=(ao+aa)—as= ao+as)_

25 3
—al= (aﬁ-f—ag)—agi-:) (@—(n+Dr+a3+nr)—al = ag—r,
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and
115 0 25

1 1 1 5, 5 2 2 0@
al = a1+a2—a2= al+a2'—a2= a1+a2—a2=

aA+ay+r—ay =al+r.
On the other hand,

0, 0 0o 0B 2, 2 o 02 4, 4 o 034 3 3 9
nr=a;+ag+nr—a,—az= a;+a3—a,—ag= 4, +a03—a,—a3= a; + a3 —a; —

&)}
—a3= a}+ay+ms—al—a3s = ms.
Conversely, suppose ms=nr, ai=d3—r, at=a+r, ai=a3, and al=d} hold
for some r,s€R. Define

at=al—(m+1r, ai=ad, ai=al+r, a=al+nr,
ai=al—(m+1)s, a}=al, a}=ad+s, a=ad+ms,
ad=a}—(n+)r, at=a?, aj=al+r, ai=ad+ms,
ad=ad—(m+1)r, ad=al+r, a=a}, al=al+nr,
ad=ad—r, al=al, al=ad+r, ad=al,
ay=ad—r, al=a}, al=a}, al=ad+r,

and choose @, (i=8, j<4) by Proposition 5.2. Then, by making use of Proposition
5.2 and Figure 4, it is easy to check that we have a solution of E(a% d,, ,, a') in R.
Q.e. d.

PROPOSITION 5.4. Let I" be a non-empty index set and for ycI' let A, be a non-
empty subset of {0,1,2,...}x{0,1,2,...}. Then for any ring R the following two
conditions are equivalent:

(i) The identity p=V(A(d,,,: (m,n)€A,): y€T') holds in €(R);

(ii) The system of the following equations

2r7=1

yer
MSy m,n = 0y for all yeI', (m, n)€A,

(where r, and s, ,, , are variables) is solvable in R. (Note that if r,€R (yeI') form

a solution of the single equation 3 r,=1 then, by definition, r,=0 for all but fini-
yer

tely many y.)

PrOOF. By Lemma 3.6 (i) is equivalent to the condition: M(p=V(A(d,,,:
(m,n)€A,): y€4)) holds in .# (R} for some finite subset 4= {y;, s, ..., %} of I.
This is equivalent to: E(p=V(A(d,,,: (m, n)€A4,): yed)) is solvable in R, by
Claim 5.1. But this is equivalent to: there exist a°=(l, 0,0, 0), al, a?, ..., a*=
=(0,1,0,0) in R* such that for i=1,2,...,k and for all (m,n)e4, E(a'™?,
d, ., @) is solvable in R. By Proposition 5.3 this is equivalent to: there exist r,,
Sy, mn€ER, 2% a'¢ R (i=1,2, ..., k,(m,n)€ A, ) such that a°=(1, 0, 0, 0), a*=(0, 1, 0, 0),

a'=(al"'—r,,a" +r,, a7, ai™Y), and ms,, ,, ,=nr, . But this is clearly equivalent
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to: there exist r,,, 5, ma€R (i=1,2, ..., k,(m,n)c4,) suchthat
k
igl' Py, =1, ms, , .= nr,

Since for yeI'\4 we can choose r,=s, . ,=0, the above condition is equivalent
to (ii). Q.e.d.

COROLLARY 5.5. For arbitrary integers m,n=0 and a ring R the identity
p=d,,, holds in €¢(R) (or, equivalently, in Con(R)) iff the divisibility condition
D(m, n) holds in R.

Now for any ideal 7 of the lattice L an identity A, will be defined. If S(0)>=0
for all S€I then let 4; be p=V(dy 50y S€I). Otherwise, if S(0)=0 for some
Scl, let A; be p=V(A(dgsw@+1,g50: géP and S(g)<w): S€I). Now we can
formulate the following

THEOREM 5.6. Let I be an ideal of L. Then A, is a correct lattice identity, and, for
any ring R, the following three conditions are equivalent:
() Sg€l;
(ii) A; holds in (R);
(iii) A; holds in Con (R*) where R* is considered a module over R in the natural way.

Note that the Theorem remains true if we replace R* by R® in (iii). The proof of

this remark, which is based on HERRMANN and HUHN’s method [5], will not be pre-
sented here.

PROOF. Since G(p) has four vertices and R? is the free algebra on four genera-
tors in .# (R), the equivalence of (ii) and (iii) follows from Lemma 3.6.

Now let us consider the case S(0)>0 for all S¢l. Then, by Proposition 5.4,
(ii) is equivalent to the solvability of the system T of following equations:

2’ rs=1

ser
0=S)rs for all S¢l
Suppose T is solvable in R and rg€R (S€I) form a solution. Set
{S1s .-.s S} = {S|S¢I and rg = 0}

and define S to be S,VS,V...VS;. Since I is an ideal, S¢I. Moreover, S(0) is
the least common multiple of S1(0), ..., S;(0), which implies 0= S(0)=¢ S;(0)
for suitable integers ¢, i=1,2,...,k. Now

k k k k
$©0)-1=80)- Zrs,= 2SO0 -rs, = 3 1,5Ors, = 34-0=0,
i=1 i=1 i=1 i=1

showing that Sz(0), the characteristic of R, divides S(0). Hence Sz=.S, implying
Sg€el
Conversely, if Sg€l then rs,=1, rg=0, (S¢I\{Sg}) is a solution of T in R.
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Now consider the case 0¢{S(0)|S<7}. By Proposition 5.4 (i) is equivalent to
the solvability of the system H of following equations:

2 rs=1

ser
gS@D* .55 .= ¢@rg forall S¢l, geP, S(g) < .

Let rs, rs,, form a solution of H. Choose a finite subset J of 7 such that 0¢ {S(0)|S¢J}
and {rs|S€\J}={0}. Defining S’ to be V (S: S€J) we have S’¢I. Since I is an
ideal, Sx=.S" would be sufficient to show Sg¢ /. Evidently, Sz(0) divides S’(0)=0.
If S’(¢9)<w for geP then

, _ . . ’ _ S$(q)— _
qs @ .1 = qs . 2 rs = 2 qs @) . rs — 2 q q) S(q)qs(q)rs —_
SeJ Sed SeJ

_ fDtle  — ASUDE1
= J@FO-SFI@+l. 5o = F T+ = gS@F. Fso .
S¢J SeJ SecJ

Hence D(g5?@*%, ¢¥@) holds in R, which implies Sp=.S’. ,
Conversely, if Sgc/ then, by the definition of spectrum, rg =1, rs=0
(SeI\{Sg}) can be completed to a solution of H in R.
Finally, the equivalence of (i) and (ii) evidently yields the correctness 4;. Q. e. d.

We conclude this section with two examples, both follow from Theorem 5.6
evidently. The identity p=V (dy,2i+1: 1=i<w) holds in €(R) iﬁ‘ Sr(0), the char-
acteristic of R, is an odd natural number, while p= V(A : geP\Q): Q is a
finite subset of P) holds in Z(R) iff for all but finitely many qEP D(q, 1) holds in R
(i.e. g-1 is an invertible element in R).

6. (i) implies (iii)
In this section the following stronger statement will be proved:

THEOREM 6.1. Let A be a correct lattice identity. Then the set I={Sg|R is a
ring and A holds in €(R)} is an ideal of L. Moreover, if A is finite (i.e., a lattice identity
in the usual sense) then I is a principal ideal of L.

REMARK. Since L is complete, the intersection of arbitrary principal ideals is
principal again. So, if we consider a set {i,: yeI'} of finite lattice 1dent1t1es,
{Rs|®(R) =4, for all yel} is a pr1nc1pal 1deal of L. But many ideals of L is not
principal. Therefore there are ring-properties characterizable by lattice identities
which cannot be characterized even by sets of finite lattice identities. Two such prop-
erties were characterized in the examples of the previous section.

The proof requires some preliminary statements. For any S¢L a ring Rg will
be defined in the following manner. If $(0)>0, let Rgbe Z/S(0), a factor ring of the
ring Z of integers. If S(0)=0 then consider F(X), the free commutative ring with
1 over the set X={x,|pcP}, and its congruence Oy generated by @ s={(P5P+1.

Xy, PP®?-1)|pcP and S(p)<w}, and let R be the factor ring F(X)/@s




58 G. CZEDLI

PROPOSITION 6.2 (Hutchinson [6, Proposition 4 and the proof of Theorem 5]).
For S¢€L the spectrum of Ry is S, and whenever S,=S,; then Rs, is a homomorphic
image of Rg,.

PROOF. Only the case n=35,(0)=0 and S,(0)=0 will be handled since the
rest is similar and it is explicit in [6] For any p¢P let y, be such an element of
Rs,=Z/n for which p5®+l.y =pSi®.1 holds. Consider the homomorphism
@: F(X)>Z[n, 11, xpr>p,. By the Second Isomorphism Theorem it suffices to
show @5, S Ker ¢. Therefore @5, S Ker ¢ is also sufficient. Suppose

PSP+ x,, pSi® . 1)cdg,. Since Si(p) = Si(p), we have
(ps,(p)+1 . xp)q, = ps,(p)+1 Y, = pS,(p)—Sl(p) . pS,(p)H Yy = ps,(p)—S,(p) . pS,(p) .1 =

= pS®.1=(p5P.e. Q.e.d.
Let us cite the following
ProPOSITION 6.3 ([6, Corollary 3]). Suppose R= ]] R, is the direct product

of rings R,, y€I'. Then Con (R) is the join NV (Con (Ry) ye ') in the complete lattice
of all lattice varieties.

The following statement is also needed:

CLAIM 6.4. Let R be the direct product of rings R, and R,, and let p=q be an
arbitrary lattice identity. Then p=gq holds in €(R) iff it holds both in €(Ry) and
C(Ry).

PrROOF. Observe that, for pcRd (p) and GeRd (g), E(p=g) is solvable in R
iff it is solvable both in R, and R,. Therefore, by Theorem 3.2 and Claim 5.1,
€(R)=p=q implies F(R)=p=q for i=1,2. Conversely, if F(R)E=p=q,
i=1, 2, then for any pGRd (p) there exists q,ERd (9) such that M (p<¢].) holds
in A (R,) Since Rd (g) is directed and M(p=gq’) is weakening in ¢’, there exists
GeRd (9) such that M(P=g) holds in #(R) for i=1,2. Therefore E(j=3)
is solvable in R,, Ry, and, consequently, in R. Now Theorem 3.2 and Claim 5.1
yield that p=g holds in #(R). Q.e.d.

PRrOOF of Theorem 6.1. Let S,, S,€1. By Proposition 6.2 and the correctness of
A, A holds in €(Rs,) and ¥(Rs,). Therefore, by Claim 6.4, A holds in %(Rs, X Rs,).
Proposition 6.3 together with the isomorphlsm between L and the lattice {Con (R)|
|R ring} yield that the spectrum of Rs, X Rg, is 5,V S,. Hence S,V S, belongs to 1.

Now suppose S1€I and S,;=S,. Then A holds in ‘K(Rs) Since the solvablhty
of E(p=g) is preserved under taking homomorphic images, 4 holds in %(Rj,).
Hence S;67, and 7 is an ideal.

For A finite consider the ring R =st Rs. Then, by Propositions 6.2 and 6.3,

€

Sr=V(S: SeI). On the other hand, by Proposition 6.3, 4 holds in ¥(R). Hence /
is a principal ideal with greatest element S;. Q. e. d.
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7. The equivalence of (ii) and (jii)

Suppose H=(3y¢I')(H,) is a weak divisibility condition. Let {Sk|H, holds in R}

be denoted by J,. Then {Sg|H holds in R} is equal to the directed union ) J,.
yer
So it is sufficient to show that J, (y€rI) is an ideal. But J,= ) N Y {Skl D(m, n)
(m, n) €

holdsin R}= o Q Y {Srlp=d,,, holdsin ¥(R)}is a (principal) ideal by Corollary
m,n)€
5.5 and Theorem 6.1.

Conversely, let I be an ideal of L. For Se€/ let Hy be the set of divisibility condi-
tions that hold in Rg. Since divisibility conditions are preserved under taking homo-
morphic images, by Proposition 6.2 H=(3S¢I)(Hjy) is a weak divisibility condition.
We claim that I={Sg|H holds in R}. Since Si,=S, the & inclusion is trivial.
Suppose H, say Hs (Se¢I) holds in R. Then {D(0, S(0))}U{D(pS®+1, pStr)))
PEP, S(p)<w)}, a subset of Hg, also holds in R. Thus we have Sp=S, implying
Sg€l. Q.e. d.

8. Non-correct lattice identities

First we show the existence of non-correct lattice identities.

PROPOSITION 8.1. The lattice identity
A p=dy VA(d,,1: 25#q€P)

is not correct (where p, d,, , are terms defined in Section 5).

PROOF. Proposition 5.4 yields that for a ring R A holds in #(R) iff the system E
of equations ry+r,=1, 25,=ry, gs,=r, (2%g€P) is solvable in R. It is trivial that E
is not solvable in Z, the ring of integers. On the other hand, if 26p%1 ... p% is the prime
factorization of a natural number & then r,=p§1...p% can be completed to a solution
of E in Z/k, the factor ring of integers modulo k. Therefore E is solvable in Z*=
= J[ Z/k as well. However, the description of the lattice L and Proposition 6.3

k>1

yield that Z and Z* have the same spectrum. Q. e. d. .
REMARK. For nonnegative integers m, n and a ring R let —”—:;Ii mean the ideal

{x€R|m-r=n-x for some reR} of R. As a common generalization of the identities
occurring in Corollary 5.5, Theorem 5.6, and Proposition 8.1 we have: For any lat-
tice term ¢(x,, ,. m=0, n=0) and a ring R the identity p(xy, X1, Xz, X3)=
=q(dyn, n(Xo5 X1, Xz, X3): m=0, n=0) holds in %(R) if and only if RSgq [r_n’;li:
m=0, n%O) holds in the ideal lattice of R. The proof is very similar to that of Prop-
osition 5.4, therefore it will be omitted.

Finally, we present a sufficient condition for lattice identities to be correct. Theo-
rem 5.6 shows that this condition is not necessary.

PrOPOSITION 8.2. Let p and q be lattice terms. If p=q does not contain infini-
tary meets then p=gq is correct.
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ProoF. Since, for pcRd (p) and GeRd(g), p and § are finite, so are G(p)
and G(§). Thus E(F=g) is a finite system of finite equations. Therefore, as it is shown
in [6, Theorem 3 and Proposition 1], E(p=4) is correct, i.e., if it is solvable in R,
and Sg,=Spg, then it is solvable in R, as well. Q. e. d.

REMARK. Even a stronger result is true, namely if the lattice term ¢ does not
contain infinitary meets then p=gq is correct for any lattice term p. The proof is
almost the same as that of Proposition 8.2, but instead of referring to [6] we should
have to show directly (with the Frobenius’ method as in [6]) that certain infinite
systems containing finitely many variables are also correct. Because of its length the
detailed proof will be omitted.
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