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Abstract

In many applications of computer vision, image processing, and remotely sensed
data processing, an appropriate matching of two sets of points is required. Our
approach assumes one-to—one correspondence between these sets and finds the op-
timal global affine transformation that matches them. The suggested method can
be used in arbitrary dimensions. A sufficient existence condition for a unique trans-
formation is given and proven.

1 Introduction

Many applications lead to the following mathematical problem: Two corresponding sets
of points {p;} and {¢;} (: = 1,2,...,n) are given in the k—dimensional Euclidean space
IR¥, and the transformation 7 : IR* — IR” is to be found that gives the minimal mean
squared error

Z ||T(‘Jz) —Pi||2-
i=1

The dimension k is usually 2 or 3. Some solutions have been proposed for this prob-
lem assuming rigid-body transformation (i.e., where only rotations and translations are
allowed) [1, 3, 6, 7, 13], affine transformation (i.e., which maps straight lines to straight
lines, parallelism is preserved, but angles can be altered) [8], and non-linear transfor-
mation (i.e., which can map straight lines to curves) [2, 5, 8]. In [10], a solution is
proposed when the correspondence between the point sets is unknown, assuming affine
transformation. It is mentioned, that if the correspondence was known, a simpler solution
is possible e.g., using least squares method, but neither such a method nor a sufficient
existence condition for unique solution is given or referenced.

In this paper, we present a method for solving the problem assuming affine transfor-
mation, which can be used in arbitrary dimensions. The method is described in Section
2. We state and prove a sufficient existence condition for a unique solution in Section 3.
A related open problem concerning degeneracy is presented in Section 4.
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2 Method for affine matching of two sets of points

Given a matrix
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it determines an affine transformation 7 : IRF — IR* as follows: For # = (z1,...,7;) and

y = (y1,...,yr) in RF we have y = T(x) if and only if
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Note that homogeneous coordinates are used. Each affine transformation 7" can uniquely
be represented in this form [4]. The transformation has k - (k + 1) degrees of freedom
according to the non—constant matrix elements.

Let us fix an affine transformation 7 : IR* — IR* and the corresponding 7 as above.
Let {p;} and {¢;} be two sets of n points, where

pi = (pil,piz,--.,pik)EIRk and
4 = (QihQiZ,---,qik)E]Rk (1=1,2,...,n).

Let {pi} be a set of n points in IR¥, where p; = T(g;) (i = 1,2,...,n). Define the merit
function S of k- (k + 1) variables as follows:

n n k
S(tin, . thps1) = Z 1P} — pil|? = Z Z(tjl it e bk Gk g — Dij)°
=1 i=17=1

which is generally regarded as the matching error.
The least square solution of matrix 7 is determined by minimizing the function S.

Function & may be minimal if all of the partial derivatives 33t—‘191, . #‘;1 are equal to
zero. The required k - (kK + 1) equations: ,
oS n k
T 2- qu (tugrr = Piw+ D tu - ) =0
uw i=1 =1
(u=1,2,...,k, v=1,2,..., k),
oS n k
5 = 2 (tupsr —Piu+ Y tu - q) =0
tu,k+1 i=1 =1
(u=1,2,...,k).



We get the following system of linear equations:
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Cyp = Zpiu " Giv
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(u=1,2,....k, v=1,2,...,k).

The above system of linear equations can be solved by using an appropriate numerical
method [9]. There exists a unique solution if and only if det(M) # 0, where

ay; ... Qg b1
M = :
Ay ... Qgkg bk
bl TN bk n

Note that if a problem is close to singular (i.e., det(M) is close to 0), the method can
become unstable.

3 Discussion

In this section we state and prove a sufficient existence condition for a unique solution
for the system of linear equations.



By a hyperplane of the Euclidean space IR¥ we mean a subset of the form {a + z :

x € S} where S is a (k — 1)-dimensional linear subspace. Given some points ¢, ..., ¢,
in IR¥, we say that these points span IRF if no hyperplane of IR¥ contains them. If any
k + 1 points from g1, . .., q, span IR* then we say that g1, ..., ¢, are in general position.

Theorem 1. If ¢, ..., ¢, span IR¥ then det(M) # 0.

Proof. Suppose det(M) = 0. Consider the vectors v; = (qij,q2j, .- -, qnj) (1 <j < k)
in R", and let vx 1 = (1,1,...,1) € IR". With the notation m = k + 1 observe that
M = ((vi,vj>) ., Where (, ) stands for the scalar multiplication. Since the columns

of M are linearly dependent, we can fix a (f1,...,0,) € R™\ {(0,...,0)} such that
>y Bivi,v;) = 0 holds for i = 1,...,m. Then

m

0=3"5-0=383 Bilviv) =3 Bi(vi, Y Bvs) =
=1 7 7=1

=1 =1 =1
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whence Y, Bjv; = 0. Therefore all the ¢;, 1 < j < n, are solutions of the following (one
element) system of linear equations:

Brwy + -+ Brrr = —Bn. (1)

Since the system has solutions and (5, .., Bn) # (0,...,0), there is an i € {1,... k}
with 3; # 0. Hence the solutions of (1) form a hyperplane of IRF. This hyperplane
contains qi, ..., q,. Now it follows that if ¢, ..., ¢, span IR* then det(M) #0. Q.e.d.

4 Conclusions

In real applications, it is assumed that both py,...,p, and qi,...,q, span IR*. Then, if
the matching error is zero (i.e., p; = T'(¢;) = p; for i = 1,2,...n), the transformation is

necessarily non-degenerate, i.e., det(7) # 0. Moreover, in this case the following property
is fulfilled:

Observation 2. For all 7 C {1,...,n} with k + 1 elements, the p;, i € I, span IRF if
and only if the ¢;, i € I, span IR.

This raises the question whether the transformation is necessarily non—degenarete in
general or when Observation 2 holds or at least when Observation 2 ”strongly” holds

in the following computational sense: each simplex with vertices in {pi,...,p,} or with
vertices in {q,...,q,} has a large volume (k-dimensional measure) compared with its
edges.

Surprisingly, all these questions have a negative answer, for we have the following
three dimensional example.

Example 3. With n = 5 and &k = 3 let ¢; = (0,0,24), ¢go = (24,0,0), g3 = (0, 24,0),
qs = (0,0,0), and g5 = (—24, —48,16). These five points determine five tetrahedra with
reasonably large volumes, the smallest of them being 1536, the volume of the tetrahedron



(q27Q37Q47q5)- Let b1 = (0707 0)7 b2 = (37 070)7 b3 = (0737 0)7 Py = (0707 3)7 bs = (37 373)7
these are some vertices of a cube, so the tetrahedra they determine are at least of volume
9/2. Yet,

2 -6 —6 12
-9 -1 -9 18

7= o 0 0 8]
0 0 0 1

which is degenerate.

Experience shows that in real applications the choice of points always guarantees that
the transformation is non—degenerate [11, 12]. However, from theoretical point of view
the following open problem is worth raising: Find a meaningful sufficient condition to
ensure non-degeneracy.
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