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FOUR-GENERATED QUASIORDER LATTICES AND THEIR

ATOMS IN A FOUR-GENERATED SUBLATTICE

GÁBOR CZÉDLI

Abstract. Quasiorders, also known as preorders, on a set A form a lattice

Quo(A). We prove that if A is a finite set consisting of 2, 3, 5, 7, 9, or more than
10 elements, then Quo(A) is four-generated but not three-generated. Also, if

A is countably infinite, then a four-generated sublattice contains all atoms

of Quo(A). These statements improve Ivan Chajda and the present author’s
1996 result, where six generators were constructed, and Tamás Dolgos and

Júlia Kulin’s recent results, where five generators were given.

1. Introduction and the main result

A lattice is k-generated if it has a k-element generating set. A quasiorder, also
known as a preorder, is a reflexive, transitive relation on a set. Quasiorders are
frequently used in many fields of algebra and mathematics. Equipped with the
subset relation, the collection of all quasiorders on a set A is a lattice Quo(A) =
(Quo(A);⊆). The size of this lattice as a function of |A| grows quite fast; we know
from [2] that |Quo(A)| is 1, 4, 29, 355, and 6942 for |A| being 1, 2, 3, 4, and
5, respectively. Hence, it was a surprise in [2, Page 416] that these lattices are
six-generated for all finite sets A. Recently, Dolgos [6] and Kulin [7] have given
generating sets consisting only of five elements. Besides [2], it is their results that
motivated our research leading to the present paper. Further historical remarks
will be given soon after formulating the main result.

As usual, the least infinite cardinal is denoted by ℵ0. Given a set A, |A| stands
for the cardinality of A. The least element of Quo(A) is the equality relation
∆A = {(x, x) : x ∈ A}. Quasiorders of the form {(p, q)} ∪ ∆A with p 6= q are the
atoms of Quo(A). Our goal is to prove the following theorem.

Theorem 1.1. If A is a set with |A| ∈ {n ∈ N : n ≥ 11} ∪ {2, 3, 5, 7, 9,ℵ0}, then

(i) the quasiorder lattice Quo(A) has a four-generated sublattice that contains all

atoms of Quo(A), and

(ii) if, in addition, |A| is finite, then Quo(A) is a four-generated lattice.

Furthermore, for every set A with at least three elements, no three-generated sub-

lattice of Quo(A) contains all atoms of Quo(A).
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Remark 1.2. Part (i) cannot hold for |A| > ℵ0 by cardinality reasons. We do not
know whether the theorem holds for |A| ∈ {4, 6, 8, 10}.

1.1. Prerequisite and notation. Practically, there is no prerequisite and the
paper is self-contained for most algebraists. If the reader knows how the join in
Quo(A) is described, then he can read the paper without difficulties. We usually
write + and · (or concatenation) rather than ∨ and ∧ for lattice joins and meets.
This allows us to use the convention that · takes precedence over +; for example,
αβ + αγ stands for (α ∧ β) ∨ (α ∧ γ). Without this convention, several displayed
equations would split into two lines.

1.2. Outline. Subsections 1.3 and 1.4 below give a historical overview and the
initial idea. The rest of the paper is devoted to the proof of Theorem 1.1. Section 2
deals with the case where |A| ≥ 5 is an odd number. If |A| ≥ 12 is an even number
or |A| = ℵ0, then we need a different construction, which is presented in Section 3.
Finally, in Section 4, we prove that Quo(A) cannot be generated by three elements,
and we complete the proof of Theorem 1.1

1.3. Historical overview. The lattice Equ(A) of all equivalence relations on A
and Quo(A) are closely related to each other. In particular, as we point out below
and also by means of (1.1), this is so when the minimum size of possible generating
sets are considered. In order to avoid trivial exceptions, this subsection assumes
that A consists of at least three elements even if this is not always mentioned in what
follows. A lattice is (1+1+2)-generated if it has a generating set {a0, a1, b, c} such
that a0 < a1 and both {a0, b, c} and {a1, b, c} are antichains. The search for small
generating sets of equivalence lattices began with Strietz [8, 9]. Besides proving
that Equ(A) is four-generated for all finite A, he also proved that it is (1 + 1 + 2)-
generated for every finite set A with at least 10 elements. Also, he proved that
Equ(A) has many non-isomorphic four-element generating sets for large |A| < ℵ0

but no three-element generating set for 4 ≤ |A| < ℵ0.
The next step is due to Zádori [12]. He reduced 10 in Strietz’s result by showing

that Equ(A) is (1+1+2)-generated for 7 ≤ |A| < ℵ0; we do not know whether this
holds for |A| ∈ {4, 5, 6}, but it trivially fails for |A| = 3 since Equ(A) is the five-
element non-distributive modular lattice in that case. He also proved that Equ(A) is
three-generated in the following “congruence lattice sense”: there exist α1, α2, α3 ∈
Equ(A) such that whenever F is a set of operations on A and α1, α2, and α3 are
congruences of the algebra 〈A; F 〉, then all equivalences on A are congruences of this
algebra. However, what is most interesting in Zádori’s paper from our perspective
is that he gave an easy construction of a four-element generating set. Actually, with
the exception of Dolgos [6] and Kulin [7], all subsequent papers, that is, Chajda
and Czédli [2], Czédli [3, 4, 5], and Takách [10] rely on the key idea of Zádori’s
construct in some extent, and so does the present paper.

Next, while dealing with quasiorder lattices in [1] and motivated by Zádori’s
approach, Chajda and Czédli [2] got interested in small generating sets of these

lattices. However, [2] considered the complete involution lattice Qinv
compl(A) of qua-

siorders on A; that is, besides arbitrary joins and meets, the period-two lattice
automorphism which maps each quasiorder to its inverse is also an operation of
Qinv

compl(A). It is proved in [2] that Qinv
compl(A) is three-generated. Although brute

computer force shows that Qinv
compl(A) is not two-generated if |A| ∈ {3, 4}, the con-

jecture of [2] that Qinv
compl(A) is not two-generated for 3 ≤ |A| is still open. Since
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the involution operation commutes with the lattice operations, the result of [2]
trivially implies that Quo(A) is six-generated, because one can take the three gen-

erators from [2] and their inverses. Note that Equ(A) is the subalgebra of Qinv
compl(A)

formed by the fixed points of the involution, whereby the relation between studying
small generating sets for quasiorders and that for equivalences is not surprising in
itself. The real surprise for us in [2] was that, without any intention or effort, the
construction worked even for |A| = ℵ0. Then, with some extra effort, |A| in [2] were
pushed somewhat higher than ℵ0. Note at this point that, in view of Remark 1.2,
neither the quasiorder lattice Quo(A), nor its enrichment with involution can be
generated by finitely many elements. This is why it is reasonable to emphasize
here that Qinv

compl(A) is a complete involution lattice in which arbitrary (not only
finitary) joins and meets are considered.

In the rest of this subsection, let Ecompl(A) and Qcompl(A) denote the complete

lattice of equivalences and that of quasiorders on A, respectively. Clearly, if A is
finite, then Equ(A) and Ecompl(A) have exactly the same generating sets, and the
same holds for Quo(A) and Qcompl(A).

As opposed to the case of quasiorders in [2], the passage from finite to ℵ0 is not
so easy for equivalences. The first steps in this direction were made by Czédli [3]
and [4]. For |A| = ℵ0, [3] constructs a (1 + 1 + 2)-generated sublattice containing
all atoms of Equ(A). Note that part (i) of Theorem 1.1 is a counterpart of this
result for quasiorders. In [4], an involved construction and a long technical proof
lead to the result stating that Ecompl(A) is four-generated if |A| is an accessible
cardinal. Instead of a definition, here we note only that ZFC has a model in which
all cardinals are accessible. Next, motivated by [4] and improving its technique,

Takách [10] proved that Qinv
compl(A) is three-generated for infinite sets A with acces-

sible cardinalities. Finally, Czédli [5] constructed a (1 + 1 + 2)-generating set for
every Ecompl(A) such that 7 ≤ |A| is accessible. It is still an open problem whether
the assumption of accessibility can be removed from the above-mentioned results.

In 2015, Dolgos [6] proved that for 3 ≤ |A| ≤ ℵ0, Qcompl(A) is five-generated.
(His construction, which is entirely different from [2, 3, 4, 5, 12], is outlined between
Figures 1 and 2 in Kulin [7].) Soon after [6], Kulin [7] extended Dolgos’ result by
proving that Qcompl(A) is five-generated for all sets A such that 3 ≤ |A| and |A|
is accessible. Actually, her paper contains two proofs. First, and this is of high
importance from our perspective, she gives a short proof; see [7, page 61]. This
short approach is, in essence, based on the 4-generability of Ecompl(A) and the
following statement; see also Lemma 3.2 here for another variant.

(1.1)
If 3 ≤ |A| and S is a complete sublattice of Qcompl(A)
such that Ecompl(A) ⊂ S, then S = Qcompl(A).

Here, as it is usual in lattice theory, “⊂” stands for proper inclusion, which excludes
equality. The proof of (1.1) can easily be extracted from [7, page 61]. Armed with
(1.1), she could simply take the four equivalences from [4] that generate Ecompl(A)
and, as the fifth generator for Qcompl(A), an arbitrary quasiorder outside Ecompl(A).
Second, in order to give a self-contained approach that avoids the long technicalities
of [4] in connection with accessible cardinals, she modified Dolgos’ construction in
an involved way to obtain five generators when A has the power of continuum.

1.4. Method. The initial idea came from Kulin’s (1.1), which raised the possibility
of modifying one (or some) of the four generators of Equ(A) in order to obtain a
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generating set of Quo(A). The main issue was to find appropriate constructs; the
experience with [2, 4, 5] and, mainly, with [3] helped a lot. The technique of [2, 3]
and a variant of (1.1) stated in Lemma 3.2 are used here in the proof.

2. An odd-sized construct

This section is devoted to the case when |A| ≥ 5 is an odd natural number.
(The case |A| = 3 is easy and will be settled in Section 4.) We are going to
define quasiorders by means of graphs. Our considerations will frequently refer to
geometric properties like “vertical” or “of slope 45◦”. Therefore,

(2.1)
a (directed) graph in this paper is always under-
stood as a concrete graph diagram in the plane.

This means that each vertex of a graph has a given abscissa and ordinate and each
edge is a line segment or a concrete planar curve. Vertices are drawn as small
circles. We do not assume planarity in graph theoretical sense, so two edges may
cross not only at a vertex; however, unpleasant crosses of this kind will rarely
occur. Note that an edge can be directed or non-directed ; a non-directed edge is
just an abbreviation for two oppositely directed parallel edges. A colored graph is
a concrete graph diagram whose edges are colored by α, β, γ, and δ. Parallel edges
with different colors may occur but loops are not allowed. Note that a non-directed
edge colored by ε ∈ {α, β, γ, δ} represents two ε-colored directed edges that are
oppositely oriented. In absence of room, the colors of edges are often determined
by the following convention rather than labels:

(2.2)

the horizontal edges are α-colored,
the vertical edges are β-colored,
the slanted edges with slope 45◦ are γ-colored, and
the dotted curves are δ-colored.

Our figures include a reminder to (2.2). Let N = {1, 2, 3, . . .} and N0 = {0, 1, 2, . . .}.
For 2 ≤ n ∈ N, we define a graph Fn as follows. See also Figure 1, which moti-
vates that this graph will be called a fence of rank n. The vertex set of Fn,
which is also denoted by Fn, is the disjoint union of An = {a0, a1, . . . , an} and
Bn = {b0, b1, . . . , bn−1}. These subsets of Fn are called rows; An is the upper row

and Bn is the lower row of Fn. The edges of Fn are the non-directed α-colored
(a0, a1), . . . , (an−1, an) and (b0, b1), . . . , (bn−2, bn−1), the β-colored (a0, b0), . . . ,
(an−1, bn−1), and the γ-colored (a1, b0), . . . , (an, bn−1), and the directed δ-colored
(a0, b0), (b1, a0), (bn−1, an), and (an, bn−2). Except for the δ-colored curves, each
edge is non-directed and represents two directed edges of the same color. For
ε ∈ {α, β, γ, δ}, we define a quasiorder ε on the set Fn as follows:

(2.3)
for vertices x, y, we let (x, y) ∈ ε if there is
an ε-colored directed path from x to y.

For example, (a0, an) ∈ α but (a0, an) /∈ β. We make no notational distinction be-
tween the four colors and the quasiorders they determine. Note that the undirected
edges of our figures can be used in both directions in a directed path. Note also that
α, β, γ ∈ Equ(A). On the other hand, δ /∈ Equ(A), because δδ−1 = δ ∩ δ−1 = ∆Fn

.
A pair (x, y) ∈ A2 is nontrivial if x 6= y. For a nontrivial pair (x, y) ∈ A2, the

quasiorder {(x, y)} ∪ ∆A and the equivalence {(x, y), (y, x)} ∪ ∆A will be denoted
by 〈x, y〉q and [x, y]e, respectively. Actually, 〈x, y〉q is a (partial) order, not only
a quasiorder. Note that [x, y]e = 〈x, y〉q + 〈y, x〉q. Sometimes when x 6= y is not
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guaranteed, 〈x, y〉q and [x, y]e may turn to 〈x, x〉q = [x, x]e := ∆A. The following
straightforward lemma was used, explicitly or implicitly, in several earlier papers;
see Chajda and Czédli [2, second display in page 423], Czédli [3, circle principle in
page 12], [4, last display in page 55], and [5, first display in page 451], Kulin [7,
Lemma 2.2], Takách [10, page 90], and Zádori [12, second display in page 583]. Its
proof is trivial if one considers the nontrivial pairs of the quasiorders or equivalences
in question; the details will be omitted.

Lemma 2.1. For an arbitrary set A and j, k ∈ N, if {u, v}, {x1, . . . , xj−1} and

{y1, . . . , yk−1} are pairwise disjoint subsets of A, u = x0 = y0, and v = xj = yk,

then

〈u, v〉q =
(

j
∑

i=1

〈xi−1, xi〉
q

)

·
(

k
∑

i=1

〈yi−1, yi〉
q

)

, and

[u, v]e =
(

j
∑

i=1

[xi−1, xi]
e

)

·
(

k
∑

i=1

[yi−1, yi]
e

)

.

The following lemma settles Theorem 1.1 for |A| ≥ 5 odd.

Lemma 2.2. For 2 ≤ n ∈ N, the quasiorder lattice Quo(Fn) is generated by

{α, β, γ, δ}.

Figure 1. F2, F3, and Fn

Proof of Lemma 2.2. Let Ln denote the sublattice of Quo(Fn) generated by the
four-element subset {α, β, γ, δ}. Clearly,

(2.4) 〈a0, b0〉
q = βδ ∈ Ln and 〈bn−1, an〉

q = γδ ∈ Ln.

In order to avoid extra line breaks, we will often drop the “∈ Ln” part from displayed
equalities. However, when these equalities are referenced, the meaning is that they
belong to Ln. A quasiorder ε ∈ Quo(Fn) is row-preserving if for every nontrivial
pair (x, y) ∈ ε, x and y belong to the same row of Fn. For example,

(2.5) α is row-preserving.

Therefore, using that β ∈ Equ(Fn) with two-element “vertical” blocks and (2.4),
we obtain that

β∗ :=

n−1
∑

i=0

〈ai, bi〉
q = β(α + 〈a0, b0〉

q) ∈ Ln and(2.6)

β∗ :=

n−1
∑

i=0

〈bi, ai〉
q = β(α + 〈bn−1, an〉

q) ∈ Ln.(2.7)
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By the same reasons,

γ∗ :=

n
∑

i=1

〈ai, bi−1〉
q = γ(α + 〈a0, b0〉

q) ∈ Ln and(2.8)

γ∗ :=

n
∑

i=1

〈bi−1, ai〉
q = γ(α + 〈bn−1, an〉

q) ∈ Ln.(2.9)

Note the role of ∗ in our notation: it indicates the orientation of the edges generating
the quasiorder in question. The role of arrows is similar in our next two statements,

α← :=

n
∑

i=1

〈ai, ai−1〉
q +

n−1
∑

i=1

〈bi, bi−1〉
q = α

(

β∗ + γ∗) ∈ Ln and(2.10)

α→ :=

n
∑

i=1

〈ai−1, ai〉
q +

n−1
∑

i=1

〈bi−1, bi〉
q = α

(

β∗ + γ∗) ∈ Ln,(2.11)

which follow easily from (2.5), (2.6), (2.7), (2.8), and (2.9). Note that (2.5) gives
that both α← and α→ are row-preserving; (2.5) will also refer to these two facts. Next,
we claim that

〈a0, a1〉
q = α→

(

〈a0, b0〉
q + γ∗

)

and 〈an−1, an〉
q = α→

(

β∗ + 〈bn−1, an〉
q

)

(2.12)

belong to Ln; this follows from definitions, (2.4), and (2.5) easily. For example, to
see the first equality in (2.12), observe that for all (x, y) ∈ 〈a0, b0〉

q + γ∗, we have
either (x, y) ∈ γ∗, or (x, y) ∈ {(a0, b0), (b0, a1), (a0, a1)}. So if a nontrivial pair (x, y)
belongs also to α→, then (x, y) = (a0, a1) ∈ 〈a0, a1〉

q. This proves the “≥” (that is,
the “⊇”) part of the first equality in (2.4), while the converse inequality is obvious.
So this equality holds and 〈a0, a1〉

q ∈ Ln by (2.4). In what follows, arguments of
similar complexity will not be as detailed as above for (2.12); however, we point
out that

α← ≤ α, . . . , γ∗ ≤ γ, αβ = αγ = βγ = β∗δ = γ∗δ = ∆Fn
,

and our figures can often be used in these cases. In particular, the straightforward
argument showing that

〈b0, a1〉
q = γ∗

(

β∗ + 〈a0, a1〉
q
)

and 〈an−1, bn−1〉
q = β∗

(

〈an−1, an〉
q + γ∗

)

(2.13)

are in Ln follow from (2.6), (2.7), (2.8), (2.9), and (2.12). Next, we let

µ∗k :=

k−1
∑

i=0

〈bi, ai〉
q, νk

∗
:=

k−1
∑

i=0

〈an−i, bn−1−i〉
q, for 2 ≤ k ≤ n − 1,(2.14)

κ∗k :=

k
∑

i=1

〈bi−1, ai〉
q, and λk

∗
:=

k
∑

i=1

〈an−i, bn−i〉
q, for 1 ≤ k ≤ n − 1.(2.15)

Note that (2.14) is vacuous for n = 2; similar situations will frequently occur with-
out further warning. We are going to show by induction on k that the quasiorders
in (2.14) and (2.15) belong to Ln. In order to establish the base of the induction,
we conclude from (2.13) that, for n > 2,

µ∗2 := β∗
(

α← + 〈b0, a1〉
q
)

and ν2
∗

:= γ∗
(

α← + 〈an−1, bn−1〉
q
)

(2.16)

are in Ln. Also, (2.13) gives that κ∗1 = 〈b0, a1〉
q ∈ Ln and λ1

∗
= 〈an−1, bn−1〉

q ∈ Ln.
Hence (2.15) holds for n = 2. So does (2.14), vacuously. Thus, in the rest of the
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argument for (2.14) and (2.15), let n > 2. It follows easily that κ∗2 = γ∗
(

α→ + µ∗2
)

∈

Ln and λ2
∗

= β∗
(

α→ + ν2
∗
) ∈ Ln. Now, assume that k < n − 1 such that both (2.14)

and (2.15) define elements of Ln. It is straightforward and easy to see that

µ∗k+1 := β∗
(

α← + κ∗k
)

, νk+1
∗

:= γ∗
(

α← + λk
∗

)

,

κ∗k+1 := γ∗
(

α→ + µ∗k+1

)

, and λk+1
∗

:= β∗
(

α→ + νk+1
∗

)

are also in Ln. This completes the induction and proves that the quasiorders given
in (2.14) and (2.15) belong to Ln. Consequently, it follows easily that

ρ→k := α→(β∗ + κ∗k) =

k
∑

i=1

(

〈ai−1, ai〉
q + 〈bi−1, bi〉

q
)

, for 1 ≤ k ≤ n − 1,

τ→k := α→(γ∗ + λk
∗
) =

k
∑

i=1

(

〈an−i, an+1−i〉
q + 〈bn−1−i, bn−i〉

q

)

,

for 1 ≤ k ≤ n − 1,

ρ←k := α←(µ∗k + γ∗) =
k

∑

i=1

〈ai, ai−1〉
q +

k−1
∑

i=1

〈bi, bi−1〉
q, for 2 ≤ k ≤ n − 1,

τ←k := α←(νk
∗

+ β∗) =
k

∑

i=1

〈an+1−i, an−i〉
q +

k−1
∑

i=1

〈bn−i, bn−1−i〉
q,

for 2 ≤ k ≤ n − 1,

belong to Ln. Hence, we obtain that

(2.17)
〈bk−1, bk〉

q = ρ→kτ→n−k, for 1 ≤ k ≤ n − 1, and

〈ak, ak−1〉
q = ρ←kτ←n+1−k, for 2 ≤ k ≤ n − 1,

are in Ln. As a particular case of (2.17), 〈b0, b1〉
q ∈ Ln and 〈bn−2, bn−1〉

q ∈ Ln.
Hence,

(2.18) 〈b0, a0〉
q = β∗

(

〈b0, b1〉
q + δ

)

and 〈an, bn−1〉
q = γ∗

(

δ + 〈bn−2, bn−1〉
q

)

belong to Ln. This implies that

(2.19) 〈a1, a0〉
q = α←

(

γ∗ + 〈b0, a0〉
q
)

and 〈an, an−1〉
q = α←

(

〈an, bn−1〉
q + β∗

)

are also in Ln. Observe that

(2.20) 〈a1, b0〉
q = γ∗

(

〈a1, a0〉
q + 〈a0, b0〉

q
)

and 〈a1, b1〉
q = β∗

(

〈a1, b0〉
q + 〈b0, b1〉

q
)

are in Ln by (2.4), (2.17), and (2.19). Hence, using (2.17) (and (2.20) for k = 1),
we obtain by induction on k that

(2.21)
〈ak, bk−1〉

q = γ∗
(

〈ak, ak−1〉
q + 〈ak−1, bk−1〉

q
)

and

〈ak, bk〉
q = β∗

(

〈ak, bk−1〉
q + 〈bk−1, bk〉

q
)

, for 1 ≤ k ≤ n − 1,

are in Ln. Using (2.4) and (2.19), it follows that

(2.22) 〈bn−1, an−1〉
q = β∗

(

〈bn−1, an〉
q + 〈an, an−1〉

q
)

is in Ln. Starting from (2.22) and using (2.17), an obvious induction on k yields
that for 2 ≤ k ≤ n − 1,

(2.23)
〈bn−k, an+1−k〉

q = γ∗
(

〈bn−k, bn+1−k〉
q + 〈bn−(k−1), an−(k−1)〉

q
)

and

〈bn−k, an−k〉
q = β∗

(

〈bn−k, an+1−k〉
q + 〈an+1−k, an−k〉

q
)
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are in Ln. Combining (2.4), (2.22), and (2.23), we obtain that

(2.24) 〈bn−k, an+1−k〉
q, 〈bn−k, an−k〉

q ∈ Ln for 1 ≤ k ≤ n − 1.

Now that every non-horizontal directed edge in the graph generates an atom in Ln

by (2.4), (2.13), (2.18), (2.20), (2.21), and (2.24), it is trivial to see that the same
holds for the horizontal directed edges; for example,

〈ak−1, ak〉
q = α→

(

〈ak−1, bk−1〉
q + 〈bk−1, ak〉

q

)

, for 1 ≤ k ≤ n.

That is, for every undirected edge (x, y) of the graph, 〈x, y〉q, 〈y, x〉q ∈ Ln. Fur-
thermore, for all x 6= y ∈ Fn, there are two vertex-disjoint (non-directed) paths
from x to y. Thus, by Lemma 2.1, Ln contains all atoms of Quo(Fn). Since every
element of Quo(Fn) is the join of some atoms, it follows that Ln = Quo(Fn). This
completes the proof of Lemma 2.2 �

Figure 2. G(5) and G(3, 4, 5)

3. Even-sized and countable constructs

In this section, we investigate sets A with |A| ∈ {12, 14, 16, 18, . . .} ∪ {ℵ0}. Let
~m = (n + i : i < g) denote a sequence of consecutive positive integers such that
n ≥ 3 and g ≤ ℵ0. Here g is the length of the sequence, so “i < g” always stands
for “0 ≤ i < g”. The case g = 1, where ~m = (n) is the singleton sequence, and the
case g = ℵ0, where ~m = (3, 4, 5, 6, . . .) is the sequence of all natural numbers above
2, will be of a particular importance. Associated with ~m, we define a colored graph
G(~m) as follows; remember that (2.1) is still valid. First, modifying the set of δ-
colored edges in Fk, we define a new graph Hk according to Figure 2 as follows. (In
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this figure, H3, H4, and H5 are given as full subgraphs of larger graphs.) Instead of
ai and bj , the vertices of Hk are denoted by pk

i and qk
j , respectively. Furthermore,

Hk has exactly two δ-colored edges, (pk
0 , qk

0) and (pk
k, qk

k−1), and both are undirected.
Next, to obtain G(~m), form the (disjoint) union of F2 and the fences Hn+i, i < g,
both for the vertex sets and the edge sets, and add the following undirected edges:

the β-colored (b0, p
n
n−1), (b1, p

n
n), (qn+i−1

n+i−3, p
n+i
n+i−1), and

(qn+i−1
n+i−2, p

n+i
n+i), for 1 ≤ i < g, and

the γ-colored (b0, p
n
0 ), (b1, p

n
1 ), (qn+i−1

0 , pn+i
0 ), and

(qn+i−1
1 , pn+i

1 ), for 1 ≤ i < g.

In this way, we obtain the graph G(~m). For G(5) and G(3, 4, 5), see Figure 2. Our
set is now A = G(~m), the vertex set of the graph, and we define our quasiorders
on A according to (2.3). Note that with the exception of the four δ-colored edges
in F2, all edges of G(~m) are undirected. The aim of the present section is to prove
the following statement.

Lemma 3.1. In Quo(G(~m)), the sublattice L generated by {α, β, γ, δ} contains all

atoms of Quo(G(~m)).

The proof of this statement is heavily based on the following lemma, which
one can easily extract from Kulin [7, Proof of Theorem 2.1(i)]. For the reader’s
convenience, we outline the proof below.

Lemma 3.2 (Kulin [7]). Assume that A is a set with at least three elements and

L is a sublattice of Quo(A) such that L contains all atoms of Equ(A). If L is not

a sublattice of Equ(A), then it contains all atoms of Quo(A).

Proof of Lemma 3.2. Take a pair (a, b) ∈ ε with (b, a) /∈ ε and ε ∈ L \ Equ(A).
Then 〈a, b〉q = ε · [a, b]e ∈ L. Observe that for pairwise distinct x, y, z ∈ A,

〈x, z〉q = [x, z]e · (〈x, y〉q + [y, z]e) and 〈z, y〉q = [z, y]e · ([z, x]e + 〈x, y〉q).

For every nontrivial (c, d) ∈ A2, using the rule above at most three times, it follows
from 〈a, b〉q ∈ L that 〈c, d〉q ∈ L. �

Proof of Lemma 3.1. Let A = G(~m). The subgraphs Hn+i for i < g and F2 will be
called the fences of G(~m). They are of rank n+ i and 2, respectively. Observe that
α+δ ∈ Equ(A) and the fences are exactly the (α+δ)-blocks. We let β′ := β(α+δ),
γ′ := γ(α + δ), α′ := α(α + δ) = α, and δ′ := δ(α + δ) = δ. Clearly, each fence of
G(~m) is ε′-closed for every ε ∈ {α, β, γ, δ} ⊆ L. That is, whenever x belongs to a
fence and (x, y) ∈ ε′, then y also belongs to the same fence. Hence, at the beginning
of the proof, we can work with α′, . . . , δ′ ∈ L more comfortably than with α, . . . , δ.
We will often use, sometimes without explicit mentioning, that

(3.1) αβ = αγ = βγ = ∆A and similarly for α′, β′, and γ′.

Our first task is to show that

(3.2) for all x, y ∈ F2 with x 6= y, 〈x, y〉q ∈ L.

Clearly, 〈b1, b0〉
q = αδ ∈ L. Thus, using the earlier containments and (3.1) in every

step below, we obtain that the following quasiorders are in L:

〈a1, b0〉
q = γ′(β′ + 〈b1, b0〉

q),

β′2∗ := 〈a0, b0〉
q + 〈a1, b1〉

q = β′(α + 〈a1, b0〉
q),
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γ′2∗ := 〈a1, b0〉
q + 〈a2, b1〉

q = γ′(α + 〈a1, b0〉
q),

〈a0, b0〉
q = δβ′2∗, 〈a0, a1〉

q = α(〈a0, b0〉
q + γ′),

〈b0, a1〉
q = γ′(β′ + 〈a0, a1〉

q), 〈b1, a1〉
q = β′(〈b1, b0〉

q + 〈b0, a1〉
q),

β′∗2 := 〈b0, a0〉
q + 〈b1, a1〉

q = β′(α + 〈b0, a1〉
q),

γ′∗2 := 〈b0, a1〉
q + 〈b1, a2〉

q = γ′(α + 〈b0, a1〉
q),

〈b1, a2〉
q = γ′∗2 · δ, 〈a1, a2〉

q = α(β′2∗ + 〈b1, a2〉
q),

〈a1, b1〉
q = β′2∗(〈a1, a2〉

q + γ′2∗), 〈b0, b1〉
q = α(〈b0, a1〉

q + 〈a1, b1〉
q),

〈a2, b1〉
q = γ′2∗(δ + 〈b0, b1〉

q), 〈a2, a1〉
q = α(〈a2, b1〉

q + 〈b1, a1〉
q),

〈b0, a0〉
q = β′∗2 (〈b0, b1〉

q + δ), and 〈a1, a0〉
q = α(〈a1, b0〉

q + 〈b0, a0〉
q).

That is, for each undirected edge (x, y) of F2, both 〈x, y〉q and 〈y, x〉q are in L.
Thus, (3.2) follows by Lemma 2.1.

Next, assume that k belongs to ~m. In other words, we assume that Hk is a fence
of G(~m). We are going to show that

(3.3)
if [pk

0, q
k
0 ]e and [pk

k, qk
k−1]

e belong to L, then for all
x, y ∈ Hk with x 6= y, [x, y]e also belongs to L.

We will follow the “symmetrized” (and easier) variant of some computations used in
Section 2; note that this technique goes back to Zádori [12]. Temporarily, consider
the following equivalences; their dependence on k will not be indicated.

α
⇒

j :=

j
∑

i=1

[pk
i , pk

i−1]
e +

j−1
∑

i=1

[qk
i , qk

i−1]
e for j ∈ {1, . . . , k},

β
⇒

j :=

j
∑

i=0

[pk
i , qk

i ]e for j ∈ {0, . . . , k − 1},

γ
⇒

j :=

j
∑

i=1

[pk
i , qk

i−1]
e for j ∈ {1, . . . , k},

α
⇐

j :=

j
∑

i=1

[pk
k−i, p

k
k−i+1]

e +

j−1
∑

i=1

[qk
k−1−i, q

k
k−i]

e for j ∈ {1, . . . , k},

β
⇐

j :=

j
∑

i=1

[pk
k−i, q

k
k−i]

e for j ∈ {1, . . . , k},

γ
⇐

j :=

j
∑

i=0

[pk
k−i, q

k
k−1−i]

e for j ∈ {0, . . . , k − 1}.

By induction, we are going to show that all of them belong to L. Using (3.1), we
obtain easily that for j ∈ {0, 1, . . . , k − 1},

α
⇒

j+1 = α′(β
⇒

j + γ′), γ
⇒

j+1 = γ′(α
⇒

j+1 + β′), and, if

j < k − 1, β
⇒

j+1 = ((γ
⇒

j+1 + β′)α′ + γ′)β′.

Hence, since β
⇒

0 = [pk
0 , q

k
0 ]e ∈ L by assumption, we obtain that the “right-going”

equivalences α
⇒

j, β
⇒

j , and γ
⇒

j belong to L for all permitted values of their subscripts.
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A similar induction based on γ
⇐

0 = [pk
k, qk

k−1]
e ∈ L and

α
⇐

j+1 = α′( γ
⇐

j + β′), β
⇐

j+1 = β′(α
⇐

j+1 + γ′), and, if

j < k − 1, γ
⇐

j+1 = ((β
⇐

j+1 + γ′)α′ + β′)γ′

yield that each of α
⇐

j, β
⇐

j , and γ
⇐

j is in L for all permitted values of its subscript.
Hence,

[pk
j−1, p

k
j ]

e = α
⇒

j · α
⇐

k+1−j ∈ L for j ∈ {1, . . . , k},

[pk
j , qk

j ]e = β
⇒

j · β
⇐

k−j ∈ L for j ∈ {0, . . . , k − 1},

[pk
j , qk

j−1]
e = γ

⇒

j · γ
⇐

k−j ∈ L for j ∈ {1, . . . , k}, and

[qk
j−1, q

k
j ]e = α′([pk

j , qk
j−1]

e + [pk
j , qk

j ]e) for j ∈ {1, . . . , k − 1}.

Hence, for every edge (x, y) of Hk, [x, y]e ∈ L, and we obtain the validity of (3.3)
by Lemma 2.1.

Next, we claim that (in the fence Hn right below F2)

(3.4) [pn
0 , qn

0 ]e = βδ(γ + [a1, b1]
e) ∈ L and [pn

n, qn
n−1]

e = γδ(β + [a1, b0]
e) ∈ L.

We know from (3.2) that [a1, b1]
e = 〈a1, b1〉

q +〈b1, a1〉
q ∈ L and [a1, b0]

e = 〈a1, b0〉
q +

〈b0, a1〉
q ∈ L. Hence, to prove (3.4), it suffices to prove the equalities in it. In case

of the first equality, the “≤” inequality is clear. In order to show the converse
inequality, assume that (x, y) ∈ βδ(γ + [a1, b1]

e) and x 6= y. Since (x, y) ∈ βδ,

(3.5) (x, y) ∈ {(a0, b0)} ∪ {(pn
0 , qn

0 )} ∪ {(pj
0, q

j
0) : n < j < n + g},

or the same holds for (y, x) but this alternative can be neglected since x and y play
symmetric roles. Furthermore, there is a shortest undirected (γ ∪ [a1, b1]

e)-path P
in the graph G(~m) from x to y. It is clear from (3.1) that P contains the edge
{a1, b1}, and it contains it exactly once. Hence,

(3.6) either (x, a1) ∈ γ and (y, b1) ∈ γ, or (y, a1) ∈ γ and (x, b1) ∈ γ.

In order to make a distinction from what comes next, a (straight) line in the Eu-
clidean plane will be called a geometric line. On the other hand, a G(~m)-line is a
maximal subset S of (the vertex set of) G(~m) such that S is a line (a sequence of
adjacent vertices) in the graph and the members of S lie on the same geometric line.
For u 6= v in G(~m), let uv denote the unique G(~m)-line that contains u and v; note
that it need not exist. In order to avoid confusion, there will be no notation for the

geometric line through u and v. For example, in Figure 2, p5
0p

4
1 = {p5

0, q
4
0, p

4
1, q

3
1, p

3
2},

q4
2 /∈ q5

1p
5
2 though q4

2 lies on the geometric line through q5
1 and p5

2, and p5
2q

4
2 does

not exist. We obtain from (3.6) that

either both xa1 and yb1, or both xb1 and ya1 are of slope 45◦.

Hence, the G(~m)-lines through a1 and b1 of slopes 45◦ contain x and y. Combining
this with (3.5), it follows that {x, y} = {pn

0 , qn
0 }, proving the first equality in (3.4).

The second equality follows in an analogous way, but we need to consider G(~m)-lines
of slope 90◦, that is, vertical G(~m)-lines. This completes the proof of (3.4).

Next, we claim that

(3.7) if x, y ∈ G(~m) belong to the same fence and x 6= y, then [x, y]e ∈ L.

We prove this by induction on the rank of the fence containing x and y. If this
rank is 2, then [x, y]e ∈ L by (3.2). If the rank in question is n, the next one after



12 G. CZÉDLI

2, then [x, y]e ∈ L by (3.3) and (3.4). So assume that 0 < i < g and (3.7) holds
whenever the rank is n + i − 1, that is, when x, y ∈ Hn+i−1. By this induction
hypothesis, [pn+i−1

1 , qn+i−1
1 ]e ∈ L. Repeating the argument with G(~m)-lines of

slopes 45◦ that was used in the proof of (3.4), we obtain easily that [pn+i
0 , qn+i

0 ]e =

βδ(γ + [pn+i−1
1 , qn+i−1

1 ]e) ∈ L. Similarly, working with vertical G(~m)-lines, we

obtain that [pn+i
n+i, q

n+i
n+i−1]

e = γδ(β + [pn+i−1
n+i−2, q

n+i−1
n+i−3]

e) ∈ L. Thus, [x, y]e ∈ L by
(3.3). This completes the induction step and proves (3.7).

We need to take care also of some edges that connect neighboring fences. There
are two cases. First, we assert that, denoting n + i by j for 1 ≤ i < g,

(3.8)
[pj

0, q
j−1
0 ]e = γ · ([pj

0, p
j
j]

e + β + [qj−1
j−2, q

j−1
0 ]e)

× ([pj
0, p

j
j−1]

e + β + [qj−1
j−3, q

j−1
0 ]e) ∈ L,

and, analogously,

(3.9)
[pj

j, q
j−1
j−2]

e = β · ([pj
j, p

j
0]

e + γ + [qj−1
0 , qj−1

j−2]
e)

× ([pj
j, p

j
1]

e + γ + [qj−1
1 , qj−1

j−2]
e) ∈ L.

The arguments for (3.8) and (3.9) are basically the same; apart from notation, the
only difference is that (β, γ, 90◦, 45◦) corresponds to (γ, β, 45◦, 90◦). (In order to
emphasize this duality, we will say “of slope 90◦” rather than “vertical”.) Hence,
we give the details only for (3.8). Assume that a nontrivial pair (x, y) belongs to
the right-hand side of the equality in (3.8). Then (x, y) ∈ γ gives that the G(~m)-
line xy is of slope 45◦. The intersection of this G(~m)-line with some block B1 of
the second meetand contains x and y. Since this intersection contains two vertices
while the β-blocks are G(~m)-lines of slope 90◦, B1 cannot be a β-block. Hence, B1

is the only block of [pj
0, p

j
j]

e +β +[qj−1
j−2, q

j−1
0 ]e not lying on a G(~m)-line of slope 90◦.

Thus,
B1 = {pj

0, q
j
0, q

j−1
0 , pj−1

0 } ∪ {the vertices of the G(~m)-line

of slope 90◦ that contains pj
j}.

For j = 4 on the right of Figure 2, B1 consists of the black-filled elements. It follows

that x, y ∈ B1. The third meetand, [pj
0, p

j
j−1]

e + β + [qj−1
j−3, q

j−1
0 ]e, has also only one

block not lying on a G(~m)-line of slope 90◦; this block is

B2 = {pj
0, q

j
0, q

j−1
0 , pj−1

0 } ∪ {the vertices of the G(~m)-line

of slope 90◦ that contains pj
j−1}.

Since the role of B1 and that of B2 are similar, x, y ∈ B2. Since the geometrical
lines occurring in the description of B1 and B2 are parallel, they have no vertex
in common. Hence, x, y ∈ B1 ∩ B2 = {pj

0, q
j
0, q

j−1
0 , pj−1

0 }. Since xy is of slope 45◦,

it follows that {x, y} = {pj
0, q

j−1
0 }. This yields the “≥” inequality in (3.8). The

converse inequality “≤” is trivial. Thus, (3.8) holds. So does (3.9).
Second, we assert that

(3.10) [pn
0 , b0]

e = γ([pn
0 , pn

n−1]
e + β) ∈ L and [pn

n, b1]
e = β([pn

1 , pn
n]e + γ) ∈ L.

Again, it suffices to show the inequality “≥” in place of the first equality. For
every nontrivial pair (x, y) ∈ γ, the only non-vertical ([pn

0 , pn
n−1]

e + β)-block that
can intersect xy in more than one vertex is {pn

0 , qn
0 } ∪ {the vertices of the vertical

G(~m)-line through pn
n−1}. Hence, {x, y} = {pn

0 , b0} and (3.10) holds.
Now, we are in the position to complete the proof. Although we have not con-

sidered all connecting edges between two adjacent fences, (3.7), (3.8), (3.9), (3.10),



FOUR-GENERATED QUASIORDER LATTICES 13

and Lemma 2.1 allow us to conclude that L contains [x, y]e for all x 6= y ∈ G(~m).
Therefore, since δ /∈ Equ(G(~m)), Lemma 3.2 completes the proof of Lemma 3.1. �

4. The rest of the proof

A nonempty subset P of a lattice L is a complete prime ideal if it is closed with
respect to arbitrary joins, L \ P is nonempty and closed with respect to arbitrary
meets, and for all x ≤ y in L, y ∈ P ⇒ x ∈ P . Using this concept, we can
reformulate the Wille’s D2 from [13] as follows. Note that the idea of using D2-
lemma in a similar context for equivalence lattices goes back to Strietz [8, 9]. A
sublattice S of a lattice L is proper if S 6= L.

Lemma 4.1 (Wille’s D2-lemma reformulated). Assume that L is a complete lattice

and X and Y are disjoint nonempty subsets of L. If L has no complete prime ideal

and no proper complete sublattice of L includes X ∪ Y , then
∧

X ≤
∨

Y .

Proof. Although the original statement is about simple lattices and finite sets X
and Y , Wille’s proof in [13] works in the present situation without any significant
change. Namely, suppose for a contradiction that u :=

∧

X �
∨

Y =: v. Let
P = {z ∈ L : z ≤ v} and Q = {z ∈ L : z ≥ u}. These sets are disjoint since u � v.
Since P ∪ Q is closed with respect to arbitrary meets and joins, it is a complete
sublattice. Since this sublattice includes X∪Y , P ∪Q = L. Clearly, P is a complete
prime ideal, which is a contradiction proving the lemma. �

Proof of Theorem 1.1. If k ∈ {5, 7, 9, 11, . . .}, then F(k−1)/2 from Section 2 is of size
k. So is G((k−6)/2) if k ≥ 12 is even. Also, G(~m) is of size ℵ0 if ~m = (3, 4, 5, 6, . . .).
Thus, the required existence of four generators follows from Lemmas 2.2 and 3.1,
except for |A| ≤ 3. For |A| = 2, |Quo(A)| = 4 and so Quo(A) is four-generated.
Finally, as it was pointed out in Kulin [7, page 61], the five-element Equ({1, 2, 3})
is three-generated and so Quo({1, 2, 3}) is four-generated by Lemma 3.2. Note that
there is an overlapping between the scopes of Section 2 and 3. The smallest odd
size settled by both sections is |A| = 21 = |G(3, 4)| = |F10|.

Next, suppose for a contradiction that there is a three-generated sublattice of
Quo(A) containing all atoms of Quo(A). Let ε0, ε1, and ε2 generate such a sublat-
tice. Since every quasiorder is the (not necessarily finite) join of all atoms below it,
no proper complete sublattice of Quo(A) includes {ε0, ε1, ε2}. Since we are going
to apply Lemma 4.1, we need to show that Quo(A) has no complete prime ideal.
Suppose the contrary, and let P be a complete prime ideal. Denote Quo(A) \ P by
Q; note that Q is called a complete prime filter. With µ :=

∨

P and ν :=
∧

Q,
we have that P = {ρ ∈ Quo(A) : ρ ≤ µ} and Q = {ρ ∈ Quo(A) : ρ ≥ ν}. Con-
sider an atom 〈a, b〉q ∈ Quo(A). Since Quo(A) is the disjoint union of P and Q,
either 〈a, b〉q ∈ P , or 〈a, b〉q ∈ Q. However, we cannot have 〈a, b〉q ∈ P for every

nontrivial pair (a, b) ∈ A2, because otherwise P would contain all atoms and all
joins of atoms, that is, all elements of Quo(A), contradicting Q = Quo(A)\P 6= ∅.
Therefore, there are c 6= d ∈ A such that 〈c, d〉q ∈ Q. Thus, 〈c, d〉q ≥ ν . So either
ν = 〈c, d〉q, or ν = ∆A. But if we had ν = ∆A, then Q = Quo(A) would contradict
P 6= ∅. Hence, ν = 〈c, d〉q. Therefore, if (a, b) ∈ A2 is a nontrivial pair such that
(a, b) 6= (c, d), then 〈a, b〉q � 〈c, d〉q gives that 〈a, b〉q ∈ P . Now, since |A| ≥ 3, we
can pick an element e ∈ A \ {c, d}. Since (c, d) /∈ {(c, e), (e, d), (d, c)}, we have that
〈c, e〉q, 〈e, d〉q, and 〈d, c〉q are in P . Also, 〈c, e〉q + 〈e, d〉q + 〈d, c〉q ∈ P since P is
join-closed. But 〈c, d〉q ≤ 〈c, e〉q + 〈e, d〉q + 〈d, c〉q ∈ P and P is a (complete prime)
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ideal, so we obtain that 〈c, d〉q ∈ P . This contradicts P ∩ Q = ∅ and proves that
Quo(A) has no prime ideal.

Now, for {i, j, k} = {0, 1, 2} we can conclude from Lemma 4.1 that εi ≤ εj + εk

and εi·εj ≤ εk. So we obtain easily that the join of any two of the three generators is
ε0 +ε1 +ε2 and dually. That is, Quo(A) consists of only five elements (and it is M3,
the five-element modular non-distributive lattice). This contradicts |Quo(A)| ≥ 29
from Section 1 and completes the proof of our theorem. �

Added on August 13, 2016. The absence of prime ideals in the proof above follows
also from Tůma [11, Theorem 1], which asserts that Quo(A) is simple for |A| ≥ 3.
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