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Abstract. Slim rectangular lattices are special planar semimodular lattices intro-
duced by G. Grätzer and E. Knapp in Acta Sci. Math. 75:29–48, 2009. They are finite

semimodular lattices L such that the ordered set Ji L of join-irreducible elements of
L is the cardinal sum of two nontrivial chains. After describing these lattices of a

given length n by permutations, we determine their number, |SRectL(n)|. Besides
giving recursive formulas, which are effective up to about n = 1000, we also prove

that |SRectL(n)| is asymptotically (n − 2)! · e2/2. Similar results for patch lattices,
which are special rectangular lattices introduced by G. Czédli and E. T. Schmidt in

Order 30:689–721, 2013, and for slim rectangular lattice diagrams are also given.

1. Introduction

1.1. Target. The key definitions are given in Section 2. Unless otherwise

stated, all lattices occurring in this paper are finite.

Slim rectangular lattices and, in particular, slim patch lattices are of par-

ticular importance, because each planar semimodular lattice can be obtained

from them easily; see G. Grätzer and E. Knapp [19], G. Czédli and E. T.

Schmidt [15], and G. Grätzer [18]. The present paper describes slim rectangu-

lar lattices by permutations. Using this description, we are going to enumerate

slim rectangular lattices and slim patch lattices of a given length n. Also, we

enumerate their diagrams. We give asymptotic formulas and recursive ones.

By means of computer algebra, the recursive formulas lead to exact numbers

for n ≤ 1000.

1.2. Outline. The rest of this section gives a brief historical overview of

planar semimodular lattices, including slim rectangular and slim patch lattices.

Section 2 recalls the main concepts and some tools we need from the theory

of planar semimodular lattices; however, the reader is assumed to be familiar

with the rudiments of lattice theory. In Section 3, we describe slim rectangular

lattices by certain permutations, and we prove several auxiliary statements

that could be of separate interest. We count these lattices of a given height n
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11/1/KONV-2012-0073”, and by NFSR of Hungary (OTKA), grant numbers K83219 and

K104251.
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and their diagrams recursively in Section 4, and asymptotically for n → ∞ in

Section 5. Finally, Section 6 contains some exact numerical values.

1.3. Historical overview. The concept of slim semimodular lattices and

that of rectangular lattices appeared first in G. Grätzer and E. Knapp’s pio-

neering papers [19] and [20]. These lattices are planar, and these two papers

were soon followed by more than twenty others devoted to planar semimodular

lattices. Slim semimodular lattices are natural tools in generalizing the clas-

sical Jordan–Hölder theorem for groups, see G. Czédli and E. T. Schmidt [13]

and G. Grätzer and J. B. Nation [22]. Rectangular lattices play an important

role in the finite congruence lattice representation problem, see G. Czédli [4]

G. Grätzer and E. Knapp [20] and [21], and E. T. Schmidt [25]. We know

from [19] that, to understand planar semimodular lattices, it suffices to de-

scribe the slim semimodular ones. By G. Czédli and E. T. Schmidt [15], slim

semimodular lattices are obtained from slim patch lattices, which are special

rectangular lattices, by means of successive (Hall–Dilworth) gluings; see also

G. Grätzer [18] for another approach. These facts indicate that slim rectan-

gular lattices and slim patch lattices are natural objects to study.

There are two known structure theorems for slim rectangular lattices: one

is given in [15, Proposition 2.3], see also G. Czédli [5, Theorem 3.7] for a

stronger version, while the other one is proved in G. Czédli and G. Grätzer [9,

Corollary 3]. The idea of using permutations to describe slim semimodular

lattices goes back to H. Abels [1], and it was fully developed in G. Czédli and

E. T. Schmidt [16].

The enumeration of slim semimodular lattices and their planar diagrams

started in G. Czédli, L. Ozsvárt and B. Udvari [11], and continued in G. Czédli,

T. Dékány, L. Ozsvárt, N. Szakács and B. Udvari [8], and G. Czédli [6]. There

are several earlier papers on counting other particular lattices; for example,

see Erné, Heitzig and Reinhold [27] and [28], and Pawar and Waphare [29].

2. Preliminaries

Here, we overview some concepts and facts we need in the present paper.

For a more complex overview, the reader might be interested in G. Grätzer [17]

and G. Czédli and G. Grätzer [10]. An element of a lattice is join-irreducible

if it has exactly one lower cover. A finite lattice L is slim, if Ji L, the set of

join-irreducible elements of L, is included in the union of two chains of L; see

G. Czédli and E. T. Schmidt [13]. Note that, in the semimodular case, this

concept was first introduced by G. Grätzer and E. Knapp [19] in a different

way. We know from G. Czédli and E. T. Schmidt [13] that slim lattices are

planar, that is, they possess planar diagrams. Remember that all lattices,

and thus all diagrams, in this paper are assumed to be finite. If D1 and D2

are planar diagrams and ϕ : D1 → D2 is a bijective map such that ϕ is a

lattice isomorphism and it preserves the left-right order of (upper) covers and
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that of lower covers of each element of D1, then ϕ is called a similarity map.

Two planar diagrams are similar if there exists a similarity map between

them. We treat similar diagrams as equal ones. Therefore, when we count

planar diagrams, we always do it up to similarity. Adjectives typically used

for lattices, like semimodularity, will also be used for their planar diagrams;

in this case the diagram is automatically a planar lattice diagram.

A minimal non-chain region of a planar lattice diagram D is called a cell.

A four-element cell is a 4-cell. 4-cells are covering squares, that is, cover-

preserving four-element Boolean sublattices. A diagram is a 4-cell diagram if

all of its cells are 4-cells. The following statement was proved in G. Grätzer

and E. Knapp [19, Lemmas 4 and 5]; see also G. Czédli and E. T. Schmidt [14,

Proposition 1] for the present form.

Lemma 2.1. If D is a slim semimodular diagram, then it is a 4-cell diagram,

and no two distinct 4-cells have the same bottom. Conversely, if D is a 4-cell

lattice diagram in which no two distinct 4-cells have the same bottom, then D

is a slim semimodular diagram.

Following G. Grätzer and E. Knapp [20], a semimodular diagram D is rect-

angular if its left boundary chain, denoted by Cl(D), has exactly one doubly

irreducible element, lc(D), its right boundary chain, Cr(D), has exactly one

doubly irreducible element, rc(D), and these two elements, called the corners

of D, are complementary, that is, lc(D) ∧ rc(D) = 0 and lc(D) ∨ rc(D) = 1.

It was noticed by E.T. Schmidt, see G. Czédli and G. Grätzer [10, Exercise

1.58], that a slim semimodular lattice L is rectangular iff JiL is a union of

two chains such that no element in the first chain is comparable with some

element of the second chain. Associated with a slim rectangular diagram D,

the following three numerical parameters will be of particular interest.

Notation 2.2. As usual, the length of D is denoted by lengthD. The left

upper length and the right upper length of D, denoted by lulen D and rulen D,

are the length of the interval [lc(D), 1] and that of [rc(D), 1], respectively; see

Figure 1 for illustration.

A rectangular diagram D is a patch diagram if lc(D) and rc(D) are coatoms.

Equivalently, if lulenD = rulen D = 1. A patch lattice is a lattice that has a

patch diagram.

Two prime intervals of a slim semimodular diagram D are consecutive if

they are opposite sides of a 4-cell. By G. Czédli and E. T. Schmidt [13, Lemma

2.3], covering squares and 4-cells in a slim semimodular diagram are the same,

whence the previous sentence can be rephrased as follows: two prime intervals

of a slim semimodular diagram D are consecutive if they are opposite sides

of a covering square. Therefore, the consecutiveness of two prime intervals

in slim semimodular lattice L does not depend on the planar diagram cho-

sen. Maximal sequences of consecutive prime intervals form a trajectory, see

G. Czédli and E.T. Schmidt [13]. In other words, a trajectory is a class of



4 G. Czédli, T. Dékány, G. Gyenizse, and J. Kulin Algebra univers.

Figure 1. A rectangular diagram with lengthD = 8,
lulen D = 2, and rulen D = 3.

the equivalence relation generated by consecutiveness. In [13, Lemma 2.8], the

following statement was derived from (the present) Lemma 2.1.

Lemma 2.3. If T is a trajectory of a slim semimodular diagram D, then T

contains exactly one prime interval of Cl(D), and the same holds for Cr(D).

Going from left to right, T does not branch out. First T goes up (possibly

in zero steps), then it may turn to the lower right, and finally it goes down

(possibly, in zero steps). In particular, at most one turn is possible.

Notation 2.4. We denote the set of slim rectangular diagrams of length n and

that of slim semimodular diagrams of length n by the acronyms SRectD(n)

and SSmodD(n), respectively. Similarly, the set of slim rectangular lattices of

length n, that of slim semimodular lattices of length n, and that of slim patch

lattices of length n are denoted by SRectL(n), SSmodL(n), and SPatchL(n).

For a given n ∈ {1, 2, . . .} = N, these five sets above are finite, since we

do not make a distinction between similar diagrams or between isomorphic

lattices.

Jordan–Hölder permutations associated with semimodular lattices appeared

first in H. Abels [1] and R.P. Stanley [26]. Here, following G. Czédli and

E. T. Schmidt [16], we define them by means of trajectories. For a slim rect-

angular diagram D, let n = lengthD, and let

Cl(D) = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1},
Cr(D) = {0 = d0 ≺ d1 ≺ · · · ≺ dn = 1}. (2.1)

The set of all {1, . . . , n} → {1, . . . , n} permutation is denoted by Sn. The

(Jordan–Hölder) permutation π = πD ∈ Sn is defined by the rule π(i) = j iff

[ci−1, ci] and [dj−1, dj] belong to the same trajectory. The following statement

was proved in G. Czédli and E. T. Schmidt [16].
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Lemma 2.5. The map SSmodD(n) → Sn, defined by D 7→ πD, is a bijection.

In what follows, since this lemma above is obvious for n ≤ 1 and since

the length of a slim rectangular lattice is at least 2, we always assume that n

denotes an integer greater than 1. Combining Lemma 2.5 with [16, Lemma

4.6] and the definition of πD, we obtain that

Lemma 2.6. Let D1 and D2 be slim rectangular diagrams. They determine

the same lattice iff πD1
∈ {πD2

, π−1
D2

}.

Planar lattice diagrams have several properties that are easy to believe but

not so easy to prove. What we need from them is given by the following lemma,

taken from D. Kelly and I. Rival [24, Lemmas 1.2 and 1.5, Propositions 1.6

and 1.7, and Theorem 2.5].

Lemma 2.7. Let D be a planar lattice diagram, and let a, b ∈ D.

(i) If a ≤ b and a and b are on different sides of a maximal chain C, then

there exists an x ∈ C such that a ≤ x ≤ b.

(ii) A closed interval of D is a planar subdiagram.

(iii) If |D| ≥ 3, then D contains a doubly irreducible element distinct from 0

and 1 on its left boundary.

(iv) If a ‖ b, then either a is on the left of all maximal chains through b, or

b is on the left of all maximal chains through a. The same holds with

“right” instead of “left”.

Based on Lemma 2.7(iv), if a ‖ b and a is on the left of some (equivalently,

all) maximal chains through b, then we say that a is on the left of b; analogous

terminology is used if “left” is replaced by “right”.

3. Description by permutations

For convenience, we introduce the following concept; it is visualized by

Figure 2, and our terminology will be explained by Proposition 3.3.

Definition 3.1. A permutation π ∈ Sn is called rectangular if it satisfies the

following three properties.

(i) For all i and j, if π−1(1) < i < j ≤ n, then π(i) < π(j).

(ii) For all i and j, if π(1) < i < j ≤ n, then π−1(i) < π−1(j).

(iii) π(n) < π(1).

Clearly, π−1(1) < i and π(1) < i above can be replaced by π−1(1) ≤ i and

π(1) ≤ i, respectively. In Figure 2, where n = 16, a permutation π is given as

a bipartite graph; however, not all the 16 edges are drawn. The rectangularity

of π means that neither the edges denoted by (i), nor those denoted by (ii)

intersect, but the two thick solid edges do. (According to Remark 3.2 below,

the two thick dotted edges also intersect.)

Remark 3.2. If π ∈ Sn is rectangular, then we have
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Figure 2. The rectangularity of a permutation

(iv) π−1(n) < π−1(1).

So, π is rectangular iff π−1 is rectangular.

Proof of Remark 3.2. Assume that π ∈ Sn satisfies (i)–(iii). Since π and π−1

are injective, (iii) implies that

1 < π(1), π(n) < n, 1 < π−1(1), π−1(n) < n. (3.1)

Suppose, for a contradiction, that (iv) fails. Then n ≥ 2, and we have that

π−1(1) < π−1(n). By the last inequality of (3.1), (i) applies for the pair 〈i, j〉 =

〈π−1(n), n〉, and we obtain that n = π(π−1(n)) < π(n), a contradiction. �

Now, we are in the position to formulate the main result of this section.

Proposition 3.3. A slim, semimodular, planar diagram D of length n ≥ 2 is

rectangular if and only if π = πD ∈ Sn is rectangular. Furthermore, if D is

rectangular, then

πD(1) = lengthD − rulen D + 1, π−1
D (1) = lengthD − lulen D + 1. (3.2)

This proposition trivially implies the following statement.

Corollary 3.4. A slim, semimodular, planar diagram D of length n is a patch

diagram if and only if πD(1) = n = π−1
D (1). Therefore, the number of these

diagrams is (n − 2)! .

Combining Proposition 3.3 and Corollary 3.4 with Lemmas 2.5 and 2.6,

we obtain a new description of slim rectangular (or patch) diagrams and lat-

tices by permutations. This description is effective, because G. Czédli and

E. T. Schmidt [16, Proposition 2.7 and Theorem 3.3] tell us how to construct

D from πD; however, we do not need these long details here.

The rest of this section is devoted to the proof of Proposition 3.3. The

following definition is taken from G. Grätzer and R.W. Quackenbush [23].
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Definition 3.5. An element x of a lattice L is called a narrows if L = ↓x∪↑x.

If, in addition, x /∈ {0, 1}, then x is a proper narrows. The set of narrows of

L is denoted by Nar(L). A lattice L is called (glued sum) indecomposable if

|L| ≥ 3 and Nar(L) = {0, 1}.

We know from G. Czédli and E. T. Schmidt [16, after (1.2)] that the set

Nar(D) of narrows of D is Cl(D) ∩ Cr(D). Note that, by definitions, a glued

sum indecomposable diagram is of length at least 2.

Obviously, Lemma 2.1 implies the following statement.

Corollary 3.6. If D is a (glued sum) indecomposable, slim, semimodular

diagram, then for each c ∈ Cl(D) \ {0, 1}, there exists a unique c′ such that

{c ∧ c′, c, c′, c ∨ c′} is a 4-cell.

Lemma 3.7. If D is an indecomposable, slim, semimodular diagram, a ≺ b,

and a, b ∈ Cl(D), then exactly one of the following two possibilities holds.

(i) a is meet-reducible and b is join-irreducible. (In this case, we say that

[a, b] is up-edge.)

(ii) a is meet-irreducible and b is join-reducible. (In this case, we say that

[a, b] is down-edge.)

Proof. Since D is indecomposable, the trajectory starting at [a, b] is not a

singleton. In other words, [a, b] is a left edge of a 4-cell S. This implies that a is

meet-reducible or b is join-reducible. Hence, G. Czédli and E. T. Schmidt [14,

Lemma 4], which says that each of these two cases excludes the other one,

completes the proof. �

The name“down-edge” is motivated by the following lemma.

Lemma 3.8. Let D be a slim semimodular diagram of length n, and assume

that 1 ≤ i < j ≤ n.

(i) If D is glued sum indecomposable and, with the notation given in (2.1),

[ci−1, ci] is a down-edge, then πD(i) < πD(j) and πD(i) < i.

(ii) If ci is a narrows, then πD(i) < πD(j).

Proof. To prove part (i), assume that D is indecomposable. Denote πD by π.

Let Ti be the trajectory that contains [ci−1, ci]; see Figure 3, where Ti consists

of the thick edges. Note that Ti consists of at least two edges, because D is

indecomposable. Since [ci−1, ci] is a down-edge, Ti launches to the lower right,

and keeps going to this direction without any turn by Lemma 2.3. Hence,

the top elements of the edges of Ti, which are the black-filled elements in the

figure, form a descending, nontrivial chain. This implies that dπ(i) < ci, and

we conclude that π(i) < i.

Suppose, for a contradiction, that π(i) > π(j). This implies that cj−1 ≥
ci > dπ(i) > dπ(j). Hence, [cj−1, cj] and [dπ(j)−1, dπ(j)] are two comparable
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Figure 3. Illustrating the proof of Lemma 3.8

prime intervals of the same trajectory. This is a contradiction, since a tra-

jectory cannot have comparable prime intervals by G. Czédli [7, Lemma 3.3].

This proves part (i).

Finally, assume that ci is a narrows. Clearly, for every 4-cell S, either we

have that S ∩ (↓ci \ {ci}) = ∅, or S ∩ (↑ci \ {ci}) = ∅. Hence, no trajectory

can cross ci, and part (ii) follows immediately. �

Next, we generalize some parts of G. Grätzer and E. Knapp [20, Lemmas 3

and 4]. By Lemma 2.7(iii), the element c in the following lemma exists.

Lemma 3.9. Let D be a glued sum indecomposable, planar lattice diagram.

If c is the least doubly irreducible element on the left boundary of D, then the

ideal ↓c is a chain.

Proof. Let Cl(D) ∩ ↓c = {0 = c0 ≺ c1 ≺ · · · ≺ ck = c}. It suffices to prove

that

{c1, . . . , ck} ⊆ Ji D. (3.3)

Suppose, for a contradiction, that there is an i ∈ {1, . . . , k} such that ci is

join-reducible. Let i be minimal with respect to this property. The ideal ↓ci

is a planar subdiagram by Lemma 2.7(ii). Let U = Cr(↓ci). Take the largest

j ∈ {0, . . . , i − 1} such that cj ∈ U ; this j exists, since c0 = 0 ∈ U . Note

that j ≤ i − 2, since ci is join-reducible. By Lemma 2.7(ii), D′ := [cj, ci]

is a planar subdiagram. Clearly, |D′| ≥ 3, Cl(D
′) = {cj, cj+1, . . . , ci}, and

Cr(D
′) = U ∩ [cj, ci]. By Lemma 2.7(iii), there is an s ∈ {j + 1, . . . , i − 1}

such that cs is doubly irreducible in D′. By the choice of k, the element cs

is not doubly irreducible in D. The minimality of i yields that cs is meet-

reducible in D. By G. Czédli and E. T. Schmidt [14, Lemma 4], mentioned

already in the proof of Lemma 3.7, the join-reducibility of ci implies that

s 6= i − 1. Hence, s ≤ i − 2. The element cs has a cover v ∈ D, distinct from
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cs+1. Since cs is meet-irreducible in D′, we have that v /∈ D′. We have that

height v = s+1 < i = height ci, whence ci � v. We also have that v � ci, since

v /∈ D′ = [cj, ci]. Thus, ci ‖ v. We conclude from Lemma 2.7(iv) that ci is on

the left of v. That is, v is on the right of all maximal chains through ci. In

particular, if we extend Cr(D
′) to a maximal chain V of D, then v is strictly

on the right of V . On the other hand, cs, which belongs to Cl(D
′) \ Cr(D

′),
is strictly on the left of Cr(D

′), whence it is strictly on the left of V . Thus,

cs and v are strictly on different sizes of V while cs ≺ v. This contradicts

Lemma 2.7(i). �

Lemma 3.10. Let D be a glued sum indecomposable, slim semimodular di-

agram of length n. If, with notation (2.1), ck is the least doubly irreducible

element of D on the left boundary chain, then πD(k + 1) = 1.

Proof. Clearly, k ≥ 1. We prove the lemma by induction on k.

First, assume that k = 1. Since D is indecomposable, 0 /∈ MiD. By

G. Czédli and E.T. Schmidt [14, Lemma 2],

each element of a slim lattice has at most two covers. (3.4)

Hence, there are exactly two atoms, and ck = c1 is one of them. This clearly

implies that πD(k + 1) = πD(2) = 1.

Next, assume that k > 1, and the lemma holds for smaller values. Let

u = c′k by Corollary 3.6. Since ck has only one cover, and this cover belongs

to Cl(D), we have that ck ∨ u = ck+1. Similarly, ck ∧ u = ck−1. Hence,

S = {ck−1, ck, u, ck+1} is a 4-cell. (3.5)

This 4-cell (or Lemma 3.7) shows that ck−1 is meet-reducible; see Figure 1

for an illustration. Let D′ = D \ {ck}; it consists of the empty-filled elements

in the figure. Clearly, ck−1 ∈ Cl(D
′). By (3.4), ck−1 ∈ Mi D′. We also have

that ck−1 ∈ Ji D′, because ck−1 ∈ Ji D by Lemma 3.9. Thus, ck−1 is a doubly

irreducible element in D′.
Suppose, for a contradiction, that there exists an i < k − 1 such that ci is

doubly irreducible in D′. Obviously, it is join-irreducible in D. By the choice

of k, ci is meet-reducible in D. However, its covers are of height i + 1, which

is less than k = height ck. Hence, these covers belong to D′, contradicting the

assumption that ci is doubly irreducible in D′. This proves that ck−1 is the

least doubly irreducible element of D′ that belongs to Cl(D
′).

Let T ′ be the trajectory of D′ such that T ′ contains [ck−1, u]. Obviously,

or by G. Czédli [7, Lemma 3.1], the trajectory of D that contains [ck, ck+1] is

T := T ′ ∪ {[ck, ck+1]}. Note that the element of height k in Cl(D
′) is u. By

the induction hypothesis, πD′(k) = 1. This means that [d0, d1] ∈ T ′. Thus,

[d0, d1] ∈ T , proving that πD(k + 1) = 1. �

Proof of Proposition 3.3. By definitions, SRectD(n) ⊆ SSmodD(n). There-

fore, by Lemma 2.5, it suffices to prove that, for D ∈ SSmodD(n), the diagram

D is rectangular iff so is the permutation πD.
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To prove the “only if” part of Proposition 3.3, assume that D ∈ SRectD(n).

Let k ∈ {1, . . . , n − 1} denote the height of lc(D), that is, lc(D) = ck. By the

rectangularity of D, ck is the only doubly irreducible element that belongs to

the left boundary chain. Thus, Lemma 3.10 yields that

π(k + 1) = 1, that is, k + 1 = π−1(1). (3.6)

Next, to verify condition 3.1(i), assume that π−1(1) < i < j ≤ n. That

is, we assume that k + 1 < i < j ≤ n. Since lc(D) = ck < ci and ck is the

only doubly irreducible element on the left boundary chain, the element ci is

join-reducible by G. Grätzer and E. Knapp [20, Lemma 3]. Hence, [ci−1, ci]

is a down-edge by Lemma 3.7. Thus, Lemma 3.8(i) yields that π(i) < π(j),

proving that π satisfies 3.1(i).

Next, let t be the height of rc(D). Again by [20, Lemma 3], dj is join-

reducible for all t < j ≤ n. Hence, for these j, no trajectory can arrive at

[dj−1, dj] from the upper left. On the other hand, cn−1 is meet-irreducible and

1 = cn is join-reducible by [20, Lemma 3]. Hence, [cn−1, cn] is a down-edge, and

the trajectory Tn containing this edge goes downwards by Lemma 2.3. Hence,

Tn arrives at the right boundary chain from the upper left. Consequently, it

cannot arrive at [dj−1, dj] if t < j, and we conclude that π(n) ≤ t. If we

interchange 〈left, π, k〉 and 〈right, π−1, t〉 in the argument proving (3.6), we

obtain that π(1) = t + 1. Consequently, 3.1(iii) holds.

Similarly, interchanging 〈left, π〉 and 〈right, π−1〉 in the proof of 3.1(i), we

obtain that 3.1(ii) holds. Therefore, if D is rectangular, then so is πD.

Next, to prove the “if” part of Proposition 3.3, assume that D ∈ SSmodD(n)

but D /∈ SRectD(n). We have to prove that π = πD is not rectangular.

First, we assume that D has a nontrivial narrows v. Since v ∈ Cl(D) ∩
Cr(D), it is of the form v = cs = ds for some s ∈ {1, . . . , n − 1}. Let T ′

1

denote the trajectory of the subdiagram ↓v that begins with the prime interval

[c0, c1] of the left boundary chain. It reaches the right boundary of ↓v at some

[di−1, di], where i ≤ s. Clearly, T ′
1 is also a trajectory of D, and we obtain

that π(1) = i ≤ s. The dual argument shows that π(n) ≥ s. (Note, however,

that the concept of slim rectangular lattices is not selfdual.) Hence, 3.1(iii)

fails and π is not rectangular.

Next, we can assume that D is glued sum indecomposable. Since n ≥ 2, we

conclude that 0 is meet-reducible and 1 is join-reducible. By Lemma 2.7(iii),

each of Cl(D) and Cr(D) has at least one doubly irreducible element. Since D

is not rectangular, we obtain from G. Grätzer and E. Knapp [20, Lemma 6] that

at least one of Cl(D) and Cr(D) has at least two doubly irreducible elements.

Note that if we reflect D to a vertical axis, then π turns into π−1. Thus, since

the rectangularity of π is equivalent to that of π−1 by Remark 3.2, we can

assume that, with notation (2.1), there are 1 ≤ i < j < n such that ci and

cj are the smallest and the largest doubly irreducible elements that belong to
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Cl(D), respectively. We have that

π−1(1) = i + 1 (3.7)

by Lemma 3.10. To prove that π is not rectangular, we intend to show that

3.1(i) fails.

First of all, we show that i + 1 < j. Suppose, for a contradiction, that

j = i + 1. Then [ci, cj] is a prime interval. Let T denote the trajectory that

begins with [ci, cj]. Since ci is meet-irreducible, T cannot make its first step

to the upper right. Similarly, it cannot make the first step to the lower right,

since cj is join-irreducibly. Thus, T makes no first step, and it consists only

of [ci, cj]. By Lemma 2.3, {ci, cj} ∈ Cr(D). Hence, ci and cj are nontrivial

narrows of D, contradicting our assumption. This proves that i + 1 < j.

Next, let c′j be as in Lemma 3.6, that is, cj = lc(S) and c′j = rc(S) for a

unique 4-cell S. Since cj is doubly irreducible, the subdiagram D′ = D \ {cj}
is a slim semimodular lattice diagram by Lemma 2.1. Similarly to (3.5), we

have that {cj−1 = cj ∧ c′j , cj, c′j, cj+1 = cj ∨ c′j} is a 4-cell. Let Tj+1 and

Tj denote the trajectories of D beginning with [cj, cj+1] and with [cj−1, cj],

respectively. Also, let T ′
j+1 and T ′

j be the trajectories of D′ through [cj−1, c
′
j]

and [c′j, cj+1], respectively. Clearly,

Tj = T ′
j ∪ {[cj−1, cj]} and Tj+1 = T ′

j+1 ∪ {[cj, cj+1]}. (3.8)

By Lemma 3.7, the double irreducibility of cj in D yields that [cj−1, cj] is an

up-edge and [cj, cj+1] is a down-edge. Hence, by Lemma 2.3, Tj+1 goes down,

without any turn. This, together with (3.8), yields that T ′
j+1 is also a “down-

going” trajectory of D′. Thus, either D′ is indecomposable and [cj−1, c
′
j] is a

down-edge, or c′j is a narrows of D′. In both cases, Lemma 3.8 implies that

πD′(j) < πD′(j + 1). This inequality and (3.8) imply that

πD(j + 1) = πD′(j) < πD′(j + 1) = πD(j).

This, together with (3.7) and i + 1 < j, shows that 3.1(i) fails. �

4. Recursive enumeration

For a rectangular permutation π ∈ Sn, we let

lulen π = n + 1 − π−1(1) and rulen π = n + 1 − π(1).

By Proposition 3.3, lulen πD = lulen D and rulen πD = rulen D hold for all

D ∈ SRectD(n). For 2 ≤ n ∈ N and a, b ∈ N, we let

RPerm(n) = {π ∈ Sn : π is rectangular} and

RPerm(n; a, b) = {π ∈ RPerm(n) : lulen π = a and rulen π = b}.

It follows from Definition 3.1 that RPerm(n; a, b) 6= ∅ iff a + b ≤ n.
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Lemma 4.1. For a, b, n ∈ N with a + b ≤ n,

|RPerm(n; a, b)| =
(

n − a − 1

b − 1

)(

n − b − 1

a − 1

)

(n − a − b)! . (4.1)

Proof. For π ∈ RPerm(n; a, b), we have π−1(1) = n −
(

n + 1 − π−1(1)
)

+ 1 =

n−a+1 and, similarly, π(1) = n−b+1. Since π(n) < π(1) and π−1(n) < π−1(1)

by 3.1(iii) and 3.2(iv), conditions 3.1(i) and 3.1(ii) can be rephrased as follows:

π(n − a + 1) = 1 < π(n − a + 2) < · · · < π(n) < n − b + 1, and (4.2)

π−1(n − b + 1) = 1 < π−1(n − b + 2) < · · · < π−1(n) < n − a + 1. (4.3)

Conversely, if π ∈ Sn satisfies (4.2) and (4.3), then π ∈ RPerm(n; a, b). The

first and the second binomial coefficients in (4.1) show how many ways condi-

tions (4.3) and (4.2) can be fulfilled, respectively. These conditions take care

of the images of a + b elements in {1, . . . , n}. Hence, there are (n − a − b)!

possibilities for the rest of elements. �

From Lemmas 2.5 and 4.1 and Proposition 3.3, we immediately obtain that

|SRectD(n)| =
∑

a+b≤n
a,b∈N

|RPerm(n; a, b)|. (4.4)

Consequently, the following statement holds.

Proposition 4.2. For 2 ≤ n ∈ N, the number of slim rectangular diagrams

of length n is

|SRectD(n)| =
∑

a+b≤n
a,b∈N

(

n − a − 1

b − 1

)(

n − b − 1

a − 1

)

(n − a − b)! .

The following lemma belongs to the folklore; see the first sentence in the

proof of Proposition 7.13 in M. Bóna [2, page 256], or see G. Czédli, L. Ozsvárt,

and B. Udvari [11, Lemma 6.1]. As usual, (2t − 1)!! denotes the product

1 · 3 · 5 · · · · · (2t − 1) = (2t)!/(2t · t!). Note that (−1)!! = 1 by definition. An

involution is a permutation π such that π−1 = π. Let Invl(k) = {π ∈ Sk : π =

π−1} denote the set of involutions acting on the set {1, . . . , k}.
Lemma 4.3. For k ∈ N, the number of involutions in Sk is

|Invl(k)| =

bk/2c
∑

j=0

(

k

k − 2j

)

· (2j − 1)!! . (4.5)

Now, after that |SRectD(n)| has been determined by Proposition 4.2 and

we also have Lemma 4.3, we formulate the following statement.

Proposition 4.4. For 2 ≤ n ∈ N, the number of (isomorphism classes) of

slim rectangular lattices of length n is

|SRectL(n)| =
1

2
·
(

|SRectD(n)| +
bn/2c
∑

a=1

(

n − a − 1

a − 1

)

· |Invl(n − 2a)|
)

. (4.6)
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Proof. By Lemmas 2.5 and 2.6, two distinct slim rectangular diagrams, D1

and D2, determine the same rectangular lattice iff πD1
= (πD2

)−1. Hence,

if we count every involution twice and any other permutation once, then we

count each lattice in question twice, that is,

2 · |SRectL(n)| = |RPerm(n) \ Invl(n)| + 2 · |RPerm(n) ∩ Invl(n)|
= |RPerm(n)| + |RPerm(n) ∩ Invl(n)|
= |SRectD(n)| + |RPerm(n) ∩ Invl(n)|.

(4.7)

Therefore, to obtain (4.6), it suffices to prove that

|RPerm(n) ∩ Invl(n)| =

bn/2c
∑

a=1

(

n − a − 1

a − 1

)

· |Invl(n − 2a)|. (4.8)

The argument we need is similar to the one used in the proof of Lemma 4.1.

If π = π−1, then a = b ≤ n/2. Hence, an involution π is in RPerm(n) iff

it satisfies (4.2) with b = a. There are
(

n−a−1
a−1

)

ways to select the values

π(n − a + 2) < · · · < π(n) from {2, . . . , n − a}. Since π is an involution, each

of these selections determines the action of π on the 2a-element set

{1 = π(n − a + 1) < π(n − a + 2) < · · · < π(n)

< π(1) = π−1(1) = n − a + 1 < n − a + 2 < · · · < n}.
Clearly, π acts as an involution on the n − 2a remaining elements. Hence,

there are |Invl(n − 2a)| ways to continue the above-mentioned selection to an

involution on the whole set {1, . . . , n}. Finally, 2a = a + b ≤ n gives that

a ≤ bn/2c, and we conclude (4.8). �

The situation for slim patch lattices is much easier.

Proposition 4.5. For 2 ≤ n ∈ N, the number of (isomorphism classes) of

slim patch lattices of length n is |SPatchL(n)| =
(

(n − 2)! + |Invl(n − 2)|
)

/2.

Proof. A permutation π from Corollary 3.4 is an involution iff so is its restric-

tion to {2, . . . , n − 2}. Hence, using the idea of (4.7) with “patch” instead of

“rectangular”, we can obviously conclude our statement from Lemma 2.5 and

Corollary 3.4 . �

5. Asymptotic results

For N → {x ∈ R : x > 0} functions f and g, we say that f is asymptoti-

cally g, if f(n)/g(n) tends to 1 as n → ∞. We denote by f(n) ∼ g(n), or some-

times by limn→∞
(

f(n)/g(n)
)

= 1, that f is asymptotically g. In this section,

a and b always denote positive integers. Hence, we will not indicate a, b ∈ N
in range specifications. As usual, e denotes

∑∞
k=0(k!)−1 ≈ 2.7182818285.

Proposition 5.1. The number of slim rectangular diagrams of length n is

asymptotically (n − 2)! · e2, that is, |SRectD(n)| ∼ (n − 2)! · e2.
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Proof. Based on (4.1), we can compute as follows.

|RPerm(n; a, b)| =
(

n − a − 1

b − 1

)(

n − b − 1

a − 1

)

(n − a − b)!

=
(n − a − 1) · · · (n − a − b + 1)

(b − 1)!
· (n − b − 1) · · · (n − a − b + 1)

(a − 1)!

× (n − a − b)!

=
(n − a − 1) · · · (n − a − b + 1)

(b − 1)!
· (n − 2)!

(a − 1)! (n − 2) · · · (n − b)

=
(n − 2)!

(a − 1)! (b− 1)!
· n − a − 1

n − 2
· n − a − 2

n − 3
· · · n − a − b + 1

n − b
. (5.1)

Denoting by q(n, a, b) the product of the last b− 1 factors in (5.1), that is, the

product of all but the first factor. In particular, q(n, a, 1) = 1. Hence,

|RPerm(n; a, b)| = q(n, a, b) · (n − 2)!

(a − 1)! (b− 1)!
. (5.2)

Since 1 ≤ a, q(n, a, b) is the product of factors not greater than 1. Hence,

q(n, a, b) ≤ 1 and |RPerm(n; a, b)| ≤ (n − 2)! ((a − 1)! (b − 1)!)−1. Combining

this estimate with (5.2) and using (4.4), we obtain that

|SRectD(n)| (4.4)
=

∑

a+b≤n

|RPerm(n; a, b)| ≤
∑

a+b≤n

(n − 2)!

(a − 1)! (b − 1)!

≤ (n − 2)! ·
∞
∑

a=1

1

(a − 1)!
·

∞
∑

b=1

1

(b − 1)!
= (n − 2)! · e2.

(5.3)

Next, let ε be an arbitrary (small) positive real number. Since

bn/2c
∑

a=1

1

(a − 1)!
·
bn/2c
∑

b=1

1

(b − 1)!
≤

∑

a+b≤n

1

(a − 1)! (b − 1)!
,

there exists an r1 ∈ N such that

(1 − ε)e2 ≤
∑

a+b≤n

1

(a − 1)! (b − 1)!
for all n ≥ r1. (5.4)

Since each of the b − 1 factors of q(n, a, b) tends to 1 as n → ∞ while a and

b are fixed, and since there are finitely many pairs (a, b) ∈ {1, . . . , r1}2, there

exists an r2 ∈ N such that

1 − ε ≤ q(n, a, b) for all a ≤ r1, b ≤ r1, and n ≥ r2. (5.5)
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By the previous achievements as indicated below, if n is an arbitrary integer

greater than r = max{r1, r2}, then

|SRectD(n)| (4.4)
=

∑

a+b≤n

|RPerm(n; a, b)|

(5.2)
= (n − 2)!

∑

a+b≤n

q(n, a, b)

(a − 1)! (b − 1)!
≥ (n − 2)!

∑

a+b≤r1

q(n, a, b)

(a − 1)! (b− 1)!

(5.5)

≥ (n − 2)!
∑

a+b≤r1

1 − ε

(a − 1)! (b − 1)!

(5.4)

≥ (n − 2)! · (1 − ε)2e2.

This and (5.3) imply Proposition 5.1, since (1 − ε)2 → 1 as ε → 0. �

Now, we are in the position to formulate and prove our main result.

Theorem 5.2. The number of (the isomorphism classes of ) slim rectangular

lattices of length n is asymptotically (n − 2)! · e2/2, that is,

lim
n→∞

|SRectL(n)|
(n − 2)! · e2/2

= 1.

Proof. If we divide (4.6) by (n − 2)! · e2/2, then the theorem follows from

Proposition 5.1, provided we can show that

lim
n→∞

f(n)

(n − 2)!
= 0, where f(n) =

bn/2c
∑

a=1

(

n − a − 1

a − 1

)

· |Invl(n − 2a)|. (5.6)

Hence, it suffices to deal with (5.6). In order to prove it, recall from S. Chowla,

I. N. Herstein, and W. K. Moore [3, Theorem 8] that

|Invl(k)| ∼ 1
4
√

4e
· (k/e)k/2 · e

√
k. (5.7)

Since
√

k ≤ k/2 for k ≥ 4, (5.7) implies that

|Invl(k)| ≤ kk/2, for all sufficiently large k ∈ N. (5.8)

Stirling’s formula, k! ∼
√

2πk · (k/e)k, implies that

(k/e)k ≤ k! ≤ (k/e)k+1 , for all sufficiently large k ∈ N. (5.9)

Denote n− 2 by m, and assume that m is sufficiently large. Besides (5.8) and

(5.9), the following obvious estimates are also needed below. Since the sum

of the
(

m
i

)

is 2m, we have that
(

n−a−1
a−1

)

≤ 2m. Since |Invl(k)| is clearly an

increasing function of k, we obtain that |Invl(n − 2a)| ≤ |Invl(m)|. Clearly,
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m · 2m ≤ 2m · 2m = 4m and bn/2c ≤ m. Let us compute:

f(n)

(n − 2)!
=

bn/2c
∑

a=1

(

n − a − 1

a − 1

)

· |Invl(n − 2a)|
(n − 2)!

≤
m

∑

a=1

2m |Invl(m)|
m!

= m · 2m · |Invl(m)|
m!

(5.8,5.9)

≤ m · 2m · mm/2

(m/e)m
(5.10)

≤ 4m · (
√

m)m

(m/e)m
=

1
(

√
m

4e

)m
→ 0, as n → ∞. (5.11)

This completes the proof. �

Remember that SSmodD(n) and SSmodL(n) denote the set of slim semi-

modular diagrams of length n and that of slim semimodular lattices of length

n, respectively. In G. Czédli, L. Ozsvárt, and B. Udvari [11, Proposition 7.1],

we proved that |SSmodL(n)| ∼ n!/2. This result, (n − 1)/n ∼ 1, Lemma 2.5,

and Theorem 5.2 immediately yield the following statement.

Corollary 5.3.

|SRectD(n)|
|SSmodD(n)| ∼ (e/n)2 and

|SRectL(n)|
|SSmodL(n)| ∼ (e/n)2.

Next, we give the asymptotic number of slim patch lattices.

Proposition 5.4. The number |SPatchL(n)| of (the isomorphism classes of )

slim patch lattices of length n is asymptotically (n − 2)!/2.

Proof. It follows from (5.10) and (5.11) that

|Invl(n − 2)|/((n − 2)!) = |Invl(m)|/(m!) → 0 as n → ∞.

This and Proposition 4.5 imply the statement. �

6. Results by computer algebra

Based on Propositions 4.2 and 4.4, |SSmodD(n)| and |SSmodL(n)| can

easily be determined for n ≤ 1000 by computer algebra. Appropriate pro-

grams (Maple 5) are available from the authors’ web sites. Using a five year

old personal computer with Intel Duo CPU 3.00 GHz, 1.98 GHz, and 3.25

GB RAM, these numbers for n ≤ 12, given in the first table, were com-

puted in less than 0.1 seconds. The second table and the exact values for all

n ∈ {2, . . . , 100, 200, 600, 1000}, available from the authors’ web sites, were

obtained in 16 minutes. For comparison, note that it took six days on a paral-

lel supercomputer to determine the number of all 18-element lattices in 2001,

see Heitzig and Reinhold [28]. Our computer algebraic calculations show that

|1−|SPatchL(n)|/((n−2)!/2)| and |1/2−|SRectL(n)|/|SRectD(n)|| are smaller

than 10−40 for n ∈ {64, . . . , 100, 200, 600, 1000}. This fact and the second table

indicate (but do not prove) that the convergence in Proposition 5.4 is much

faster than that in Proposition 5.1 and Theorem 5.2.
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n 2 3 4 5 6 7 8 9 10 11 12

|SRectD(n)| 1 3 9 32 139 729 4 515 32 336 263 205 2 401 183 24 275 037

|SRectL(n)| 1 2 6 19 78 387 2 327 16 384 132 336 1 203 145 12 146 959

|SPatchL(n)| 1 1 2 5 17 73 398 2 636 20 542 182 750 1 819 148

Computational results for 2 ≤ n ≤ 12

n 200 600 1000

|SRectD(n)| 1.4568041 · 10371 2.5975960 · 101403 2.9732576 · 102562

|SRectL(n)| 7.2840205 · 10370 1.2987980 · 101403 1.4866288 · 102562

|SPatchL(n)| 9.9077622 · 10369 1.7606738 · 101402 2.0139503 · 102561

|SRectL(n)|
(n − 2)! · e2/2

0.99496227 0.99832914 0.99899847

Computational results for n ∈ {200, 600, 1000}
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[18] Grätzer, G.: Notes on planar semimodular lattices. VI. On the structure theorem of
planar semimodular lattices. Algebra Universalis 69, 301–304 (2013)
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