Distributivity via first meanders
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Abstract. We prove the following theorem: A lattice L having no infinite chains
is distributive if and only if every filter of L is equal to the first meander of an
ideal in L.

Given an ideal I of a lattice L, the first meander of I is the set
I''={acL:anbel = bel}

(cf. [1, 2]). Since I' is a filter in L, ¢ : I — I' is a mapping from the set Id(L) of all
ideals in L into the set Fi(L) of all filters in L. In [3] the first author conjectured that the
surjectivity of ¢ might characterize the distributivity of L. With the additional assumption
that L has no infinite chains, our goal is to turn this conjecture to the following theorem.

Theorem 1. Let L be a lattice which has no infinite chains. Then L is distributive if and
only if each filter of L is the first meander of an ideal of L.

This theorem was found by the first author, who derived it from Lemma 3 and gave
a long original proof for Lemma 3. The present short proof of Lemma 3 is a joint work.

Now, for the reader’s convenience, we collect some notions and statements from [1]
and [2]. The first meander of a filter F'is F! :=={a € L:avVbe F = be F}. If X is an
ideal or a filter then X2, the second meander of X, is the meander of its first meander X!.
If Fisafilterof L, a € L\ F and x € F for all a < = € L then a is called an F-coatom.
The importance of F-coatoms is revealed by the following easy lemma, which was proved
in [1].

Lemma 2 . Let L be a lattice without infinite chains and let F' be a filter of L. Then
(i) for each b € L\ F there is an F-coatom a with b < a;
(ii) F'! is the principal ideal (i] where i is the meet of all F-coatoms.

After Rav [5], cf. also Chevalier [4], an ideal I of L is called semiprime, if
aNbel & ancel = aN(bVe)el

for any a,b,c € L. Semiprime filters are defined dually.

Lemma 3. Let L be a lattice without infinite chains, and let 7 be an element of L which
is maximal with respect to the property that the ideal (i] is not semiprime. Then there is
no filter F in L with F'' = (i].
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Proof of Lemma 3. Suppose that there is an F' = [f) such that F! = (i] and reason to
a contradiction as follows. Let us fix elements a,b,c € L with a Ab < i, aAc < i and
aN(bVc)£i. Clearly, i # 1. From the maximality of ¢ we infer that, for any = € L,

i<z = aN(bVe) <z (1)

Hence i is meet irreducible, for otherwise ¢ < x1, ¢ < 22 and z1 || 2 would give aA(bVe) <
x1 Axo = i. The meet irreducibility of 7, Lemma 2(ii) and the fact that distinct F-coatoms
are incomparable yield that i is the unique F-coatom in L. Hence we infer from Lemma
2(i) that x < i for all z € L\ F, i.e., L = (i| U [f). The [f)-coatom i does not belong to
[f), so this union is a disjoint one, i.e.

L=(] U [f) (2)
Since a A (b V ¢) £ i, we therefore have
acl[f) and bVcelf). (3)

Now b € [f) would imply a A b € (i| N [f), a contradiction. Hence b € (i] and, similarly,
¢ € (i], which is impossible by (2) and (3). Q.e.d.
Proof of Theorem 1. If L is distributive then, by the dual of [2, Thm. 2.4] (which is the
"only if” part of the main result of [3], ¢f. Thm. 4 below), F' = F? for each filter F' of L,
whence F is the first meander of the ideal F'!.

Now suppose that L is not distributive. Then (z Vy) A (xV 2) # z V (y A z) for some
x,y,z € L. Hence [(a: Vy)A(xV z)) is a filter which is not semiprime. The dual of Lemma
3 implies that not every filter of L is the first meander of an ideal. Q. e. d.

We conclude the paper with recalling the main result of [3] in order to indicate how
Theorem 1 makes the proof of its ”if” part essentially shorter.

Theorem 4 ([3]). Let L be a lattice without infinite chains. Then L is distributive if and
only if I? = I holds for all ideals I of L.

Proof of the ”if’ part. If I? = I holds for all ideals I, then every ideal is the first meander
of the filter I', and L is distributive by the dual of Theorem 1.
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