
A VISUAL APPROACH TO TEST LATTICES

GÁBOR CZÉDLI

Abstract. Let p be a k-ary lattice term. A k-pointed lattice L = (L;∨,∧,
d1 , . . . , dk) will be called a p-lattice (or a test lattice if p is not specified), if

(L;∨,∧) is generated by {d1 , . . . , dk} and, in addition, for any k-ary lattice
term q satisfying p(d1, . . . , dk) ≤ q(d1, . . . , dk) in L, the lattice identity p ≤ q

holds in all lattices.
In an elementary visual way, we construct a finite p-lattice L(p) for each p.

If p is a canonical lattice term, then L(p) coincides with the optimal p-lattice
of Freese, Ježek and Nation [6]. Some results on test lattices and short proofs

for known facts on free lattices indicate that our approach is useful.

1. Introduction

For a fixed natural number k, by a k-pointed lattice we mean a lattice L with
k distinguished elements d1, . . . , dk. For ~d = (d1, . . . , dk) ∈ Lk, the “k-pointed
lattice” (L;∨,∧, d1, . . . , dk) will be denoted by (L; ~d). If p and q are k-ary lattice
terms, then both p = q and p ≤ q are called lattice identities. A lattice identity is
said to be trivial, if it holds in all lattices.

We introduce a new concept. Given a k-ary lattice term p = p(α1, . . . , αk), we
will call a k-pointed lattice (L; ~d) a p-lattice, if

• {d1, . . . , dk} generates L, and
• for any k-ary lattice term q, p(d1, . . . , dk) ≤ q(d1, . . . , dk) in L if and only

if p ≤ q is a trivial lattice identity.
We use the terminology “test lattice” if we do not want to specify p. That is, if
(L; ~d) is a p-lattice for some p, then it is also called a test lattice.

For example, if L is freely generated by {d1, . . . , dk}, then it is obviously a p-
lattice for every k-ary lattice term p. Beside other aims, we are going to give a new
proof for the following result, which is not so obvious.

Proposition 1 (Freese and Nation [7], Freese, Ježek and Nation [6])). For each
lattice term p, there exists a finite p-lattice.

Our first goal is to point out that test lattices deserve some attention indepen-
dently from the well-developed theory of free lattices (see Freese, Ježek, Nation [6]).
Hence we present Theorem 3, soon, and give new proofs for two more or less known
properties of test lattices, see Theorems 5 and 6. Further, we give two easy applica-
tions. Namely, we demonstrate the usefulness of test lattices by giving a very short,
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new proof that free lattices satisfy Whitman’s condition, see Corollaries 12 and 13,
and also by solving (and generalizing) the following (not very difficult) exercise.

Exercise 2. Let p♦ = (α1 ∨α2)∧(α1 ∨α3). Is there a non-trivial lattice identity
p♦ ≤ q that holds in the five-element non-modular lattice?

Our second goal is to construct a finite k-pointed lattice L(p), for each k-ary
lattice term p, in a conceptually simple way, and to give an elementary proof that
it is a p-lattice. To follow the rest of the paper until the “Historical remarks” section,
the reader is assumed to be familiar only with the rudiments of lattice theory, that
is, with a small fraction of, say, G. Grätzer [8]. The only outer reference used in our
proof is Jónsson’s type 3 representation theorem, see [10], and see also Theorem
IV.4.4 in Grätzer [8].

Our third goal is to give a new approach that is visual, not just elementary.
We develop a visual toolkit consisting of purely lattice theoretical results from this
section and several statements (Lemmas 7, 8, 9, 14, 15 and Corollaries 10, 11)
from Section 3. Although this toolkit is applied to prove some known or easy
results only, the geometric perspective may serve a better understanding of the
underlining reasons, and it may lead to further useful observations in the future.

Notice at this point that powerful tools from the theory of free lattices, see
Freese, Ježek and Nation [6] and its references, have already given or may easily
give shorter “standard” proofs to several of our statements. Hence, in the last
section, our results will be related to [6]. However, if the necessary previous pages
of [6] are also counted, then some of the standard proofs are lengthier than ours.
Although we will give some hints to a standard proof in the last section, many
readers will probably find easier to follow our approach.

Notice also that, opposed to the present paper, free lattices are hard to imagine
visually. For example, FL(ω) is a sublattice of FL(3) by Whitman [13], and this fact
is an obstacle to a proper visual understanding of FL(3), the free lattice on three
generators. Hence we hope that our pictorial approach with graphical background
makes sense and contributes to a better understanding of free lattices.

Finally, notice at this point that the only outer reference, Jónsson’s type 3 rep-
resentation theorem, see [10] or Theorem IV.4.4 in [8], is also visual.

From now on, let p = p(α1, . . . , αk) be a fixed k-ary lattice term. We are going
to construct a k-pointed lattice L(p) = (L(p); d1, . . . , dk) such that the following
theorem holds.

Theorem 3. L(p) = (L(p); d1, . . . , dk) is a finite p-lattice.

By an optimal p-lattice, we mean a p-lattice that is a k-pointed lattice homo-
morphic image of any other p-lattice. The following corollary of Theorem 3 is
straightforward and more or less evident.

Corollary 4. For each lattice term p, there exists an optimal p-lattice K(p). It is
finite and it is unique up to k-pointed lattice isomorphism.

The length of a lattice term q, to be defined in the usual syntactical way later,
will be denoted by length(q). We say that p is a canonical lattice term if for every
k-ary lattice terms q, p =triv q implies length(p) ≤ length(q). Like every term,
each canonical lattice term p is

• either a variable,
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• or the meet of at least two terms,
• or the join of at least two terms.

In the first two cases we say that p is a join-irreducible canonical term. (This
means that p represent a join-irreducible element of the free lattice generated by
{α1, . . . , αk}.)

Unfortunately, L(p) is usually not an optimal p-lattice in general. For example,
for p\ =

((
(α1 ∨α2)∧(α1 ∨α2 ∨α3)

)
∨α2

)
∧α4, the p\-lattice L(p\) is not optimal.

As a compensation, we have the following two theorems.

Theorem 5 (essentially in Freese, Ježek and Nation [6]). If p is a canonical lattice
term, then L(p) equals K(p), the optimal p-lattice.

Theorem 6 (Freese, Ježek and Nation [6]). If p is a join-irreducible canonical
lattice term, then K(p) = L(p) is subdirectly irreducible.

Notice that the assumption of join-irreducibility in Theorem 6 cannot be avoided.
For example, L(α1 ∨ α2) = K(α1 ∨ α2) is the four-element boolean lattice, which
is subdirectly (and even directly) reducible. On the other hand, this assumption is
not so restrictive. Indeed, if p is the join of its subterms p1, . . . , pn, then, evidently,
p ≤triv q iff pi ≤triv q for i = 1, . . . , n. Hence, to investigate if p ≤triv q, we can
use the subdirectly irreducible L(p1), . . . , L(pn) instead of L(p).

2. The construction of L(p)

We fix a set X = {α1, . . . , αk} of variables. Since we do not want to make a
distinction between lattice terms that differ only modulo commutativity, associa-
tivity and idempotency, we give the following inductive definition of T (X), the set
of lattice terms over X.

• Every αi ∈ X is a doubly irreducible member of T (X) with length(αi) = 1.
• Each element of T (X) \ X is of length > 1, and it is either join-irreducible

and meet-reducible, or meet-irreducible and join-reducible.
• If q1, . . . , qn, n ≥ 2, are distinct meet-irreducible members of T (X) then

q =
∧n

i=1 qi belongs to T (X). It is join-irreducible and meet-reducible, and
we have length(q) = 1 +

∑n
i=1 length(qi). The terms q1, . . . , qn are called

the meetands of p.
• If q1, . . . , qn, n ≥ 2, are distinct join-irreducible members of T (X) then

q =
∨n

i=1 qi belongs to T (X). It is meet-irreducible and join-reducible, and
we have length(q) = 1 +

∑n
i=1 length(qi). The terms q1, . . . , qn are called

the joinands of p.
• Each member of T (X) is obtained by the previous rules in a finite number

of steps.
Notice that for each q ∈ T (X), either q has no meetand or it has at least two
meetands. Dually, the same holds for the joinands of q. For concrete terms in
examples, we will write q1 ∨ · · ·∨ qn rather than

∨n
i=1 qi, and similarly for the meet.

By a join-free term we mean a variable or a meet of variables.
Our definition of terms is only slightly different from that in page 10 of Freese,

Ježek and Nation [6]. Namely, x∨y∨ z and x∨ (y∨ z) are different terms in [6] but
x∨ (y∨z) is not a term in the present paper. Notice also that the (ir)reducibility of
a term has not much to do with the (ir)reducibility of the corresponding element of
the free lattice FL(X). For example, (α1 ∨α2)∧ (α1∨α2∨α3) is a join-irreducible
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and meet-reducible term, but it represents a join-reducible and meet-irreducible
element of FL(X).

The color set C(p) of p is defined by the following induction. (The terminology
“color” will be clear soon.)

• C(αi) = {αi}
• If p is join-reducible with joinands p1, . . . , pn, then C(p) = C(p1) ∪ · · · ∪

C(pn).
• If p is meet-reducible, then let

(1) M (p) = {s : s is a meetand of p with length(s) > 1}
= {s : s is a meetand of p and s is join-reducible},

and define
C(p) = {p} ∪

⋃

s ∈ M (p)
C(s) .

Notice that all elements of C(p) are join-irreducible terms. For an example of C(p),
see the set of colors of H(p]) in Figure 3.

Given a relation E, let E∗ denote its transitive closure. Throughout the paper,
by a p-graph or, shortly, graph we mean a structure G = (V, E, col) such that

• (V, E) = (V (G), E(G)) is a directed graph without loops and multiple
edges. That is, V is a nonempty set, the vertex set, and E ⊆ V 2, the
edge set, is an irreflexive and antisymmetric relation;

• col : E → C(p), that is, each edge e ∈ V has a unique color col(e) ∈ C(p);
• E∗, also denoted by <, is a partial ordering of V with least element, called

the left endpoint of G, and greatest element, called the right endpoint.
Unless otherwise specified, the left and right endpoints of our graphs are denoted

by x0 and x1, respectively. The subgraphs we are going to consider are also graphs
in the above sense. However, a proper subgraph of a p-graph G is (isomorphic with)
a q-graph for some term q distinct from p.

In figures, the edges are directed from left to right by convention, so the orien-
tation of edges is not indicated. An edge (a, b) ∈ E is called a covering edge of G,
if there is no c ∈ V with a < c < b. To ease our notations, we will say that (a, r, b)
is an “edge of G” to express that (a, b) ∈ E and r = col((a, b)).

If {G1, G2} is a two-element set of graphs, then a 4-series connection of this
set is obtained from two copies of G1 and two copies of G2, all the four copies
being pairwise disjoint, via identifying some endpoints as depicted in Figure 1. Of
course, this depends on the order of G1 and G2, whence {G1, G2} has two 4-series
connections.

Figure 1. A 4-series connection of {G1, G2}

If {G1, . . . , Gn} is an n-element set of graphs, then each 4-series connection of
this set is obtained in the following way: for some i ∈ {1, . . . , n} and a 4-series
connection H of {G1, . . . , Gi−1, Gi+1, . . . , Gn}, we form a 4-series connection of H
and Gi. Notice that {G1, . . . , Gn} has exactly n! many 4-series connections; for
n = 3 one of them is depicted in Figure 2
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Figure 2. A 4-series connection of {G1, G2, G3}

Next, we define a sequence Gj(p) of sets of p-graphs associated with p via in-
duction on j as follows. A particular case,

p] = α1 ∧
(
α2 ∨

(
α3 ∧(α4 ∨α5)

))
∧

(
α2 ∨(α3 ∧α5)

)

is depicted in Figure 3. The reader is advised to look at this figure often while
reading the following definition. In Figure 3, Hj(p]) is just one member of Gj(p]) .

Figure 3. Constructing a member of G(p])

If p is join-irreducible, then G0(p) consists of a single graph H0(p). This graph
has only two vertices, x0 and x1, and only one edge, (x0, x1). This edge is colored
by p.

If s =
∨n

i=1 ti is a join-reducible lattice term with joinands t1, . . . , tn, then any
4-series connection of the set {H0(t1), . . . , H0(tn)} is called an s-arc; for n = 3 see
Figure 4.

Figure 4. An s-arc, if s =
∨3

i=1 ti

If p =
∨n

i=1 pi is join-reducible, then let G0(p) be the set of all p-arcs.
If j ≥ 1 and each covering edge of every member of Gj−1(p) is colored by a

join-free term (variable or meet of variables), then let Gj(p) = Gj−1(p).
In the opposite case we obtain Gj(p) from Gj−1(p) in the following way. Take a

member H = Hj−1(p) ∈ Gj−1(p). Consider each covering edge (a, r, b) of H whose
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color r is not join-free. Then r is meet-reducible. For each s ∈ M (r), see formula
(1), we glue an s-arc to H by identifying the left and right endpoints of this arc
with a and b, respectively, but keeping other vertices of this arc disjoint from the
vertices of H and that of any other arc glued to H. We glue all the necessary arcs
to all covering edges with not join-free colors at the same time such that these arcs
should be disjoint from each other and from H as much as possible and, in addition,

(2) we must use isomorphic s-arcs for all r-colored covering edges.

This way we obtain H+. Finally, let Gj(p) = {H+ : H ∈ Gj−1(p)}.
If Gj(p) is different from Gj−1(p), then the maximal length of not join-free colors

on covering edges in members of Gj−1(p) decreases when we pass from Gj−1(p) to
a Gj(p). Hence there is a smallest n ∈ N with Gn(p) = Gn−1(p). Let G(p) =
Gn−1(p) for this n. Clearly, the colors of covering edges of any member of G(p)
are join-free.

Let us agree on the following convention: H(p) will always denote an arbitrarily
fixed graph in G(p). Then Hj(p) will stand for the unique graph in Gj(p) that
occurs in the inductive definition leading to H(p). For technical reasons, H−1(p)
will denote the empty graph with no edge.

It is evident from the construction that the set of colors occurring on edges of
each H(p) ∈ G(p) is exactly C(p).

An edge (a, r, b) of a p-graph H(p) ∈ G(p) is called an αi-edge if r = αi or αi is a
meetand of r. (Notice that an αi-edge is not necessarily αi-colored!) Let V (p) and
E(p) denote the vertex set and the edge set of H(p), respectively, and let Equ(V (p))
stand for the lattice of equivalences on V (p). The smallest member of Equ(V (p))
collapsing the endpoints of each αi-edge will be denoted by αi|H(p). In other words,
for a, b ∈ V (p) we have (a, b) ∈ αi|H(p) iff there are vertices c0 = a, c1, . . . , cn = b,
n ≥ 0, such that for all i = 0, 1, . . . , n−1 either (ci, ci+1) or (ci+1, ci) is an αi-edge.
Still in other words: if there is an undirected path from a to b whose edges are
αi-edges. Such a path will be called an αi-path.

Finally, the p-lattice we wanted to construct is

(3) L(p) = (L(p); d1, . . . , dk) :=
(
[α1|H(p), . . . , αk|H(p)]; α1|H(p), . . . , αk|H(p)

)

where H(p) ∈ G(p) and [α1|H(p), . . . , αk|H(p)] is the sublattice of Equ(V (p)) gen-
erated by {α1|H(p), . . . , αk|H(p)}. Since L(p) will be appropriate for any choice of
H(p) in G(p), we will not investigate if L(p) depends on H(p) in the abstract sense
or not.

3. Visual statements and proofs

In forthcoming computations, ≤(n), ≤(Tn), ≤(Cn) and ≤(Ln) will indicate that
Formula (n), Theorem n, Corollary n and Lemma n is applied, respectively. Anal-
ogous superscript are used with =, ≤triv and =triv . Let H(p) ∈ G(p). For a k-ary
lattice term t, the equivalence relation t(α1|H(p), . . . , αk|H(p)) ∈ L(p) ⊆ Equ(V (p))
will be denoted by t|H(p). For t ∈ X, a variable, t|H(p) has its previous mean-
ing. By an (undirected) t|H(p)-path we mean an (undirected) path U such that
for every (undirected) edge (a, b) of U , (a, b) ∈ t|H(p). Similarly, for n ≥ 1 and
µ1, . . . , µn ∈ Equ(V (p)), an (undirected) path U is said to be an (undirected)
µ1 ∪ · · · ∪ µn-path, if (a, b) ∈ µ1 ∪ · · · ∪ µn for every (undirected) edge (a, b) ∈ U .
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In what follows, the graph H(p) = (V (p), E(p), col) ∈ G(p) is fixed. Let (a, r, b)
be an edge of H(p). Then the set {c : a v c v b} of vertices determines a full
subgraph denoted by S(a, r, b). The left and right endpoint of S(a, r, b) are a and b,
respectively. If the color r is irrelevant, then we write S(a, , b) instead of S(a, r, b).
Notice that S(x0, p, x1) is H(p), provided p is a join-irreducible term. It is clear
from the construction that S(a, r, b) is a graph. Moreover,

(4) S(a, r, b) ∼= H(r) for a (unique) H(r) ∈ G(r).

Notice that there is exactly one isomorphism between H(r) and S(a, r, b).
The following lemma is evident by the construction; we formulate it for later

reference only.

Lemma 7. Suppose that (a, r, b) is an edge of H(p). Let x, y ∈ V (p) such that x
belongs to S(a, r, b) but y does not. Let U be an undirected path in H(p) from x to
y. Then U goes through at least one of a and b.

The following lemma is the heart our paper. Roughly saying, its first part states
that the “outer world” does not disturb our equivalences inside S(a, r, b).

Lemma 8. Let t be a k-ary lattice term.
(a) If (a, r, b) is an edge of H(p) and x and y are vertices of S(a, r, b) then

(x, y) ∈ t|H(p) iff (x, y) ∈ t|S(a,r,b).

(b) Let x and y be vertices of H(p). Then (x, y) ∈ t|H(p) iff there is an undi-
rected t|H(p)-path from x to y. In other words, t|H(p) is the equivalence
generated by t|H(p) ∩ E(p).

Proof. The proof is an induction on the length of t. The induction hypothesis is the
conjunction of (a) and (b) for all terms t′ shorter than t and for any p. (Notice that
the induction would not work for (a) or (b) separately.) We assume that x 6= y.
The ”if” part of (a) and that of (b) are trivial (and, implicitly, will be used in the
proof). So we will focus on the ”only if” parts. Let H0(p), H1(p), H2(p), . . . be the
series of graphs that leads to H(p) according to its inductive definition. We have
to fix some notations according to p.

If p is join-irreducible, then let m = ` = c(1) = 1, let z0 = x0, the left endpoint,
z1 = x1, the right endpoint, and let p1 = pc(`) stand for p.

If p =
∨

i∈F pi is join-reducible, then let {z0 = x0, z1, . . . , zm−1, zm = x1} be the
vertex set and {(zi−1, pc(i), zi) : i = 1, 2, . . . , m} be the edge set of H0(p). Here all
the c(i) belong to F . If we wrote pi in Figure 4 instead of ti, then we would obtain
an illustration for the case F = {1, 2, 3}. Clearly, there is a unique ` ∈ {1, . . . , m}
such that both a and b are vertices of S(z`−1, pc(`), z`). Therefore, S(a, r, b) is a full
subgraph of S(z`−1, pc(`), z`).

Case 1: t = β ∈ X is a variable. Part (b) is evident. To prove (the ‘if” part of) (a),
let us assume that (x, y) ∈ β|H(p). We also assume that (a, b) 6= (x0, x1) = (z0, zn),
because otherwise S(a, r, b) = H(p), and there is nothing to prove.

Next, we assume that (a, b) = (z`−1, z`). By the definition of β|H(p), there
is a shortest undirected β-path in H(p) that connects x and y. It follows from
the structure of H0(p) (even without invoking Lemma 7) that any path exiting
S(a, r, b) = S(z`−1, pc(`), z`) at a can enter S(a, r, b) again only at a, and the same
holds for b. Hence our shortest β-path cannot exit S(a, r, b) at all, and we conclude
that (x, y) ∈ β|S(a,r,b).
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Now that we have settled the easier subcases, we assume that {a, b} 6⊆ {z`−1, z`}.
Then there is a j ≥ 1 such that a and b belong to Hj(p), in fact to S(z`−1, pc(`), z`) ∼=
Hj(pc(`)), but at least one of a and b is not in Hj−1(p). Hence there is an edge
(e, q, f) in Hj−1(p), in fact in S(z`−1, pc(`), z`), and there is an s ∈ M (q) such that
the edge (a, r, b) belongs to the s-arc glued to the edge (e, q, f) when Hj(p) was
obtained from Hj−1(p), see Figure 5. This uniquely determined s-arc will be called
the supporting arc of S(a, r, b).

From the definition of an arc it follows that there is another r-colored edge of
our s-arc, say (c, r, d). Notice that, opposed to Figure 5, {a, b, c, d}∩ {e, f} is not
necessarily empty. However, {a, b} ∩ {c, d} = ∅ by the construction.

Figure 5. S(a, r, b) and its supporting arc

Since (x, y) ∈ β|H(p), there is a shortest undirected β-path U in H(p) from
x to y. If U goes entirely in S(a, r, b), then (x, y) ∈ β|S(a,r,b) and we are ready
with this subcase. So assume that U leaves S(a, r, b). Since U is a shortest path,
we can assume by Lemma 7 that U leaves S(a, r, b) at a and enters it again at
b. (Interchanging a and b would make no difference in what follows.) Then, in
the order given below, U must go through the vertices x, a, u1, u2, . . . , e of the
supporting arc, then through f , . . . , v2, v1, d, c, . . . , b, y, see Figure 5. (Notice
that these vertices are not necessarily consecutive vertices of U .)

Let W denote the segment of U between d and c. Since every path from d to c
outside S(c, r, d) should go through a, which would contradict to the assumption
that U is the shortest path, we conclude that W goes entirely in S(c, r, d). By
stipulation (2), there is a graph isomorphism from S(c, r, d) to S(a, r, b). Replacing
the “outer” a, . . . , e, f , . . . , b segment of U by the image of W , we obtain a shorter
β-path from x to y, a contradiction. Hence (x, y) ∈ β|S(a,r,b), completing the case
where t is a variable.

Case 2: t is meet-reducible with meetands t1, . . . , tv. We assume that the lemma is
valid for the meetands t1, . . . , tv. Then part (a) of the lemma is clearly valid for t.
To prove part (b), suppose that (x, y) ∈ t|H(p) and x 6= y.

Subcase 2.1: p is join-irreducible, that is, m = 1. Let j denote the smallest subscript
such that both x and y belongs to Hj(p); we will prove (b) for t by induction on j.

If j = 0, then {x, y} = {x0, x1}, whence (x, y) is an undirected edge, which is an
undirected t|H(p)-path. This settles the case j = 0.

Next, let j > 0, and assume that (b) holds for t and any two vertices from
Hj−1(p). We can assume that (x, y) is not an edge of H(p). Let, say, x do not belong
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to Hj−1(p). Then x belongs to an arc glued to Hj−1(p), cf. Figure 5 with x = a.
Suppose that e, the left endpoint of this arc, is nearer the edge (x, r, b) = (a, r, b)
than f . (The supporting arc consists of an even number of edges, so either e or
f is strictly nearer.) According to the position of y, we have to distinguish two
possibilities.

Sub-subcase 2.1.1: y is not on this arc. Let i ∈ {1, . . . , v} be an arbitrary subscript.
By the induction hypothesis, there is an undirected ti|H(p)-path Ui from x to y.
This path leaves the arc at e or f .

We claim that there is an undirected ti|H(p)-path Vi from x to e. This is clear
if Ui leaves the arc at e, so assume that it leaves the arc at f . Since e is nearer
the edge (a, r, b) than f (in short, e is near and f is far from the edge (a, r, b)),
each color on the arc between e and a = x occurs between a and f . For example,
let r′ be the color of the edge (u2, u1), and also of the edge (v1, v2). Since Ui goes
through v1 and v2, (v1, v2) ∈ ti|H(p). Since part (a) is already valid for ti, we get
(v1, v2) ∈ ti|S(v1,r′,v2). It follows from stipulation (2) that

(5) S(v1, r
′, v2) ∼= S(u2, r

′, u1),

so (u2, u1) ∈ ti|S(u2,r′,u1), whence (u2, u1) ∈ ti|H(p). This argument shows that the
segment of the arc between e and x = a is an undirected ti|H(p)-path, indeed.

This holds for all i ∈ {1, . . . , v}, and we conclude that there is an (undirected)
t|H(p)-path from x to e ∈ Hj−1(p). Similarly, there is a t|H(p)-path from y to a ver-
tex y′ ∈ Hj−1(p). (Possibly, y′ = y.) Since (x, x′), (y, y′) ∈ t|H(p), the transitivity
of t|H(p) implies that (x′, y′) ∈ t|H(p). By the induction hypothesis on j, there is an
undirected t|H(p)-path between x′ and y′. Composing the three paths mentioned
we obtain an undirected t|H(p)-path from x to y, as requested.

Sub-subcase 2.1.2: y is on the same arc as x. Let i ∈ {1, . . . , v}, and consider a
shortest (undirected) ti|H(p)-path Ui that connects x and y. Related to the arc,
there are two possibilities for Ui. We say that it is a detour, if it consists of e, f ,
and all vertices of the arc that are not strictly between x and y. On the other hand,
if Ui consists of all edges of the arc that are between x and y, then we say that Ui

is a straight path. Clearly, Ui is either a detour or a straight path (but not both).
Similarly, there are two possibilities for the position of x and y; note that both

possibilities can hold simultaneously. Namely, either x and y are far in the sense
that each color occurring on the arc occurs between x and y, or x and y are near
in the sense that each such color occurs not only between x and y.

Now assume that x and y are far. We claim that there is a ti|H(p) detour
connecting x and y. We have to investigate only the case when Ui is a straight
path. Then, similarly to the argument above with (5), part (a) for ti gives that
every edge of the arc is a ti|H(p)-edge. By transitivity, (e, f) ∈ ti|H(p). Hence the
(unique) detour from x to y is an undirected ti|H(p)-path, indeed. This holds for
all i, whence this detour is a t|H(p)-path connecting x and y.

If x and y are near, then a straightforward analogous argument shows that the
(unique) straight path from x to y is an undirected t|H(p)-path.

Subcase 2.2: p is join-reducible, that is, m ≥ 2. Firstly, assume that x and y
belong to the same subgraph S(z`−1, pc(`), z`). For all i ∈ {1, . . . , v}, (x, y) ∈
ti|S(z`−1,pc(`) ,z`) by part (a) of the lemma. Since pc(`) is join-irreducible and we have
S(z`−1, pc(`), z`) ∼= H(pc(`)) for an appropriate H(pc(`)) ∈ G(pc(`)), the previous
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case implies the existence of a t|S(z`−1,pc(`) ,z`) path from x to y. It is clearly a
t|H(p)-path.

Secondly, assume that x belongs to the subgraph S(z`−1, pc(`), z`) and y belongs
to S(zh−1, pc(h), zh). Let, say, ` < h. We know that there are shortest ti|H(p)-
paths Ui from x to y for i ∈ {1, . . . , v}. There can be no detours now, so all these
paths go through z`, z`+1, . . . , zh−1. This holds for all i ∈ {1, . . . , v}, whence (x, z`),
(z`, z`+1), . . . , (zh−1, y) belong to t|H(p). Since the components of each of these pairs
belong to the same subgraph, the previous case yields that these components can
be connected by t|H(p)-paths. Putting these paths together, we obtain a t|H(p)-path
from x to y.

Case 3: t is join-reducible with joinands t1, . . . , tv. Suppose that the lemma is valid
for these joinands. Since ti|H(p)-paths are t|H(p)-paths as well, part (b) of the lemma
is evident.

The argument for part (a) is similar to the case when t was a variable, so we
will use the notations introduced in connection with Figure 5. In particular, x and
y are vertices of S(a, r, b) and (x, y) ∈ t|H(p) = t1|H(p) ∨ · · ·∨ tv|H(p). Using the
description of joins in Equ(V (p)) and then the induction hypothesis for the ti, we
obtain a shortest undirected t1|H(p) ∪ · · · ∪ tv|H(p)-path U connecting x and y. We
want to show that U goes entirely in S(a, r, b).

This is evident if (a, b) is an edge of H0(p), that is, it is of the form (z`−1, z`).
So, assume that (a, b) is not an edge of H0(p) and, by way of contradiction, assume
that U exits S(a, r, b). Then a segment of U connects c and d within S(c, r, d). Each
edge of this segment is collapsed by some ti|H(p), whence by ti|S(c,r,d) according to
the induction hypothesis. Using the isomorphism between S(c, r, d) and S(a, r, b),
we obtain a shorter path from a to b within S(a, r, b) whose edges are collapsed by
appropriate ti|S(a,r,b), whence by ti|H(p).

This contradiction shows that U goes in S(a, r, b), indeed. By the induction
hypothesis, if an edge of U is collapsed by ti|H(p) then it is collapsed by ti|S(a,r,b),
and therefore by t|S(a,r,b). Finally, (x, y) ∈ t|S(a,r,b) follows by transitivity. �

The next lemma will obviously imply Theorem 3 and Proposition 1.

Lemma 9. The k-pointed lattice L(p) defined by formula (3) is a p-lattice. More-
over, the following three conditions are equivalent for any k-ary lattice term q:

(a) p ≤triv q;
(b) p(α1|H(p), . . . , αk|H(p)) ≤ q(α1|H(p), . . . , αk|H(p)) in L(p);
(c) (x0, x1) ∈ q(α1|H(p), . . . , αk|H(p)).

Proof. (a) implies (b) trivially. An easy induction on the length of p gives (x0, x1) ∈
p(α1|H(p), . . . , αk|H(p)) = p|H(p), whence (b) implies (c).

Next, suppose (c), let L be an arbitrary lattice, and let β1, . . . , βk ∈ L. We
know from Jónsson [10] that each lattice has a type 3 representation, see also
Theorem IV.4.4 in Grätzer [8]. Hence we can assume that L is a sublattice of
some Equ(Y ) and γ ∨ δ = γ ◦ δ ◦ γ ◦ δ holds for any γ, δ ∈ L. Let (y0, y1) ∈
p(β1, . . . , βk). A straightforward induction on the length of p shows the existence
of a map ϕ : V (p) → Y such that x0 7→ y0, x1 7→ y1, and for each αi-edge (u, αi, v)
of H(p), we have (uϕ, vϕ) ∈ βi. The same kind of induction on the length of q shows
that, for a, b ∈ V (p), if (a, b) ∈ q|H(p), then (aϕ, bϕ) ∈ q(β1, . . . , βk). In particular,
(y0, y1) ∈ (x0ϕ, x1ϕ) ∈ q(β1, . . . , βk). Hence p ≤ q holds in L, so p ≤triv q. �
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Corollary 10. Let (a, r, b) be an edge of H(p) ∈ G(p), and let t be an arbitrary
k-ary lattice term. Then

(a) r|H(p) is the smallest element of L(p) that collapses a and b;
(b) (a, b) ∈ t|H(p) if and only if r ≤triv t;
(c) r|H(p) ≤ t|H(p) if and only if r ≤triv t.

Proof. By (4), there is a (unique) graph H(r) ∈ G(r) such that H(r) ∼= S(a, r, b).
Since r ≤triv r, we conclude (x0,H(r), x1,H(r)) ∈ r|H(r) by Lemma 9. Hence (a, b) ∈
r|S(a,r,b), and Lemma 8(a) gives (a, b) ∈ r|H(p).

Next, assume that (a, b) ∈ t|H(p). We obtain from Lemma 8(a) that (a, b) ∈
t|S(a,r,b). Hence (x0,H(r), x1,H(r)) ∈ t|H(r), so r ≤triv t by Lemma 9. This proves
part (b) and completes the proof of part (a). Finally, (c) is an evident consequence
of (a) and (b). �

Corollary 11. Suppose µ ∈ L(p), (a, r, b) is an edge of H(p), and t is a k-ary
lattice term. Then

(a) it depends only on r if (a, b) ∈ µ;
(b) µ =

∨
{s|H(p) : s ∈ C(p) and all s-colored edges are collapsed by µ}.

(c) t|H(p) =
∨
{s|H(p) : s ∈ C(p) and s ≤triv t}.

Proof. Since µ is of the form t|H(p), part (a) follows from Corollary 10(b).
Let B = {s ∈ C(p) : all s-colored edges are collapsed by µ} and ν =

∨
s∈B s|H(p).

Suppose (c, s, d) is an edge with (c, d) ∈ µ = t|H(p). Then s ∈ B by part (a), and
(c, d) ∈ s|H(p) by Corollary 10(a). Hence (c, d) ∈ ν. Therefore, Lemma 8(b) implies
µ = t|H(p) ≤ ν. Conversely, Corollary 10(b) yields that s ≤triv t for every s ∈ B.
Hence ν ≤ t|H(p) = µ, proving part (b).

Finally, part (c) is a consequence of part (b) and Corollary 10(b). �

The following two corollaries (and the dual of the second one) say that free
lattices satisfy Whitman’s condition. Their original proof in [13] is a bit lengthy.
Based on A. Day [5], the approach of Freese, Ježek, Nation [6] to Whitman’s condi-
tion is shorter. Now, armed with the basic properties of L(p), we are going to give
an even shorter proof. Since it is visual, it reveals some new ingredients from the
underlying reasons.

Corollary 12 (Whitman [13]). Let p be a meet-reducible lattice term with with
meetands p1, . . . , pu, and let q be a join-reducible lattice term with joinands q1,
. . . , qv. Assume that p ≤triv q. Then either pi ≤triv q for some i ∈ {1, . . . , u} or
p ≤triv qj for some j ∈ {1, . . . , v}.

Proof. Lemma 9 yields that (x0, x1) ∈ q|H(p) = q1|H(p) ∨ · · ·∨ qv|H(p). Hence there
exists a shortest undirected q1|H(p) ∪ · · ·∪ qv|H(p)-path U that connects x0 and x1.

Firstly, if U is of length 1, then p ≤triv qj for some j by Lemma 9.
Secondly, if length(U ) ≥ 2, then U goes through all vertices of a unique pi-arc

glued to H0(p). Hence U goes within H(pi). Let (c, s, d) be an edge of U . Then
(c, d) ∈ q|H(p). Using Lemma 8(a) twice, we get (c, d) ∈ q|S(c,s,d) and (c, d) ∈
q|H(pi). By transitivity, (x0, x1) ∈ q|H(pi). Hence pi ≤triv q by Lemma 9. �

Corollary 13. Let p =
∧u

i=1 pi and q =
∨v

i=1 qi as in the previous corollary, and
let αi be a variable. Then

• if αi ≤triv q then αi ≤triv qj for some j ∈ {1, . . . , v};
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• if p ≤triv αi then pj ≤triv αi for some j ∈ {1, . . . , u}.

To demonstrate the usefulness of test lattices, we prove the two parts of this
corollary separately even if each of them implies the other by the duality principle.

Proof. For the first part, let p′ = αi and H(p′) ∈ G(p′). Since |V (H(p′))| =
|L(p′)| = 2 and 1L(p′) is join-irreducible, we obtain from (x0, x1) ∈ 1L(p′) =
p′|H(p′) ≤ q|H(p′) = q1|H(p′) ∨ · · ·∨ qv|H(p′) that (x0, x1) ∈ qj|H(p′) for some j.
Hence αi ≤triv qj by Lemma 9.

For the second part, take a shortest αi-path U connecting x0 and x1 in H(p).
If length(U ) = 1, then αi equals a meetand pj of p, whence pj ≤triv αi. If
length(U ) ≥ 2, then U goes within some H(pj), and pj ≤triv αi by Lemma 9. �

For a congruence Θ of a k-pointed lattice (L; ~d), we will use the notation ~d/Θ =
(d1/Θ, . . . , dk/Θ). Let us call Θ a p-preserving congruence, if (c, p(~d)) ∈ Θ holds
for no c < p(~d). The following lemma implies Corollary 4; we formulate this
lemma for a later reference. By homomorphisms we still mean k-pointed lattice
homomorphisms, and isomorphisms are particular cases.

Lemma 14. Let (L, ~d) be a p-lattice, and let Θ be a congruence of (L; ~d).

• (L/Θ; ~d/Θ) is a p-lattice iff Θ is p-preserving.
• There exists an optimal p-lattice. It is finite, and it is unique up to isomor-

phism.
• (L; ~d) is an optimal p-lattice iff 0 is the only p-preserving congruence of

L(p).

Proof. Assume that Θ is not p-preserving, and choose an element c = q(~d) such
that c < p(~d) and (c, p(~d)) ∈ Θ. Then p(~d/Θ) ≤ q(~d/Θ), for they are equal, but
p 6 ≤triv q, so L/Θ is not a p-lattice. Conversely, suppose that Θ is p-preserving and
p(~d/Θ) ≤ q(~d/Θ). Then p(~d/Θ)∧ q(~d/Θ) = p(~d/Θ) gives (p(~d)∧ q(~d), p(~d)) ∈ Θ.
Using that Θ is p-preserving, we get p(~d)∧ q(~d) = p(~d). This means that p(~d) ≤ q(~d)
in L, whence p ≤triv q, proving the first part.

Let F = [d1, . . . , dk] be the free lattice generated by {d1, . . .dk}. Then (F ; ~d) is a
p-lattice, whence its smallest congruence is p-preserving. Since the (non-empty) join
of all p-preserving congruences of (F ; ~d) is clearly p-preserving by Lemma III.1.3
from Grätzer [8], (F ; ~d) has a largest p-preserving congruence Ψ. By the first part
of the Lemma, (K, ~d) := (F/Ψ; ~d/Ψ) is a p-lattice.

Let (M ; ~d) be another p-lattice. Let ϕ denote the surjective lattice homomor-
phism ϕ : F → M , d1 7→ d1, . . . , dk 7→ dk, that is, the unique k-pointed lat-
tice homomorphism from (F ; ~d) to (M ; ~d). Clearly, Ker ϕ ⊆ Ψ, whence (K; ~d) ∼=
(F/Ψ; ~d/Ψ) is a homomorphic image of (M, ~d) ∼= (F/ Ker ϕ; ~d/ Ker ϕ). Hence (K; ~d)
is an optimal p-lattice. It is finite by Theorem 3. Its uniqueness is an evident con-
sequence of finiteness. This proves the second part.

To prove the third part, let Θ be a p-preserving congruence of an optimal p-
lattice (L; ~d). By the first part, (L/Θ; ~d/Θ) is again a p-lattice. So, (L; ~d) is a
homomorphic image of (L/Θ; ~d/Θ), and the finiteness of L implies Θ = 0.

Conversely, assume that 0 is the only p-preserving congruence of a p-lattice (L; ~d).
Consider the (unique) homomorphism ϕ : (L; ~d) → (K; ~d). Since (L; ~d)/ Ker ϕ ∼=
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(K; ~d) is a test lattice, Ker ϕ is p-preserving by the first part. Hence Ker ϕ = 0
yields that ϕ is an isomorphism. This implies that (L; ~d) is an optimal p-lattice. �

Let H(p) ∈ G(p), and let U = (x0 = a0, a1, a2, . . . , an = x1) be a directed path
in H(p). We say that U is a uniform path, if the following condition holds: for
any 0 ≤ i1 < i2 < i3 < i4 ≤ n such that (ai1 , ai2) and (ai3 , ai4) are edges of the
same color r, the unique isomorphism S(ai1 , r, ai2) → S(ai3 , r, ai4), see (4), sends
the segment of U between ai1 and ai2 onto the segment of U between ai3 and ai4 .

Lemma 15. Let U be a uniform path as above and let {r1, . . . , rm} be the set of
colors of edges of U . Then length(r1 ∨ · · ·∨ rm) ≤ length(p).

Proof. We use induction on length(p). If p is a variable or n = length(U ) = 1, then
the statement is evident. If p is join-reducible, then n > 1 and the induction step
is straightforward. If p is meet-reducible and n > 1, then there is an s ∈ M (p), see
(1), such that U includes the vertices of the s-arc glued to H0(p), and the induction
step is straightforward again. �

Proof of Theorem 5. According to Lemma 14, it suffices to show that Θ is not
p-preserving for any nontrivial congruence Θ of L(p). Since Θ is nontrivial, µ < ν
and (µ, ν) ∈ Θ hold for some µ, ν ∈ L(p). In virtue of Lemma 8(b), there is an
edge (a, r, b) with (a, b) ∈ ν \ µ. Let η = µ ∩ r|H(p). Corollary 11 implies that
r|H(p) = r|H(p) ∧ ν. Hence

(6) η < r|H(p), (η, r|H(p)) ∈ Θ and (a, b) ∈ r|H(p) \ η.

Let us fix an r ∈ C(p) with maximal length such that (6) holds with an appropriate
edge (a, r, b) and an η ∈ L(p). According to Corollary 11(b), there are t1, . . . , tu ∈
C(p) such that

(7) η = t1|H(p) ∨ · · · ∨ tu|H(p).

Let j denote the unique subscript from N0 = {0, 1, 2, . . .} such that (a, r, b) is an
edge of Hj(p) but not of Hj−1(p).

We have to consider several cases.

Case 1: j > 0. Then there is a meet-reducible q ∈ C(p), an edge (e, q, f) of Hj−1(p),
and a meetand s of q such that

(8) s = r ∨ tu+1 ∨ · · · ∨ tu+v ∈ M (q).

In particular,

(9) s|H(p) = r|H(p) ∨ tu+1|H(p) ∨ · · · ∨ tu+v|H(p).

Notice that v ≥ 1, and the situation is similar to that of Figure 5. Let

(10) δ := η ∨ tu+1|H(p) ∨ · · · ∨ tu+v|H(p) = t1|H(p) ∨ · · · ∨ tu+v|H(p).

Then (6), (9) and (10) yield that (δ, s|H(p)) ∈ Θ and δ ≤ s|H(p). Since

(11) δ 6< s|H(p) by length(r) < length(s),

we conclude that
δ = s|H(p).

Since (e, f) ∈ q|H(p) by Corollary 10(a) and, clearly, q ≤triv s, we obtain that

(12) (e, f) ∈ s|H(p) = t1|H(p) ∨ · · · ∨ tu+v|H(p) = (t1 ∨ · · · ∨ tu+v)|H(p).
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Since t1, . . . , tu+v ∈ C(p), (12) and Corollary 10(b) imply

(13) t1 ∨ · · · ∨ tu+v ≤triv s.

Let H(q) := S(e, q, f). Then H(q) ∈ G(q) by (4), and

(14) (e, f) ∈ (t1 ∨ · · · ∨ tu+v)|H(q) = t1|H(q) ∨ · · · ∨ tu+v|H(q)

follows from (12) and Lemma 8(a). Hence, by Lemma 8(b), there is a t1|H(q) ∪
· · · ∪ tu+v|H(q)-path U in H(q) = S(e, q, f) that connects e and f . We can assume
that U goes through each vertex of H(q) at most once. Then a trivial induction on
length(q) shows that U is a directed path. Another trivial induction on length(q),
based on (4), yields that U can be chosen to be uniform. Let (x, c, y) be an edge of
U . Then (x, y) ∈ ti|H(q) for some i. Hence (x, y) ∈ ti|H(p) by the (trivial direction
of) Lemma 8(a).

This shows that U is a uniform t1|H(p) ∪· · ·∪ tu+v|H(p)-path from e to f ; in fact,
we assume that U is the shortest uniform path with this property.

Subcase 1.1: U consists of a single edge. Then (e, f) ∈ ti|H(p) and Corollary 10(b)
yield that q|≤triv ti for some i ∈ {1, . . . , u + v}.

Firstly, assume that i ≤ u. Then q|H(p) ≤ ti|H(p) ≤ η ≤ r|H(p). Hence Corol-
lary 10(c) implies q ≤triv r. Let q′ denote the lattice term that we obtain from q
by replacing its meetand s with r. Then q ≤triv r ≤triv s implies q′ =triv q. Since
length(r) < length(s), we see that length(q′) < length(q). So, q is not a canonical
term. This is a contradiction, for all subterms of the canonical p are canonical.

Secondly, assume that u < i ≤ u+v. Then q ≤triv ti ≤triv s, like above. Hence,
using ti instead of r, we can derive the same contradiction.

Subcase 1.2: U consists of at least two edges. Then there is an s′ ∈ M (q), see (1),
such that U goes through all the vertices of the s′-arc that was glued to Hj−1(p).

Sub-subcase 1.2.1: s′ and s are distinct. Let

z0 = e, z1, . . . , zn−1, zn = f and (z0, t
′
1, z1), . . . , (zn−1, t

′
n, zn)

be the vertices and the edges of the s′-arc, respectively. Since U goes through zi−1

and zi,
(zi−1, zi) ∈ t1|H(p) ∨ · · · ∨ tu+v|H(p) = δ = s|H(p)

holds for i ∈ {1, . . . , n}. By Corollary 10(b), t′i ≤triv s for all i, which yields that
s′ = t′1 ∨ · · · ∨ t′n ≤triv s. This is a contradiction, for the canonical term q cannot
have two trivially comparable meetands.

Sub-subcase 1.2.2: s′ and s are the same. Then a section W of U , which is a uniform
path again, connects a and b. Let t′1, . . . , t′w be the colors of the edges of W . By
Corollary 10(b),

(15) ∀j ∈ {1, . . . , w} ∃i ∈ {1, . . . , u + v} such that t′j ≤triv ti.

Corollary 10(a), applied to the edges of W , and transitivity imply (a, b) ∈ t′1|H(p) ∨
· · · ∨ t′w|H(p) = (t′1 ∨ · · · ∨ t′w)|H(p). Hence Corollary 10(b) implies

(16) r ≤triv t′1 ∨ · · · ∨ t′w.

This together with (8) yields that s ≤triv t′1∨· · ·∨t′w∨tu+1∨· · ·∨tu+v. Conversely,
t′1 ∨ · · · ∨ t′w ∨ tu+1 ∨ · · · ∨ tu+v ≤(15)

triv t1 ∨ · · · ∨ tu+v ≤(13)
triv s. Hence

(17) s =triv t′1 ∨ · · · ∨ t′w ∨ tu+1 ∨ · · · ∨ tu+v.
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If i = i(j) belonged to {1, . . . , u} in (15) for each j, then

r|H(p) ≤(16) (t′1 ∨ · · · ∨ t′w)|H(p) ≤ (t1 ∨ · · · ∨ tu)|H(p) =(7) η

would contradict (6). Hence, by (15), there is a j, say j = 1, such that t′1 ≤triv ti
holds for some i ∈ {u+1, . . . , u+v}. Let g = t′2∨· · ·∨t′w∨tu+1∨· · ·∨tu+v. We see by
(17) that s =triv g. However, (8) together with length(t′1∨· · ·∨t′w) ≤(L15) length(r)
yields that length(g) < length(s). This is a contradiction, because s, as a subterm
of p, is canonical.

Case 2: j = 0. Firstly, assume p is join-irreducible. Then H0(p) consists of a single
p-colored edge, r coincides with p, whence Θ is not p-preserving, indeed.

Secondly, assume that p is join-reducible. With the temporary notations s′ =
s := p, e := x0 and f := x1, the argument for Sub-subcase 1.2.2 works almost the
same way as previously. The only difference is that, instead of (11), we say that

• either δ 6< s|H(p) and we derive a contradiction the same way as before,
• or δ < s|H(p) = p|H(p), whence Θ is not p-preserving, indeed.

(Since (e, f) is not an edge now, (11) in itself would not work.) �

Proof of Theorem 6. We can assume that a p is not a join-free term, because oth-
erwise |L(p)| = 2 and there is nothing to prove.

We claim that p|H(p) is a join-irreducible element of L(p). By way of con-
tradiction, suppose that there are terms h1 and h2 such that h1|H(p) < p|H(p),
h2|H(p) < p|H(p) but h1|H(p) ∨h1|H(p) = p|H(p). Similarly to (and even easier than)
the argument right after (14), we conclude that there is a uniform h1|H(p)∪h2|H(p)-
path U connecting x0 and x1. Since length(U ) = 1 would imply p ≤triv hi for some
i ∈ {1, 2} by Corollary 10(b), we obtain that length(U ) > 1.

Hence there is an s ∈ M (p) such that U goes through the vertices of the s-arc
glued to H0(p). Let s =

∨n
i=1 ti. Since U is also a p|H(p)-path, we get ti ≤(C10)

triv p
for i = 1, . . . , n. Hence s ≤triv p. Since s is a meetand of p, we have p ≤triv s.
Since p is canonical, p coincides with s, which contradicts the assumption that p is
a join-irreducible term.

This proves that p|H(p) is join-irreducible in L(p). It is not the 0 of L(p), since
(x0, x1) ∈ p|H(p) by Corollary 10(a). Hence p|H(p) has a unique lower cover p∗|H(p).
Since congruence classes are intervals and L(p) is optimal by Theorem 5, it follows
by Lemma 14 that each non-zero congruence of L(p) collapses p|H(p) and p∗|H(p).
Thus, L(p) is subdirectly irreducible. �

It is trivial to check that, for any ternary term q, if q is shorter than p♦ of
Exercise 2, then the identity p = q fails even in the free modular lattice on three
generators. Hence p♦ is a join-irreducible canonical term. It is also trivial to verify
that |L(p♦)| > 5. Notice that even Figure 6, which is a useful illustration for test
lattices, was very easy to construct. Hence the following proposition clearly solves
Exercise 2. In Proposition 16, K will be a lattice in the usual sense while (L(p); ~d),
the p-lattice, is a k-pointed lattice.

Proposition 16. Let p be a join-irreducible canonical k-ary lattice term, and let
K be a lattice with |K| < |L(p)|. Then there exists a k-ary lattice term q such that
p ≤ q is a nontrivial lattice identity that holds in K.
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Figure 6. The test lattice L(p♦)

Proof. Let n = |K|. There are nk ways to make K into a k-pointed lattice (K; ~d)
by selecting k elements in K. Let (G; ~d) be the direct product of all these (nk

many) k-pointed lattices.
Assume that the proposition fails for K. Then (G; ~d) is a p-lattice. The (unique)

optimal p-lattice is a homomorphic image of (G; ~d) by Lemma 14. But, by The-
orem 5, the optimal p-lattice is (L(p); ~d). Therefore, L(p), as a lattice without
constants, belongs to the variety generated by K. Since L(p) is subdirectly irre-
ducible by Theorem 6, the famous HSP = PsHSPu theorem of B. Jónsson [11]
gives that L(p) is a homomorphic image of a sublattice of K. This contradicts
|K| < |L(p)|. �

4. Historical remarks

Graphs similar to those here were formerly useful in [1], [2], [4], M.Haiman [9]
and P. Lipparini [12]. Even one of the efficient known algorithms for the word
problem of lattices is due to graphs, see [3]. (For other algorithms, see also Section
XI.8 of Freese, Ježek, Nation [6]). In fact, [3] gives the main motivation to the
present work: if graphs are appropriate to solve the word problem, then why not
use them for other purposes? However, the mentioned similarity is limited, because
our graphs here have more edges than their precursors. In fact, finding the right
amount of edges was the main step towards the present approach.

The results of this paper were presented at the conferences organized by the
University of Nov Sad and the Technical University of Košice, respectively. It
has appeared since then that our approach overlaps Freese, Ježek and Nation [6]
more than previously recognized. Since the concepts and the methods of [6] are
very different from ours and the counterparts of our results are sometimes only
implicitly given in [6], it is reasonable to give a short comparison below.

If we do not assume that p is canonical, then, generally, L(p) does not occur in
the book [6]. So, in what follows, let as assume that p′ is a canonical lattice term.

Using Theorem 3.12 of [6] (in short, Thm. [6].3.12), it is easy to see that J(p′) =
J∗(p′) of [6] is the same as our C(p′). Then Cor. [6].3.18 together with Corol-
lary 11(c) gives that L∨(p′) coincides with our L(p′), whence it is our K(p′) by
Theorem 5. This shows that each optimal test lattice K(p′) has been constructed
in [6]. This shows also that Theorem 6 is included in Thm. [6].3.24.

The result that L∨(p′) is a p′-lattice can be easily extracted from [6] in the
following way. By the second and third sentences in the proof of Thm. [6].3.15,
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f in Cor. [6].3.18 is a contraction that acts identically on L∨(p′), which is a join-
subsemilattice of the free lattice FL(α1, . . . , αk). Hence p′ ∈ FL(α1, . . . , αk) is the
least preimage of p′ ∈ L∨(p′). So, f(p′) ≤ f(q) implies p′ ≤triv q, whence L∨(p′)
is a p′-lattice.

It is also possible to extract from [6] that L∨(p′) is an optimal p′-lattice; however,
this would require a deeper look into the book, so the details are omitted.

In connection with Theorems 5 and 6, we notice that the name “canonical term”
in the present paper means only a shortest term, which trivially exists. Opposed
to [6], we do not use Whitman’s non-trivial theorem on its uniqueness, see [13].
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[6] R. Freese, J. Ježek and J. B. Nation: Free lattices, Mathematical Surveys and Monographs,
42, American Mathematical Society, Providence, RI, 1995. viii+293 pp.

[7] R. Freese and J. B. Nation: Congruence lattices of semilattices, Pacific J. Math. 49 (1973),
51–58.
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