
GENERATING BOOLEAN LATTICES BY FEW ELEMENTS AND

EXCHANGING SESSION KEYS

GÁBOR CZÉDLI

Abstract. Let Sp(k) denote the number of the ⌊k/2⌋-element subsets of a

finite k-element set. We prove that the least size of a generating subset of
the Boolean lattice with n atoms (or, equivalently, the powerset lattice of

an n-element set) is the least number k such that n ≤ Sp(k). Based on
this fact and our 2021 protocol based on equivalence lattices, we outline a

cryptographic protocol for exchanging session keys, that is, frequently changing

secondary keys. In the present paper, which belongs mainly to lattice theory,
we do not elaborate and prove those details of this protocol that modern

cryptology would require to guarantee security; the security of the protocol

relies on heuristic considerations. However, as a first step, we prove that if an
eavesdropper could break every instance of an easier protocol in polynomial

time, then P would equal NP. As a byproduct, it turns out that in each

nontrivial finite lattice that has a prime filter, in particular, in each nontrivial
finite Boolean lattice, the solvability of systems of equations with constant-free

left sides but constant right sides is an NP-complete problem.

1. Introduction

1.1. Targeted readership. This is mainly a lattice theoretic paper and the a main
result belongs to lattice theory. However, the targeted readership is not restricted
to lattice theorists. Those familiar with the concept of a Boolean lattice and that
of NP-completeness should have no difficulty in reading the results and even most
other parts of the paper. Some exceptions occur in Subsection 1.3, which surveys
how a series of lattice theoretic investigations lead to the present paper, which could
be interesting outside lattice theory and, perhaps, even outside mathematics.

1.2. Our goal. As usual, N+ = {1, 2, . . . } stands for the set of positive integers.
For n ∈ N+, let Bn = (Bn;∨,∧) be the Boolean lattice with n atoms. Note that Bn is
isomorphic to (and so it can be defined as) the powerset lattice (P ({1, . . . , n});∪,∩),
whence |Bn| = 2n. A subset X of Bn is a generating set of Bn if no proper subset
of Bn that is closed with respect to join (∨) and meet (∧) includes X as a subset.
In Theorem 2.1, we are going to determine the smallest k ∈ N+ such that Bn

has a k-element generating set. Section 3, which is a computer-assisted, indicates
that if k′ > k but k′ is still small, then Bn has many k′-element generating sets.
Based on the plenty of these generating sets, Section 4 outlines a cryptographic
protocol for session key exchange. Section 5 shows that if an eavesdropper (that
is, a monitoring adversary) could solve every instance of a related but easier lattice

2020 Mathematics Subject Classification. Primary: 06D99. Secondary: 94A62, 94A60, 68Q25.
Key words and phrases. Boolean lattice, smallest generating set, cryptography, session key

exchange, NP-complete.
This research was supported by the National Research, Development and Innovation Fund of

Hungary, under funding scheme K 138892. October 29, 2023.
1

ar
X

iv
:2

30
3.

10
79

0v
3

 [
m

at
h.

R
A

]
 2

9
O

ct
 2

02
3

2 G. CZÉDLI

theoretic problem in polynomial time, then P would equal NP. Finally, Section 6
warns the reader that this connection with NP does not guarantee security in itself
and, on the positive side, Section 6 shows some perspectives.

1.3. A historical mini-survey. From the author’s perspective, the story started
with Zádori [28], who gave a new proof of a result of Strietz [24]–[25] asserting
that the equivalence lattice Equ(A) (consisting of all equivalences of A) has a 4-
element generating set provided that A is a finite set and |A| ≥ 3. For short, we
say that Equ(A) is 4-generated for these finite sets A. In the next step, based
on Zádori’s method, Chajda and Czédli [4] proved that the lattices Quo(A) of all
quasiorders (AKA preorders) of these finite sets A and even some infinite sets A
are 6-generated; in fact, they are 3-generated if we add the unary operation ρ 7→
ρ−1 = {(y, x) : (x, y) ∈ ρ} of forming inverses to the set {

∨
,
∧
} of infinitary lattice

operations. Next, Czédli [6] extended Zádori’s result to Equ(A) with |A| = ℵ0.
Furthermore, Czédli [5, 7] and Takách [26] proved that Equ(A) and Quo(A) are 4-
generated and 6-generated, respectively, provided that A is an infinite set and there
is no inaccessible cardinal λ such that λ ≤ |A|. Moreover, the 1999 paper Czédli [7]
proved that Equ(A) has a 4-element non-antichain generating set for these sets A.
Note that Kuratowski [18] gave a model of ZFC in which there is no inaccessible
cardinal at all.

Around 1999, Vilmos Totik1 proved that our methods are insufficient to deal
with inaccessible cardinals. Hence, the topic was put aside after the 1999 paper
Czédli [7], and it is still an open problem whether Equ(A) and Quo(A) are finitely
generated (as complete lattices) if there exists an inaccessible cardinal ≤ |A|.

The research started again in 2015, when Dolgos [14], one of Miklós Maróti’s
students, proved that Quo(A) is 5-generated for |A| ≤ ℵ0, and Kulin [17] extended
this result to all sets A such that there is no inaccessible cardinal λ ≤ |A|. Not
much later, Czédli [8] and Czédli and Kulin [11] reduced the number of generators
by proving that for all sets A such that |A| ≠ 4 and there is no inaccessible cardinal
λ ≤ |A|, the complete lattice Quo(A) is 4-generated. The case |A| = 4 is still open
but the result was optimal for many other sets, as [8] proved that Quo(A) is not
3-generated if |A| ≥ 3. Finding 4-element generating sets that are not antichains is
more difficult but, after Strietz [24]–[25] and Zádori [28], some sporadic cases have
recently been settled in Ahmed and Czédli [1] and Czédli and Oluoch [12].

In 2020, it appeared that the technique developed for infinite sets is appropriate
to show that even some direct powers and products of some finite equivalence
lattices are 4-generated and (consequently) Equ(A) and Quo(A) have very many
4-element generating sets if |A| is a large finite number; see Czédli [9] and Czédli
and Oluoch [12]. Based on the abundance of the generating sets found in the just
mentioned two papers, Czédli [9] in 2021 suggested a protocol (the 2021 protocol
for short) for authentication and cryptography based on lattices. The questions
of security of this protocol gets easier when the protocol is used only for session
key exchange, because then we can practically disregard those adversaries that
alter messages; recall from Buegler [3] that a session key is a secondary key to be
changed before each usage of a cryptographic protocol while the master key remains
unchanged. In other words, while Czédli [9] puts the emphasis on authentication,
now we have a reason to put it on session key exchange. Quite recently, while

1https://en.wikipedia.org/wiki/Vilmos Totik

https://en.wikipedia.org/wiki/Vilmos_Totik

GENERATING BOOLEAN LATTICES AND KEY EXCHANGE 3

looking for small generating sets of some filters of quasiorder lattices, a proof in
Czédli [10] required to know the smallest size of a generating set of a finite Boolean
lattice; this was the immediate motivation for the present paper.

Out of the several directions where the present paper will possibly lead, we only
mention the following. A weak congruence lattice of an algebra A = (A;F) is a
bunch of congruence lattices along a scaffolding, which is the subalgebra lattice of
A; see, e.g., Šešelja, Stepanović, and Tepavčević [22] for an exact definition and
references. Now if A is finite and F = ∅, then we know from Zádori [28] that the
congruence lattices in question are equivalence lattices generated by few (at most
four) elements, and the scaffolding is also generated by few elements by the main
result of the present paper. This raises the question how many of its elements are
needed to generate the weak congruence lattice in the F = ∅ case.

2. Small generating sets of finite Boolean lattices

For n ∈ N+, we introduce the “vertical-space-saving” notation

Sp(n) :=

(
n

⌊n/2⌋

)
(2.1)

where ⌊n/2⌋ is the (lower) integer part of n/2. For example,

Sp(32) = 601 080 390 and Sp(33) = 1 166 803 110. (2.2)

The notation Sp comes from “Sperner”; see later. For n ∈ N+, let LASp(n) be the
smallest k ∈ N+ such that n ≤ Sp(k). Note the rule: n ≤ Sp(k) ⇐⇒ LASp(n) ≤ k;
this explains the acronym, which comes from “Left Adjoint of Sp”.

Theorem 2.1. For n, k ∈ N+, Bn has an at most k-element generating set if and
only if n ≤ Sp(k) or, equivalently, if and only if LASp(n) ≤ k. In particular,
LASp(n) is the smallest possible size of a generating set of Bn.

For example, this theorem together with (2.2) give that B1 000 000 000 is 33-
generated but not 32-generated.

Proof. Let At(Bn) be the set of atoms of Bn. As usual, for an element u of a lattice
L, ↓u and ↑u will stand for {x ∈ L : x ≤ u} and {x ∈ L : x ≥ u}, respectively.
First, we show that for any subset Y of Bn,

if Y generates Bn and a ∈ At(Bn), then a =
∧

(Y ∩ ↑a). (2.3)

As Y , say Y = {b1, . . . , bm}, generates Bn and Bn is distributive, a = t(b1, . . . , bm)
for an m-ary disjunctive normal form, that is, a is the join of meets of elements of
Y . But a is join-irreducible, whereby it is the meet of some elements of Y . This
shows the “≥” part of (2.3). The “≤” is trivial, and we have proved (2.3).

Next, we claim that for any subset G of Bn,

if G generates Bn and k = |G|, then n ≤ Sp(k). (2.4)

To show this, assume that G is a k-element generating set of Bn. Let X be a
k-element set and denote by FS∧(X) the meet-semilattice freely generated by X.
Denote by M the meet-subsemilattice of (Bn;∧) generated by G. Pick a bijective
map f0 : X → G. The freeness of FS∧(X) allows us to extend f0 to a meet-
homomorphism f : FS∧(X) → M , which is surjective since f(X) = G generates M .
By (2.3), At(Bn) ⊆ M . This together with the surjectivity of f allow us to take
an injective map g : At(Bn) → FS∧(X) such that, for all a ∈ At(Bn), f(g(a)) = a.

4 G. CZÉDLI

If we had that g(a) ≤ g(a′) for distinct a, a′ ∈ At(Bn), then g(a) = g(a) ∧ g(a′)
would lead to a = f(g(a)) = f(g(a) ∧ g(a′)) = f(g(a)) ∧ f(g(a′)) = a ∧ a′, yielding
that a ≤ a′ and contradicting that a and a′ are distinct atoms of Bn. Therefore
g(a) ∥ g(a′), that is, g(At(Bn)) is an n-element antichain in FS∧(X). Adding a
top element to FS∧(X), we obtain another semilattice, {1} ∪ FS∧(X). We know
from the folklore or from McKenzie, McNulty, and Taylor [20, Page 240, §4] that
{1}∪FS∧(X) is order isomorphic to B|X| = Bk. So Bk has an n-element antichain.
By Sperner’s theorem [23], see also Grätzer [16, page 354], any antichain in Bk has
at most Sp(k) elements. This implies (2.4) and the “only if” part of the theorem.

Next, observe that

for any m ≤ n ∈ N+, Bm is a homomorphic image of Bn. Therefore,
if Bn has an at most k-element generating set, then so does Bm.

}
(2.5)

It suffices to show the first part for m = n− 1. Let c be a coatom (that is, a lower
cover of 1) in Bn. Then ↓c ∼= Bm. The function f : Bn → ↓c defined by x 7→ c∧x is
a homomorphism by distributivity. As x = f(x) for each x ∈ ↓c, we conclude (2.5).

Next, to show the “if” part of the theorem, assume that n ≤ Sp(k); we are go-
ing to show that Bn has an at most k-element generating set. Based on (2.5),
we can assume that n = Sp(k). As Bk is isomorphic to the powerset lattice
(P ({1, . . . , k});∪,∩) and the ⌊k/2⌋-element subsets of {1, . . . , k} form an n = Sp(k)-
element antichain in (P ({1, . . . , k});∪,∩), it follows that Bk has an n-element an-
tichainH. As (P (H);∪,∩) ∼= Bn, it suffices to find a k-element generating set of the
powerset lattice P (H) = (P (H);∪,∩). For each a ∈ At(Bk), we let Xa := H ∩ ↑a.
Then Xa ∈ P (H) and G := {Xa : a ∈ At(Bk)} is an at most k-element subset of
P (H). To show that G generates P (H), it suffices to show that for every h ∈ H,

{h} =
⋂

{Xa : a ∈ At(Bk) ∩ ↓h}. (2.6)

For every a ∈ At(Bk)∩↓h, we have that h ∈ H ∩↑a = Xa, showing the “⊆” part of
(2.6). Now assume that h′ ∈ H belongs to the intersection in (2.6). Then h′ ∈ Xa

for every a ∈ At(Bk) such that a ≤ h. Writing this in a more useful way,

(∀a ∈ At(Bk))
(
a ≤ h ⇒ a ≤ h′), that is, At(Bk) ∩ ↓h ⊆ At(Bk) ∩ ↓h′.

Hence, using that each element of Bk is the join of all atoms below it, h =∨
(At(Bk) ∩ ↓h) ≤

∨
(At(Bk) ∩ ↓h′) = h′. But h, h′ ∈ H and H is an antichain,

whereby h ≤ h′ gives that h′ = h ∈ {h}, showing the “⊇” part of (2.6). Therefore,
(2.6) and the “if” part of the theorem hold. □

Corollary 2.2. If 2 ≤ k ∈ N+ and n ≤ Sp(k), then the free distributive lattice
FD(k) has a sublattice isomorphic to Bn.

Proof. As Bm is a sublattice of Bn for any m ≤ n, we can assume that n = Sp(k).
Theorem 2.1 yields a surjective homomorphism f : FD(k) → Bn. Let h : Bn → Bn

be the identity map (defined by x 7→ x for x ∈ Bn). Since Bn is projective in
the class of all distributive lattices by Balbes [2, Theorem 7.1(i),(iii’)], there is a
homomorphism g : Bn → FD(k) such that fg = h. As the product h is injective, so
is g. Thus, g(Bn) ∼= Bn and g(Bn) is a required sublattice of FD(k). □

3. The abundance of small generating sets of finite Boolean lattices

We call a k-dimensional vector h⃗ = (h1, . . . , hk) a generating vector of Bn if the
set {h1, . . . , hk} of its components is a generating set of Bn. Here |{h1, . . . , hk}| ≤ k

GENERATING BOOLEAN LATTICES AND KEY EXCHANGE 5

and no equality is required. If k < n, then k is much smaller than |Bn| = 2n,
whereby the components of a randomly chosen k-dimensional vector from Bk

n are
pairwise distinct with high probability. Therefore, the ratio of the k-element gen-
erating sets to all k-element subsets of Bn is close to the ratio of the k-dimensional
generating vectors to all k-dimensional vectors belonging to Bk

n.
A computer program, written by the author and available from his website or

from the appendix section of arXiv:2303.10790v2 (the July 26, 2023 version of
this paper) counted the generating vectors of B1000 among one hundred thousand
randomly selected k-dimensional vectors for some values of k. Some of these com-
putational results are given below and even more in arXiv:2303.10790v2.

n=1000 k=40 Tested:100000 Generating: 42; 506.867 seconds.

n=1000 k=50 Tested:100000 Generating: 59003; 1305.780 seconds.

n=1000 k=80 Tested:100000 Generating: 99990; 2647.147 seconds.

n=1000 k=90 Tested:100000 Generating: 99999; 2974.364 seconds.

n=1000 k=100 Tested:100000 Generating:100000; 3265.869 seconds.

Thus, we conjecture that a random member of B50
1000 is a 50-dimensional generating

vector of B1000 with probability at least 1/2. Note that LASp(1000) = 13.

4. A cryptographic protocol for session key exchange and
encrypted communication

In this section, we outline how to tailor the 2021 protocol, see Czédli [9], from
equivalence lattices to Boolean lattices but, as opposed to [9], now we put the
emphasis on session key exchange. The reader need not be an expert of cryptology.
We present only the main ideas in the paper; the caveats in Section 6 warn us that
some details and proofs, which modern cryptology would expect, are still missing.
As the session key exchange is (almost2) absolutely safe if the key remains unused,
we are going to include the usage of session keys in the suggested cryptographic
protocols. This section and the protocols suggested in it rely only on heuristic
considerations. In order to mitigate this omen, note that the next section contains a
proof of a related statement (and, hopefully, the heuristic considerations have some
convincing value). Furthermore, a session key is to be used in some well-known
cryptosystem like AES-256 (the 256-bit variant of Advanced Encryption Standard)
or Vernam’s cipher, and decades of experience show that these cryptosystems are
safe when they are used appropriately. The full list of papers and other sources
devoted to cryptosystems that can use session keys would possibly be longer than
the present paper itself. Therefore, we reference only some introductory items3 from
Wikipedia (https://www.wikipedia.org/) that are sufficient to find lots of related
literature but note that the reader need not read these items. However, as this
concept occurs in the title, we mention that the terminology session key comes
from Buegler [3].

A session key for a cryptosystem is a symmetric secret key used only once (or,
at least, only very few times); symmetry means that encryption and decryption
need the same key. The importance of a session key is that while several traditional

2It will be clear later that if a particular session key p⃗(⃗h) is unused, then p⃗, which the Adversary

can intercept, gives only the information mentioned in Footnote 6; this is not enough to find h⃗ as

there are astronomically many k-dimensional generating vectors.
3These Wikipedia items are the following: Advanced Encryption Standard , Key-

recovery attack, Chosen plaintext attack, Session key, Gilbert Vernam (they are clickable).

http://www.math.u-szeged.hu/~czedli
https://arxiv.org/abs/2303.10790v2
https://arxiv.org/abs/2303.10790v2
https://www.wikipedia.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Key-recovery_attack
https://en.wikipedia.org/wiki/Key-recovery_attack
https://en.wikipedia.org/wiki/Chosen_plaintext_attack
https://en.wikipedia.org/wiki/Session_key
https://en.wikipedia.org/wiki/Gilbert_Vernam

6 G. CZÉDLI

cryptosystems are vulnerable if the same key is used repeatedly, they are much
safer if a key is used only once. We will always assume that

vectors of element of Bn, session keys, and plaintexts (also called clear
texts) are regarded bit vectors, that is, vectors over the 2-element field
when they are summands or a traditional cipher is applied to them.

(4.1)

With this convention (which is only a trivial question of encoding like ASCII), the
well-known Vernam’s cipher used with a session key c⃗ turns a clear text x⃗ into the
encrypted text is x⃗+ c⃗ (componentwise addition). (We assume that x⃗ does not have
more bits than c⃗; if x⃗ has less bits than c⃗ then only the appropriate initial segment
of c⃗ is used.)

In the subsequent two subsections, we give two versions of our protocol.

4.1. The basic version. In our model, let E be a fixed traditional cryptosystem
like Vernam’s cipher or AES-256. For a (secret) code u⃗ and a clear text x⃗, E(u⃗, x⃗)
denotes the encrypted text that E produces. Kati4 communicates with her Bank

online. They have previously agreed upon a secret master key h⃗, which is a k-

dimensional random generating vector h⃗ = (h1, . . . , hk) of Bn. This master key is
a permanent key that both Kati and the Bank know and only they know; this is
not a big restriction since most European banks do not allow anonymous clients,
whereby Kati and the Bank have to meet before Kati opens a bank account.

In addition to E and h⃗, there are three parameters in the
model, k, n, and b. Let, say, k := 50, n := 1000, and b := 100.

(4.2)

When Kati wants to send a clear text x⃗ = (x1, . . . , xb) ∈ Bb
n to the Bank, the first

step is that she generates a random vector p⃗ = (p1, . . . , pb) of k-ary lattice terms
or, rather, she requests5 such a vector from the Bank; see (4.2).

With this p⃗ obtained from the Bank, Kati

computes the session key u⃗ := p⃗(⃗h) =

(p1(⃗h), . . . , pb(⃗h)), uses the encryption E
to obtain the encrypted text E(u⃗, x⃗), and
sends E(u⃗, x⃗) together with p⃗ to the Bank.

(4.3)

Changing their roles (except that the Bank generates p⃗), the Bank can also send
an encrypted message to Kati. Too simple terms6 should be avoided, of course.
There is an Adversary who eavesdrops on the communication channel and intercepts
messages. Furthermore, he can alter messages and pretending to be Kati or the
Bank, he can send fake messages7. As exchanging session keys is meaningful only
if these keys are used, (4.3) combines this exchange with the use of section keys.
Observe that each of u⃗ and x⃗ can take |Bn|b = 2nb many values. If nb is small, then
a random nb-dimensional vector equals x⃗ with probability 2−nb, which cannot be
neglected. So if nb is small, then the Adversary can experiment with a random x⃗

4The Hungarian variant of “Cathy” and “Kate”.
5 The Bank would certainly vindicate rights to generate p⃗ and would not allow Kati to do so.
6The concept of “not too simple terms” should be defined. For example, we can require that

{h1, . . . , hk} ∩ {p1 (⃗h), . . . , pb (⃗h)} = ∅. Footnote 22 in arXiv:2303.10790v2 gives some vague ideas

how to obtain random terms that are hopefully not too simple on the average.
7Moreover, the Adversary can deploy some malware on Kati’s computer, but this dangerous

threat has not much to do with mathematics and so it is disregarded in the paper.

https://arxiv.org/abs/2303.10790v2

GENERATING BOOLEAN LATTICES AND KEY EXCHANGE 7

and he succeeds in breaking the protocol too often. In particular, we note for later
reference that

if n = 2, and b = 2, then, on average, the Adversary
can break the protocol in every sixteenth step;

(4.4)

this would allow him to steal the money from Kati’s bank account easily. It is
reasonable to believe that if nb is large, say, if nb ≥ 5000, then the protocol outlined
above is safe. As there are 2nb many candidate vectors for x⃗, the Adversary cannot
try each of them in his lifetime (in fact, not even in the expected lifetime of the
Solar System). Similarly, there are so many possible candidates for the master key

h⃗ that the Adversary cannot find it by random trials.
Observe that the Adversary is not in the position to crack the cipher E with a

chosen plaintext attack. Indeed,

if he alters the p⃗ component in a message (p⃗, E(u⃗, x⃗)), then the
addressee works with a corrupted session key, decrypts the mes-
sage into something nonsense, and stops communication. The
same happens if the Adversary changes (p⃗, E(u⃗, x⃗)) in any other
way or he tries to send his own message; all he can learn is
mentioned in Footnote 2 but this is not enough for him.

(4.5)

The chance that an altered or Adversary-made message leads to a meaningful de-
crypted text can be neglected. However, the Adversary might have a chance to
focus on E in case he conjectures what x⃗ could be; he can even try thousands of
candidate x⃗’s. For example, a few days before the deadline that all citizens have to
pay 500 Euros as a local tax, it is reasonable to guess that the clear text in Kati’s
message is “transfer 500 Euros to the revenue account of the city”. So there is a
real chance that

the Adversary knows a triple
(
p⃗, E(p⃗(⃗h), x⃗), x⃗)

)
. (4.6)

Observe that

if E is appropriately chosen, which we assume, then the Adversary

hardly has any chance to extract u⃗ := p⃗(⃗h) from the last two com-
ponents, E(u⃗, x⃗) and x⃗, of the triple mentioned in (4.6).

(4.7)

In other words, we chose an E that is not vulnerable for key-recovery attacks. In
Section 5, we are going to have a closer look at the situation when

the Adversary acquires a pair (p⃗, u⃗) = (p⃗, p⃗(⃗h)), (4.8)

but let us emphasize here that it is very unlikely that the Adversary reaches (4.8)
in his lifetime. Even if the Adversary collects this sort of information several times,
this is still insufficient for him since there are astronomically many possible master
keys. Therefore, we believe that protocol (4.3) is very safe and, in particular, it is
safer than protocol E.

Vernam’s cipher is known to be far from withstanding a key-recovery attack in
situation (4.7), that is, when the Adversary knows E(u⃗, x⃗) = u⃗+ x⃗ and x⃗. Indeed,
then he gets u⃗ by subtraction. The following ad hoc remark might help.

Remark 4.1. Assume that every clear text in our model is a string of characters
(with ASCII codes) 0, 1,. . . , 127. (A value other then 128 − 1 = 127 would not
make much difference.) Call these characters eligible characters. Also, let us call
the characters (with ASCII codes) 128, 129, . . . , 255 false characters. Denote the

8 G. CZÉDLI

clear text by y⃗. Insert at least as many false characters into y⃗ as the number of
its (eligible) characters in an appropriate8 random way to obtain another vector, x⃗.
For example, if y⃗ = (65, 78, 32, 88, 58), then

x⃗ can be (130, 156, 65, 78, 201, 32, 203, 88, 241, 58, 151)

or (65, 143, 179, 78, 184, 32, 88, 182, 252, 137, 58), etc..

Now if Kati wants to send the clear text y⃗ to the Bank, then she turns y⃗ to a
random x⃗ described above and applies protocol (4.3). So Kati sends E(u⃗, x⃗) to the

Bank. Then Bank, armed with p⃗ and u⃗ = p⃗(⃗h), decrypts E(u⃗, x⃗) to x⃗ as before and
obtains y⃗ by omitting the false characters from x⃗.

4.2. A weaker version. In this version, the only purpose is authentication; that
is, Kati wants to prove her identity to the Bank. This protocol has nothing to do
with session keys or E. The parameters and the notations are the same an in (4.3).

To authenticate herself, Kati asks a random p⃗ from the Bank and

after receiving p⃗, she computes and sends p⃗(⃗h) to the Bank.
(4.9)

The idea is that the Bank assumes that (except for the Bank itself) only Kati

knows h⃗ and only she can compute p⃗(⃗h). In our situation, Kati and the Bank
do not have a symmetric role since the Bank does not authenticate itself. (When
banking online, Kati avoids fake sites and clicks only on the real website of the Bank
since her contract with the Bank, signed when she opened the account, contains
the Bank’s URL.) If the Adversary is passive, that is, if he can monitor messages
but cannot alter them and cannot send his own messages, then it is only (4.8)
where he can get to. Indeed, as it is clear from (4.9) and even from Footnote 5,
the Adversary cannot choose p⃗ himself. Furthermore, the argument in (4.5) shows
that the Adversary cannot alter a message in any other way. Hence, Kati has no
reason to afraid of an active adversary.

However, if protocol (4.9) is adapted by two equal communicating parties so that
each of them can play the role of the Bank, then there can be an active adversary,
who can alter and send messages. For this Adversary, the chance to find the (master

and only) key h⃗ is now better than in (4.8) since he can choose p⃗. For this situation,
we cannot prove anything but we guess that even the authentication protocol (4.9)
would be safe in case of an appropriate strategy of choosing p⃗.

Remark 4.2. For authentication, it is safer to send a message something like “This
is Kati” encrypted using protocol (4.3) fortified with Remark 4.1 rather than going
after (4.9). This method works even if (4.3) is adapted by two equal communicating
parties.

5. Even an easier problem is hard

This section is motivated by the Adversary’s problem in the situation described
in (4.8); we study the hardest case of this problem. Note that the result of this
section is meaningful, although less motivated, even without referencing Section 4.

As in Section 4, we will assume that n, k, b ∈ N+, p⃗ is a b-dimensional vector of

k-ary lattice terms, and u⃗ ∈ Bb
n. Writing x⃗ = (x1, . . . , xk) instead of h⃗ ∈ Bk

n, the

8We suggest that the false characters and the eligible characters follow similar distributions;
this makes it more difficult to separate these two sets of characters with statistical methods.

GENERATING BOOLEAN LATTICES AND KEY EXCHANGE 9

problem corresponding to (4.8) is this:

CPr(n, b) :
given an input p⃗(x⃗) = u⃗ with u⃗ ∈ Bb

n, find a solution of the
system p⃗(x⃗) = u⃗ of equations for the unknown x⃗ ∈ Bk

n in
those cases where there exists a solution.

(5.1)

With the same meaning of n, k, b, p⃗, and u⃗, we also define a related decision
problem:

DPr(n, b) :
given an input p⃗(x⃗) = u⃗ with u⃗ ∈ Bb

n, decide whether the
system p⃗(x⃗) = u⃗ of equations has a solution in Bk

n for the
unknown x⃗.

(5.2)

The acronyms CPr and DPr come from “Construction Problem” and “Decision

Problem”, respectively. Let size(p⃗(x⃗) = u⃗) and size(⃗h) denote the size of p⃗(x⃗) = u⃗

and that of h⃗, respectively; these sizes are the respective numbers of bits; see (4.1).
There are many books and papers dealing with the widely known concept of the

complexity classes P andNP; some of them will be cited later but even Wikipedia is
sufficient for us. However, P, NP, and NP-completeness are usually about decision
problems while CPr(n, b) in (5.1) is not such. There is another difference: while
we require an answer for each input string in case of a decision problem, this is
not so in case of CPr(n, b). (In particular, an algorithm solving CPr(n, b) need not
even halt if p⃗(x⃗) = u⃗ unsolvable.) These circumstances constitute our excuse that
we neither define what the NP-completeness of CPr(n, b) could mean nor we know
whether CPr(n, b) would have such a property (as we would experience difficulty
with a suitable replacement of A1(d) later in the proof). However, we can safely
agree to the following terminology:

CPr(n, b), given in (5.1), is solvable in polynomial time
def⇐⇒ there

are an algorithm A(n, b) and a polynomial f (n,b) such that for every input
equation p⃗(x⃗) = u⃗ of CPr(n, b), if p⃗(x⃗) = u⃗ has a solution, then A(n, b)
finds one of its solutions in (at most) f (n,b)(size(p⃗(x⃗) = u⃗)) steps.

(5.3)

The algorithm and the polynomial depend on the parameters n and b. We could
have written “time” instead of “steps”. Later, we will always omit “(at most)”.

We have the following statement, in which b denotes the dimension of p⃗.

Proposition 5.1. For 2 ≤ b ∈ N+ and n ∈ N+, if CPr(n, b), defined in (5.1), is
solvable in polynomial time then P is equal to NP.

Even if the famous “is P equal to NP?” problem is, unexpectedly, solved affir-
matively in the future, the proof below will still say something on the difficulty of
CPr(n, b).

Proof. In the whole proof, we assume that 2 ≤ b ∈ N+, n ∈ N+, and CPr(n, b) is
solvable in polynomial time.

In principle, we should have written “Turing machine” in (5.3) rather than “al-
gorithm”9. Fortunately, the algorithms in the proof (which are clearly equivalent
to usual computer programs) can be simulated by Turing machines and this sim-
ulation preserves the property “in polynomial time”; see, for example, Theorem

9and “input string” rather than “input equation”, but this distinction would not make an
essential difference as the syntax of the input string can be checked in polynomial time.

https://en.wikipedia.org/wiki/NP-completeness

10 G. CZÉDLI

17.4 in Rich [21]. By the same theorem, for n′ computer steps10 (and for n′ steps
in our mind), the simulating Turing machine needs (O(n′))6 steps. Therefore, we
will mostly speak of polynomials without specifying their degrees even when a sub-
algorithm is clearly linear (or even better) in our mind, that is, for our computers.
For example,

for each fixed d ∈ N+, there are a polynomial f
(d)
1 and an algorithm A1(d)

such that, for each ξ ∈ N+, A1(d) computes and stores ξd in f
(d)
1 (ξ) steps.

(5.4)

Clearly, there are polynomials f
(n,b)
2 and f3 and algorithms A2(n, b) and A3 such

that for all inputs p⃗(x⃗) = u⃗, as in (5.1), and h⃗ ∈ Bk
n,

A2(n, b) decides in f
(n,b)
2

(
size(p⃗(x⃗) = u⃗) + size(⃗h)

)
steps whether h⃗ is a solution of p⃗(x⃗) = u⃗, and

(5.5)

A3 computes and stores the number size(p⃗(x⃗) = u⃗)
in f3

(
size(p⃗(x⃗) = u⃗)

)
steps.

(5.6)

Let A(n, b) and f (n,b) be chosen according to (5.3). We can assume that f (n,b)

is of the form f (n,b)(ξ) = ξd(n,b) for some d(n, b) ∈ N+. Then A(n, b) halts in(
size(p⃗(x⃗) = u⃗)

)
d(n,b) steps for any solvable input p⃗(x⃗) = u⃗ but we do not know

what A(n, b) does and whether it ever halts at other inputs. Using (5.4)–(5.6),
we define another algorithm B(n, b) as follows. The input of B(n, b) is a system of
equations p⃗(x⃗) = u⃗ from (5.2); let s := size(p⃗(x⃗) = u⃗). The first task of B(n, b)
is to save a copy of p⃗(x⃗) = u⃗; this needs f0(s) steps where f0 is a polynomial not
depending on the parameters n and b and the input p⃗(x⃗) = u⃗. The second part
of B(n, b) is A3, which borrows the input p⃗(x⃗) = u⃗ from B(n, b) and puts s to
the output stream in f3(s) steps. The next part of B(n, b) is A1(d(n, b)), which
considers the output of A3 as an input and puts f (n,b)(s) = sd(n,b) into a (counter)

variable c in f
(d(n,b))
1 (s) steps. Then B(n, b) performs the steps of A(n, b) and the

“(α)–(δ)-strides” given below alternately. (Here a “stride” means a finite sequence
of steps, possibly just one step.) After the first A(n, b)-step, B(n, b) performs the
following strides.

(α) B(n, b) decreases c by 1.
(β) B(n, b) verifies whether c = 0.
(γ) B(n, b) checks whether A(n, b) has halted.
(δ) If c = 0 or A(n, b) has halted then, using the saved copy of p⃗(x⃗) = u⃗,

B(n, b) executes A2(n, b) to verify whether the output of A is a solution
of p⃗(x⃗) = u⃗. If A2(n, b) terminates with “yes”, then B(n, b) outputs “yes,
the equation is solvable” and halts. Otherwise, if A2(n, b) terminates with
“no”, then B(n, b) outputs “no, the equation is not solvable” and halts.

After these (α)–(δ)-strides, the next A(n, b)-step is performed, then the (α)–(δ)-
strides again, etc. The kernel of the (δ)-stride is its part following the premise “if
c = 0 or A(n, b) has halted”; this kernel is performed only once. As c ≤ sd(n,b), there

is a polynomial f
(n,b)
4 , not depending on the input of B(n, b), such that each of the

(α)–(γ)-strides can be done in f
(n,b)
4 (s) many steps and, furthermore, the same holds

for every A-step (since it is only a one-step stride) and for the condition part of (δ).

10We can think of the commands in low-level computer programming languages but not of

compound commands like “NextPrimeAbove(n)” of “InvertMatrix(A)” in high-level programming

languages.

GENERATING BOOLEAN LATTICES AND KEY EXCHANGE 11

The A-step, (α), (β), (γ), and the premise of (δ) are performed f (n,b)(s) = sd(n,b)

times, each. The kernel of the (δ)-part, which is performed only once, is the same
as A2(n, b). The input of A2(n, b) in this case is (the saved copy of) p⃗(x⃗) = u⃗ (of

size s) together with h⃗, taken from the output stream of A(n, b). (Even if A(n, b)
does not halt, there is a memory space — or, in case of a Turing machine, there

is an output tape — where h⃗ is expected when it exists.) As an element of Bn

can be stored in n bits, size(⃗h) = nk. Here n is a constant and k ≤ s since x⃗ has

k components that occur in p⃗ = (x⃗) = u⃗. Hence, size(⃗h) ≤ ns, whereby A2(n, b)

decides in f
(n,b)
2 (s+ ns) = f

(n,b)
2 ((n+ 1)s) steps whether the output of A(n, b) is a

solution of our system of equations. Therefore, B(n, b) halts after

g(n,b)(s) := f0(s)+ f3(s)+ f
(d(n,b))
1 (s)+ f (n,b)(s) · f (n,b)

4 (s)+ f
(n,b)
2 ((n+1)s) (5.7)

steps. As we treat the parameters n and b as constants, g(n,b) is a univariate
polynomial. Since the simulated A finds any solution before the counter c becomes
0, B correctly decides whether p⃗(x⃗) = u⃗ has a solution or not. That is, B solves
DPr(n, b). We have seen that g(n,b) in (5.7) is a polynomial, whereby

DPr(n, b), defined in (5.2), is in P, and B(n, b)
solves it in g(n,b)(input size) steps.

(5.8)

As the next step of the proof, we focus on another problem. An input of the
3-coloring problem is a finite graph G = ({1, . . . , t}, EG), where t ∈ N+ and the
edge set EG consists of some two-element subsets of {1, . . . , t}. By a 3-coloring we
mean a sequence C1, C2, . . . , Ct of nonempty subsets of {r, w, g} := {red, white,
green} such that whenever {i, j} ∈ EG, then Ci ∩ Cj = ∅. (This is equivalent to
the original definition, where each vertex has exactly one color since we can change
a color ξ to {ξ} and, in the converse direction, we can take the lexicographically
first element of each nonempty subset of {r, w, g}.)

To reduce the 3-coloring problem to problem DPr(n, b), let G be the graph from
the previous paragraph, and let sG := size(G). Let r1, w1, g1, . . . , rt, wt, gt be
variables; their task is to determine a 3-coloring. These k := 3t variables form the
components of a vector denoted by x⃗. For each vertex v ∈ {1, . . . , t} and each edge
{i, j} ∈ EG, consider the k-ary lattice terms

av(x⃗) := rv ∨ wv ∨ gv and bij(x⃗) := (ri ∧ rj) ∨ (wi ∧ wj) ∨ (gi ∧ gj). (5.9)

For m ∈ {2, . . . , t}, let

p1 :=
∧

{av(x⃗) : v ∈ {1, . . . , t}} and pm :=
∨

{bij(x⃗) : {i, j} ∈ EG}, (5.10)

p⃗ := (p1, . . . , pt), and u⃗ = (u1, . . . , ut) := (1, 0, . . . , 0), where11 0 = 0Bn
and 1 = 1Bn

.
We claim that

p⃗(x⃗) = u⃗ has a solution in Bk
n if and only if G is 3-colorable. (5.11)

To see this, assume that C1, . . . , Ct are color sets witnessing that G is 3-colorable.
For v ∈ {1, . . . , t}, let rv := 1 ⇐⇒ r ∈ Cv, wv := 1 ⇐⇒ w ∈ Cv, and gv :=
1 ⇐⇒ g ∈ Cv. If a variable is not 1, then let it be 0. Clearly, these assignments
yield a solution in Bk

n of p⃗(x⃗) = u⃗. Conversely, assume that p⃗(x⃗) = u⃗ has a solution
x⃗′ = (r′1, w

′
1, g

′
1, . . . , r

′
t, w

′
t, g

′
t) ∈ Bk

n for the unknown x⃗, and fix an atom e in Bn.
For each v ∈ {1, . . . , t}, define Cv ⊆ {r, w, g} by the rules r ∈ Cv ⇐⇒ e ≤ r′v,

11Note that, to reduce the size of p⃗, we could have let p3 = · · · = pt := r1 ∨ w1 ∨ g1 together
with u3 = · · · = ut = 1.

12 G. CZÉDLI

w ∈ Cv ⇐⇒ e ≤ w′
v, and g ∈ Cv ⇐⇒ e ≤ g′v. For any v ∈ {1, . . . , t},

p1(x⃗
′) = u1 = 1 and (5.10) give that e ≤ 1 = p1(x⃗

′) ≤ av(x⃗
′) = r′v ∨w′

v ∨ g′v. Using
the well-known fact that every atoms (and, in fact, any join-irreducible element)
in a finite distributive lattice is join-prime, we obtain that at least one of the
inequalities e ≤ r′v, e ≤ w′

v, and e ≤ g′v holds, whereby Cv is nonempty. For
{i, j} ∈ EG, p2(x⃗

′) = u2 = 0 and (5.10) give that (r′i∧r′j)∨ (w′
i∧w′

j)∨ (g′i∧g′j) = 0.
Hence, r′i ∧ r′j = w′

i ∧w′
j = g′i ∧ g′j = 0. If, say, we had that r ∈ Ci ∩Cj , then e ≤ r′i

and e ≤ r′j would lead to e ≤ r′i ∧ r′j = 0, a contradiction. Hence, r /∈ Ci ∩ Cj , and
similarly for the colors w and g, showing that Ci ∩ Cj = ∅. So C1, . . . , Ct witness
that G is 3-colorable, and we have shown (5.11).

Let sG := size(G) and s stand for the size of G and, complying with the earlier
notation, the size of the equation in (5.11), respectively. It is not hard to see that
there are polynomials µ and η not depending on G such that p⃗(x⃗) = u⃗ can be
constructed from G in η(sG) steps and s ≤ µ(sG). We define an algorithm M as
follows. For a graph G as an input, M constructs p⃗(x⃗) = u⃗, then it calls B(n, b)
and, finally, it outputs the same answer that B(n, b) has given. By (5.8) and (5.11),
M solves the 3-coloring problem. As s = size(p⃗(x⃗) = u⃗) ≤ µ(sG), M does so in
ν(sG) := η(sG) + g(n,b)(µ(sG)) steps. As ν is a polynomial, we obtain that the
3-coloring problem is in P. On the other hand, we know from Garey, Johnson,
and Stockmeyer [15], see also Dailey [13, Theorems 3 and 4], that 3-coloring is an
NP-complete problem. Now that an NP-complete problem turned out to be in P,
it follows that NP = P, completing the proof. □

Remark 5.2. The proof above has reduced the NP-complete 3-coloring problem
to problem DPr(n, b), defined in (5.2). Therefore, DPr(n, b) is also an NP-complete
problem for any 2 ≤ b ∈ N+ and any n ∈ N+.

Even more is true since the only property of Bn that the proof used is that e is
join-prime, which means that {x : x ≥ e} is a prime filter.

Remark 5.3. In every finite lattice L that has a prime filter and for each 2 ≤
b ∈ N+, the solvability of systems of b equations with constant-free left sides but
constant right sides is an NP-complete problem.

6. Warning and perspectives

Sometimes, cryptography goes after conjectures and experience if no rigorous
mathematical proof is available. For example, we only believe that the RSA crypto-
system is safe and P ̸= NP. This can justify that no proof occurs in Sections 4 and
6. However, we have some comments.

Remark 6.1. Even though it is harder to break protocol (4.3) than to solve (5.1)
and we know from Proposition 5.1 that (5.1) is a hard problem, these facts them-
selves do not guarantee the safety of protocol (4.3).

This is so because of (at least) two reasons. First, the Adversary might break
protocol (4.3) without solving (5.1). For example, we know from Proposition 5.1
that (5.1) is hard even with the parameters given in (4.4) but (4.3) can easily be
broken in this case. Second, a hard problem and even an NP-complete problem
can have many easy instances (that is, inputs) for which the computation is fast
and even an “average” instance can be such; see the Introduction in Wang [27] for
details.

GENERATING BOOLEAN LATTICES AND KEY EXCHANGE 13

Remark 6.1 points out that we have not proved that protocols (4.3) and (4.9)
are as safe as we believe. Furthermore, an exact proof would need a well-defined
strategy of choosing p⃗, and a definition to capture what safety means. Actually,
such a definition exists, see Levin [19] and see also Wang [27], but we do not need
its complicated details here. Some ideas about a strategy (in another lattice) are
outlined in Czédli [9] but without any proof, and we do not know whether these
ideas can be supported by a proof. This is why we mention the tiling problem
from Levin [19]; see also Wang [27] as a secondary source. This problem, which
we do not define here, includes a probabilistic distribution. Levin [19] proved that,
with respect to this distribution, the average case of the tiling problem is hard
in some (sophisticated) sense. Similarly to the proof of Proposition 5.1, see also
Remark 5.2, we could reduce the tiling problem to DPr(n, b) defined in (5.2) but
this would require too much tedious work for a lattice theoretic paper. (The NP-
completeness of DPr(n, b) implies the existence of such a reduction but we need
a concrete one that is sufficiently economic.) Then we could pick a random p⃗ for
(4.3) so that first we take a random instance y of the tiling problem and then we
let p⃗ be the polynomial vector in the “DPr(n, b)-representative” of y. As y and,
thus, the corresponding equation in DPr(n, b) are hard on average, we can hope
that this p⃗ turns CPr(n, b), a problem easier than (4.3), hard. However, the details
of this plan have not been elaborated yet. In particular, we have not proved that
the above-suggested method of choosing p⃗ (which is only a part of the DPr(n, b)-
representative of y) turns CPr(n, b) (which is another problem) hard on average.
Furthermore, it is not clear whether the parameters suggested in Section 4 are large
enough for the plan suggested above; enlarging the paramaters reduce the practical
value of (4.3) .

Finally, we note that protocols (4.3) and (4.9) become more economic if we
decrease k so that Bn still has very many k-dimensional generating vectors; this is
the point where Sections 2 and 3 are connected to the Section 4.

References

[1] D. Ahmed and G. Czédli12: (1+1+2)-generated lattices of quasiorders. Acta Sci. Math.
(Szeged) 87 (2021), 415–427.

[2] Balbes, R.: Projective and injective distributive lattices. Pacific J. Math. 21405–420 (1967)

[3] M. Buegler: 3DES and Secure PIN-based Electronic Transaction Processing. GIAC Security
Essentials Certification (GSEC), July 25, 2004. click here

[4] I. Chajda and G. Czédli: How to generate the involution lattice of quasiorders?, Studia Sci.
Math. Hungar. 32 (1996), 415–427.

[5] G. Czédli: Four-generated large equivalence lattices. Acta Sci. Math. (Szeged) 62 (1996),

47–69.
[6] G. Czédli: Lattice generation of small equivalences of a countable set. Order 13 (1996), 11–16.

[7] G. Czédli: (1+1+2)-generated equivalence lattices, J. Algebra, 221 (1999), 439–462.

[8] G. Czédli: Four-generated quasiorder lattices and their atoms in a four generated sublattice.
Communications in Algebra, 45/9 (2017) 4037–4049.

[9] Czédli, G.: Four-generated direct powers of partition lattices and authentication. Publica-

tiones Mathematicae (Debrecen) 99 (2021), 447–472
[10] Czédli, G.: Generating some large filters of quasiorder lattices. arXiv:2302.13911 or (the latest

version at the time of writing) https://tinyurl.com/czg-genfquo

[11] G. Czédli and J. Kulin: A concise approach to small generating sets of lattices of quasiorders
and transitive relations. Acta Sci. Math. (Szeged) 83 (2017), 3–12

12At the time of writing, the author’s Acta Sci. Math. papers up to 2021 are freely available
at the good old site of the journal, http://www.acta.hu/

https://www.giac.org/paper/gsec/4068/3des-secure-pin-based-electronic-transaction-processing/106500
http://arxiv.org/abs/2302.13911
https://tinyurl.com/czg-genfquo
http://www.acta.hu/

14 G. CZÉDLI

[12] G. Czédli and L. Oluoch: Four-element generating sets of partition lattices and their direct

products. Acta Sci. Math. (Szeged) 86, 405–448 (2020).

[13] Dailey, D. P.: Uniqueness of colorability and colorability of planar 4-regular graphs are NP-
complete. Discrete Mathematics 30 (1980) 289–293

[14] Dolgos, T.: Generating equivalence and quasiorder lattices over finite sets, BSc Thesis, Uni-

versity of Szeged, 2015 (in Hungarian)
[15] Garey, M.R., Johnson, D. S., Stockmeyer, L.: Some simplified NP-complete problems. STOC

’74: Proceedings of the sixth annual ACM symposium on Theory of computing, April 1974,

Pages 47–63. https://doi.org/10.1145/800119.803884
[16] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

[17] J. Kulin: Quasiorder lattices are five-generated. Discuss. Math. Gen. Algebra Appl. 36 (2016),

59–70.
[18] K. Kuratowski: Sur l’état actuel de l’axiomatique de la théorie des ensembles. Ann. Soc.

Polon. Math. 3, 146–147, 1925.
[19] Levin, L.A.: Average case complete problems. SIAM J. Comput. 15, No. 1. 285–286, February

1986, click

[20] McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties. Vol. 1.
Wadsworth & Brooks/Cole, Monterey, California, 1987

[21] Rich, Elaine: Automata, Computability, and Complexity — Theory and Applications. Pear-

son Prentice Hall, Upper Saddle River, NJ, 2008.
[22] Šešelja, B.; Stepanović, V.; Tepavčević, A.: A note on representation of lattices by weak

congruences. Algebra Universalis 68 (2012), no. 3-4, 287–291.

[23] Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, 544–548 (1928).
DOI 10.1007/BF01171114

[24] H. Strietz: Finite partition lattices are four-generated. Proc. Lattice Theory Conf. Ulm, 1975,

pp. 257–259.
[25] H. Strietz: Über Erzeugendenmengen endlicher Partitionverbände. Studia Sci. Math. Hun-

garica 12 (1977), 1–17.
[26] G. Takách: Three-generated quasiorder lattices. Discuss. Math. Algebra Stochastic Methods

16 (1996) 81–98.

[27] Wang, J.: Average-case computational complexity theory. In: Hemaspaandra and Selmen
(eds.), Complexity Theory Retrospective II, Springer-Verlag, 1997, pages 295–328. click

[28] L. Zádori: Generation of finite partition lattices. Lectures in universal algebra (Proc. Colloq.

Szeged, 1983), Colloq. Math. Soc. János Bolyai, Vol. 43, North-Holland, Amsterdam, 1986,
pp. 573–586.

Email address: czedli@math.u-szeged.hu

URL: http://www.math.u-szeged.hu/~czedli/

University of Szeged, Bolyai Institute. Szeged, Aradi vértanúk tere 1, HUNGARY

6720

https://doi.org/10.1145/800119.803884
https://gwern.net/doc/cs/algorithm/1986-levin.pdf
https://doi.org/10.1007/BF01171114
https://www.cs.uml.edu/~wang/acc-forum/avgcomp.pdf
czedli@math.u-szeged.hu
http://www.math.u-szeged.hu/~czedli/

	1. Introduction
	1.1. Targeted readership
	1.2. Our goal
	1.3. A historical mini-survey

	2. Small generating sets of finite Boolean lattices
	3. The abundance of small generating sets of finite Boolean lattices
	4. A cryptographic protocol for session key exchange and encrypted communication
	4.1. The basic version
	4.2. A weaker version

	5. Even an easier problem is hard
	6. Warning and perspectives
	References

