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Abstract. Let λ and κ be cardinal numbers such that κ is infinite and either
2 ≤ λ ≤ κ, or λ = 2κ. We prove that there exists a lattice L with exactly λ

many congruences, 2κ many ideals, but only κ many filters. Furthermore, if
λ ≥ 2 is an integer of the form 2m · 3n, then we can choose L to be a modu-

lar lattice generating one of the minimal modular nondistributive congruence
varieties described by Ralph Freese in 1976, and this L is even relatively com-

plemented for λ = 2. Related to some earlier results of George Grätzer and
the first author, we also prove that if P is a bounded ordered set (in other

words, a bounded poset) with at least two elements, G is a group, and κ is an
infinite cardinal such that κ ≥ |P | and κ ≥ |G|, then there exists a lattice L of

cardinality κ such that (i) the principal congruences of L form an ordered set
isomorphic to P , (ii) the automorphism group of L is isomorphic to G, (iii) L

has 2κ many ideals, but (iv) L has only κ many filters.

1. Introduction and result

For a lattice L, let Con(L), Filt(L), and Id(L) stand for the lattice of congruences,
that of filters, and that of ideals of L, respectively. Motivated by Mureşan [21], we
say that a triple 〈α, β, γ〉 of cardinal numbers is CFI-represented by a lattice L if
〈α, β, γ〉 = 〈 |Con(L)|, |Filt(L)|, |Id(L)| 〉. Also, we say that 〈α, β, γ〉 is an eligible

triple (of cardinal numbers) if there exists an infinite cardinal number δ such that
2 ≤ α ≤ 2δ and δ ≤ β < γ ≤ 2δ. A lattice L always has δ := |L| many principal
filters and principal ideals, and only those filters and ideals if L is finite. Hence,
cardinal arithmetics trivially implies that

if a triple is CFI-represented by such a non-singleton lattice
that has more ideals than filters, then this triple is eligible.

(1.1)

This raises the question whether every eligible triple is CFI-representable. Although
we cannot answer this question in full generality, it follows trivially from our first
theorem to be stated soon that the answer is affirmative under the generalized
continuum hypothesis. We are also interested in whether eligible triples can be
represented by “nice” lattices but we can show some “beauty” of these lattices only

1991 Mathematics Subject Classification. 06B10 February 13, 2019.
Key words and phrases. Lattice ideal, lattice filter, simple lattice, more ideals than filters,

number of ideals, cardinality, lattice congruence, principal congruence.
This research was supported by NFSR of Hungary (OTKA), grant number K 115518, and by
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for certain eligible triples. Postponing the definition of Vp until Definition 1.6, note
that a lattice L ∈ Vp generates Vp iff L satisfies exactly the same lattice identities
that are satisfied by all members of Vp.

Theorem 1.1. For every infinite cardinal number κ, the following three statements

hold.

(i) If 2 ≤ λ ≤ κ, then the triple 〈λ, κ, 2κ〉 is CFI-representable.

(ii) The triple 〈2κ, κ, 2κ〉 can be CFI-represented by a distributive lattice.

(iii) Let Vp be one of the minimal modular nondistributive congruence varieties

described by Freese [11]; see Definition 1.6 later. If m and n are nonnegative

integers with m+n ≥ 1, then the triple 〈2m · 3n, κ, 2κ〉 can be CFI-represented

by a modular lattice L = L(p, 2m · 3n, κ) ∈ Vp such that L generates Vp. For

〈m, n〉 = 〈1, 0〉, this lattice is relatively complemented.

Remark 1.2. The case λ = 2 belongs to the scope of 1.1(iii) and provides a simple,
relatively complemented, modular lattice with more ideals than filters. Since an
infinite distributive lattice L always has at least |L| many congruences by the prime
ideal theorem and the lattice in 1.1(iii) is necessarily infinite, Vp in 1.1(iii) cannot be
replaced by the variety of distributive lattices. However, we do not know whether
Vp can be replaced by a smaller lattice variety.

A congruence is principal if it is generated by a single pair of elements. For a lat-
tice L, let Princ(L) = 〈Princ(L);⊆〉 denote the ordered set of principal congruences

of L. In his pioneering paper, Grätzer [15] proved that, up to isomorphism, every
bounded ordered set is of the form Princ(L) for a bounded lattice L. This result
was soon followed by several related results proved in Czédli [6, 7, 8, 9, 10] and
Grätzer [15, 16, 17, 18]. Here, we add another related result since, as a by-product
of the proof of 1.1(i), we have found the following statement, which is stronger than
part (i) of Theorem 1.1. Recall that two element intervals are called prime intervals

and ordered sets are also called posets.

Theorem 1.3. Let P be a bounded ordered set with at least two elements and

let G be an arbitrary group. Then, for every infinite cardinal κ such that κ ≥
max{|P |, |G|}, there exists a lattice L with the following four properties:

(a) |Id(L)| = 2κ but |Filt(L)| = κ = |L|, so L has more ideals than filters;

(b) Princ(L) is isomorphic to P ;

(c) every principal congruence of L is generated by a prime interval;

(d) the automorphism group Aut(L) of L is isomorphic to G.

Note that while Czédli [8] gives a selfdual lattice L to represent P and G simulta-
neously, this theorem yields, in some sense, the “most non-selfdual” L for the same
purpose. We take the opportunity to include the following observation, which gives
the selfdual variant of a result of Baranskǐı [2] and Urquhart [23]; this observation
will be proved in few lines in Section 2.

Observation 1.4. For every finite distributive lattice D and every finite group G,

there is a finite selfdual lattice L such that D ∼= Con(L) and G ∼= Aut(L).

As a candidate for the “most non-selfdual” variant, we present the following
by-product of the proof of Theorem 1.3.
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Corollary 1.5. For every finite distributive lattice D and every group G, if κ is

an infinite cardinal with κ ≥ |G|, then there is a lattice L with 2κ many ideals but

only κ many filters such that D ∼= Con(L) and G ∼= Aut(L).

Note that Wehrung [24] rules out the chance of dropping the adjective “finite”
from this corollary since there are infinite algebraic distributive lattices that are
not representable by congruence lattices of lattices. Now we give more details on
Vp occurring in Theorem 1.1.

Definition 1.6. A variety U of lattices is called a congruence variety if there exists
a variety W of general algebras such that U is generated by the congruence lattices
of all members of W; the reader may want but need not see Jónsson [20] for a
survey. In the situation just described, U is the congruence variety determined

by W. For a prime number p or p = 0, we denote by Vp the congruence variety
determined by the variety of all vector spaces over the prime field of characteristic
p.

According to a remarkable discovery of Nation [22], not every lattice variety is
a congruence variety. It was observed by Freese [11] and published with a proof in
Freese, Herrmann, and Huhn [12, Corollary 14] that the congruence varieties Vp for
p prime or zero are pairwise distinct minimal nondistributive modular congruence
varieties and there is no other such variety. Besides the modular law, every Vp and
so all the L(p, 2m · 3n, κ) in 1.1(iii) satisfy many lattice identities that are stronger
than modularity. Since the lattice L(p, 2m · 3n, κ) generates Vp, we conclude the
following fact.

Remark 1.7. For every prime p or p = 0 and for every lattice identity Γ, the
algorithm given in Hutchinson and Czédli [19] is appropriate to decide whether Γ
holds in the lattice L(p, 2m · 3n, κ) occurring in Theorem 1.1(iii).

Finally, we note that the present paper shows some similarity with Avery, Moyen,
Růžička, and Simonsen [1], and this fact is also a part of our motivation. Namely,
both the present paper and [1] say something on how much the sizes of two special
subsets, an ideal and a filter here while two maximal chains in [1], can differ in the
infinite case in spite of the fact that they are necessarily equal in the finite case.

Outline. The rest of the paper is devoted to proofs. In Section 2, we prove all the
statements formulated in the present section. In particular, we derive part (i) of
Theorem 1.1 from Theorem 1.3, which relies on involved outer references. Section 3
gives a more elementary proof for Theorem 1.1(i); this second proof is self-contained
modulo the paper.

2. Proving the two theorems

Our notation is standard in lattice theory. For concepts or notation that are nei-
ther defined, nor referenced here, see Grätzer [13]; see tinyurl.com/lattices101

for its freely downloadable parts. Some familiarity with universal algebra is as-
sumed; see, for example, Burris and Sankappanawar [3]; note that its Millennium
Edition is freely available from the website
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html .

Recall that a lattice M is said to satisfy the Descending Chain Condition if
whenever x0, x1, x2, · · · ∈M and x0 ≥ x1 ≥ x2 ≥ . . . , then xn = xn+1 = xn+2 = . . .



4 G. CZÉDLI AND C. MUREŞAN

for some n ∈ N0; see, for example, Grätzer [14, page 105]. Filters of the form
↑a := {x : x ≥ a} are principal filters. The following easy statement belongs to the
folklore.

Lemma 2.1. If a lattice K satisfies the Descending Chain Condition, then every

filter of K is a principal filter.

Let p be a prime or 0, and let Qp denote the prime field of characteristic p.
It is either Zp, the ring of modulo p residue classes of integers, or Q, the field of
rational numbers. For a cardinal κ, finite or infinite, we often think of κ as the
set of all ordinal numbers ι with |ι| < κ without further warning. For example,
4 = {0, 1, 2, 3} and ℵ0 = N0 is the set of nonnegative integers. In the present paper,
ι, µ, and ν will always denote ordinal numbers without explicitly saying so all the
times. Similarly, κ and λ stand for cardinal numbers. So, say, ι ∈ κ will mean that
|ι| < κ.

Let Vp(κ) denote the κ-dimensional vector space over Qp. It consists of all those
(choice) functions x : κ → Qp for which {ι : ι ∈ κ and x(ι) 6= 0} is a finite set.
For µ ∈ κ, the function eµ : κ → Qp is defined by eµ(µ) = 1 and, for ι 6= µ,
eµ(ι) = 0. The set {eι : ι ∈ κ} is the natural basis of Vp(κ). The subspaces of Vp(κ)
form a complete lattice Sub(Vp(κ)). Using the well-known dimension equation
dim(a∨ b)+ dim(a∧ b) = dim(a) + dim(b) for a, b ∈ Sub(Vp(κ)), it follows that the
finite dimensional subspaces of Vp(κ) form a sublattice of Sub(Vp(κ)); we denote
this sublattice by Lp(κ). Adding the top element 1Sub(Vp(κ)) = Vp(κ) of Sub(Vp(κ))
to Lp(κ), we obtain another lattice, L+

p(κ) := Lp(κ) ∪ {Vp(κ)}. If κ is finite, then
L+

p(κ) = Lp(κ) = Sub(Vp(κ)). If κ is infinite, then L+

p(κ) is a proper sublattice of
Sub(Vp(κ)), L+

p(κ) is a bounded lattice but Lp(κ) = L+

p(κ) \ {1L
+
p(κ)} has no largest

element.

Lemma 2.2. Let p be a prime number or 0. Then for every infinite cardinal κ,
each of Lp(κ) and L+

p(κ) generates the variety Vp.

Proof. Since Vp(κ) is a directed union of a system of copies of finite dimensional
vector spaces Vp(n), where n ∈ N∗ := {1, 2, 3, . . .} = N0 \ {0},

Lp(κ) is a directed union of sublattices
isomorphic to Lp(n), where n ∈ N∗.

(2.1)

Hence, a lattice identity holds in Lp(κ) iff it holds in Lp(n) for all n ∈ N∗. Let
Qp-Mod denote the variety of all vector spaces over Qp, and note that Vp(n) is the
free algebra on n generators in this variety. Thus, using the canonical isomorphism
between Con(Vp(n)) and Lp(n) = Sub(Vp(n)), it follows that a lattice identity Γ
holds in Lp(κ) iff it holds in the congruence lattices of the free algebras of finite
ranks in Qp-Mod. It is well known from the theory of congruence varieties and
Mal’tsev conditions that this is equivalent to the satisfaction of Γ in Vp; see, for
example, Hutchinson and Czédli [19]. Hence, Lp(κ) generates Vp. So does L+

p(κ)
since, as it is straightforward to see, Γ holds in Lp(κ) iff it holds in L+

p(κ). �

The glued sum L0+̇L1 of lattices L0 with greatest element and L1 with least
element is their Hall–Dilworth gluing along L0 ∩ L1 = {1L0

} = {0L1
}; see, for

example, Grätzer [14, Section IV.2].

Lemma 2.3. If p is a prime number or 0, κ is an infinite cardinal, and K is a

lattice of finite length such that |K| ≤ κ, then each of the glued sums K+̇Lp(κ) and
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K+̇L+

p(κ) has 2κ many ideals but only κ many filters. So do Lp(κ) and L+

p(κ). Fur-

thermore, so does every lattice L′ that we obtain from Lp(κ) or L+

p(κ) by replacing,

for each atom a, the prime interval [0, a] by a lattice K(a) of finite length and size

at most κ.

Proof. Since Vp(κ) is of cardinality κ and it has κ many finite subsets, it has κ
many finite dimensional subspaces. Hence, |Lp(κ)| = κ and we obtain that

|K+̇Lp(κ)| = |K+̇L+

p(κ)| = |L+

p(κ)| = |Lp(κ)| = κ. (2.2)

If we add a top element to a lattice that does not have a top, then the new lattice
will have only one more filter and one more ideal. Thus, in the rest of the proof of
the lemma, it suffices to deal only with K+̇Lp(κ) and L′.

For a subset X of the natural basis {eι : ι ∈ κ} of Vp(κ), let I(X) be the
collection of all finite dimensional subspaces of the subspace [X] spanned by X
in Vp(κ). Clearly, I(X) is an ideal of the lattice Lp(κ) and I′(X) := I(X) ∪ K
is an ideal of K+̇Lp(κ). It is also clear that the map from the power set of κ
to Id(K+̇Lp(κ)) defined by X 7→ I′(X) is injective. Therefore, K+̇Lp(κ) has
at least 2κ many ideals, and we conclude by (2.2) that it has exactly 2κ many
ideals. Similarly, in case of L′, distinct ideals of Lp(κ) generate distinct ideals of
L′, whereby |Id(L′)| = 2κ.

If a and b are finite dimensional subspaces of Vp(κ) and a < b, then dim(a) <
dim(b). This implies easily that

each of the lattices L′, Lp(κ), L
+

p(κ), K+̇Lp(κ), and

K+̇L+

p(κ) satisfies the Descending Chain Condition.
(2.3)

This fact, Lemma 2.1, and (2.2) yield that K+̇Lp(κ) has exactly κ many filters.
The same holds for L′, because |L′| = κ by elementary cardinal arithmetics. This
proves the first and the third parts of Lemma 2.3. The first part implies the
second part trivially, since we can choose K to be the singleton lattice and then
Lp(κ) = K+̇Lp(κ) and L+

p(κ) = K+̇L+

p(κ). �

Lemma 2.4. If κ is an infinite cardinal and p is a prime number or 0, then Lp(κ) is

a relatively complemented simple lattice while L+

p(κ) has exactly three congruences.

Note that L+

p(κ) above is neither complemented, nor relatively complemented,
because

the top element of L+

p(κ) for an infinite κ is join irreducible. (2.4)

The smallest congruence and the largest congruence on a lattice M will be denoted
by ∆ = ∆M and ∇ = ∇M , respectively.

Proof of Lemma 2.4. The subspace lattices of finite dimensional vector spaces are
well known to be relatively complemented and simple; see, for example, Grätzer [14,
Theorem 392] and Wehrung [25, after Definition 7-5.1]. Both properties are pre-
served by directed unions, whereby (2.1) yields the first part of the lemma. We
conclude from (2.4) that the equivalence Ψ with blocks Lp(κ) and the singleton set
{1L+

p(κ)} is a congruence on L+

p(κ). Since every nonzero congruence of L+

p(κ) must

collapse some pair of elements of the simple lattice Lp(κ), it follows easily that Ψ
is the only nontrivial congruence. �
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Proof of Theorem 1.3. Recall that a lattice is automorphism-rigid if it has only one
automorphism, the identity map. Remember that κ = {ι : ι ∈ κ}. By Czédli [8,
proof of Lemma 2.8], there are lattices S(ι), ι ∈ κ, such that for every ι, ι1, ι2 ∈ κ,

S(ι) is an automorphism-rigid and simple lattice of length 12,
|S(ι)| ≤ max(ℵ0 , |G|) ≤ κ , and S(ι1) ∼= S(ι2) implies that ι1 = ι2.

(2.5)

Since every finite-dimensional subspace is the join of finitely many one-dimensional
subspaces, each element of Lp(κ) is the join of finitely many atoms. This implies
that every automorphism ϕ of Lp(κ) is determined by the restriction of ϕ to the
set of atoms. For each atom a of Lp(κ), choose an ιa ∈ κ so that for distinct atoms
a and b the ordinals ιa and ιb should be distinct. Let L′ be the lattice we obtain
from Lp(κ) by replacing the interval [0, a] by S(ιa) for each atom a of Lp(κ). We
claim that

L′ is automorphism-rigid. (2.6)

Recall that the height and the depth of an element x in a bounded lattice is the
length of the ideal ↓x = [0, x] and that of the filter ↑x = [x, 1], respectively. Let
ϕ : L′ → L′ be an automorphism. It preserves the heights of elements and the
atoms of Lp(κ) are exactly the elements of height 12 in L′. Hence, ϕ maps the
atoms of Lp(κ) to atoms of Lp(κ). Thus, if a is an arbitrary atom of Lp(κ), then
so is ϕ(a) and

ϕ(S(ιa)) = ϕ(↓L′ a) = ↓L′ ϕ(a) = S(ιϕ(a)). (2.7)

Hence, S(ιa) ∼= S(ιϕ(a)), whereby (2.5) implies that ϕ(a) = a for all atoms of Lp(κ).
That is, the restriction of ϕ to the set of atoms of Lp(κ) is the identity map. Since
this restriction determines the action of the lattice isomorphism ϕ on Lp(κ), ϕ
acts identically on Lp(κ). Furthermore, for all atoms a of Lp(κ), (2.7) turns into
ϕ(S(ιa)) = S(ιa), and so the automorphism-rigidity part of (2.5) yields that ϕ acts
identically on S(ιa). Therefore, (2.6) holds.

By Czédli [8, Theorem 1.1], there exists a selfdual lattice H such that

Aut(H) ∼= G, H is of length 16, Princ(H) ∼= P ,
and if both P and G are finite, then so is H .

(2.8)

Moreover, the construction given in [8] makes it clear that

If Θ ∈ Con(H) such that the Θ-block of 0H is distinct from the
singleton {0H}, then Θ = ∇H. Furthermore, |H | ≤ κ and each
principal congruence on H is generated by a prime interval.

(2.9)

Figure 1. The lattice L for Theorem 1.3
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Now, we define a lattice L as follows; see Figure 1. First, we add a top element
and two additional elements, u and v, to L′ such that u and v are complements of
each other and of any nonzero element of L′. In the figure, L′ is indicated by uniform
grey color. In the next step, replace the prime interval [0, v] by H , identifying 0H

and 1H with 0 and v, respectively. The lattice we have just described is L. Note
that L′ and H are ideals of L and every element of H \ {0} is a complement of
every nonzero element of L′ ∪ {u}.

We will implicitly use the well-known fact that every congruence is determined
by the pairs of comparable distinct elements it collapses. Let ϕ : Con(L) → Con(H)
be the restriction map defined by ϕ(Θ) := Θ ∩ (H ×H); we claim that this map is
bijective. First, we show that, for every Θ ∈ Con(L),

if Θ collapses a pair 〈x, y〉 ∈ L2 such that
x < y and {x, y} * H , then Θ = ∇L.

(2.10)

As a tool that we need for this, note that

for every z ∈ L′ \ {0}, the subset
{0, 1, u, v, z} is a simple sublattice of L,

(2.11)

since this sublattice is isomorphic to M3. We know from (2.5) that the lattices S(ι)
used in the definition of L′ are simple. Hence, it follows from Lemma 2.4 that L′ is
a simple lattice. So if x, y ∈ L′, then the simplicity of L′ gives that 〈0, z〉 ∈ Θ for
some z ∈ L′ \ {0}, whence (2.11) yields that 〈0, 1〉 ∈ Θ, implying that Θ = ∇L, as
required. If 〈x, y〉 = 〈0, u〉 or 〈x, y〉 = 〈u, 1〉, then (2.11) applies similarly. The only
remaining case is x ≤ v < y = 1; then 〈v, 1〉 ∈ Θ since the Θ-blocks are convex.
Thus, we obtain from (2.11) that 〈0, 1〉 ∈ Θ, whereby Θ = ∇L, proving (2.10). Next,
we claim that, for every Θ ∈ Con(L),

ϕ(Θ) = ∆H if and only if Θ = ∆L. (2.12)

The “if” part is obvious. Conversely, assume that ϕ(Θ) = ∆H and x < y in L. If
{x, y} ⊆ H , then 〈x, y〉 /∈ Θ since ϕ(Θ) = ∆H . If {x, y} * H , then (2.10) gives that
〈x, y〉 /∈ Θ. Hence, Θ = ∆L, proving (2.12). Now, for the sake of contradiction,
suppose that Θ1,Θ2 ∈ Con(L) are distinct but ϕ(Θ1) = ϕ(Θ2). We know from
(2.12) that none of Θ1 and Θ2 is ∆L. If one of them, say Θ1, collapses a pair
described in (2.10), then Θ1 = ∇L, so Θ1 and also ϕ(Θ2) = ϕ(Θ1) collapses 〈0, v〉,
whence 〈0, v〉 ∈ Θ2 and (2.11) lead to Θ2 = ∇L = Θ1, which is a contradiction.
So none of Θ1 and Θ2 collapses a pair described in (2.10). Hence, for every pair
〈x, y〉 with x < y, if Θ1 or Θ2 collapses 〈x, y〉, then 〈x, y〉 ∈ H2. Using that the
restrictions ϕ(Θ1) and ϕ(Θ2) coincide, it follows that Θ1 and Θ2 collapse the same
pairs. Hence Θ1 = Θ2, contradicting our assumption and proving that ϕ is an
injective map.

Clearly, ϕ is order-preserving. If Ψ ∈ Con(H) \ {∇H}, then it follows easily from
the first part of (2.9) that Θ := ∆L ∪ Ψ is a congruence on L. Since its restriction
to H is Ψ, we have that Θ = ϕ−1(Ψ), while ϕ−1(∇H) = ∇L is clear. Thus, ϕ
is a surjective map. Since ϕ−1 described above is order-preserving, we conclude
that ϕ is a lattice isomorphism. It is clear from (2.10) that if a comparable pair of
elements generates a congruence distinct from the trivial congruences, then this pair
is from H2. Therefore, the restriction of ϕ to Princ(L) is an order isomorphism
from Princ(L) to Princ(H). Thus, (2.8) gives that Princ(L) ∼= Princ(H) ∼= P ,
proving part (b) of Theorem 1.3.
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Since ϕ is an isomorphism, the description of its inverse above, (2.9), and (2.10)
imply that every principal congruence of L is generated by a prime interval, in fact,
by a prime interval of H . This proves part (c) of Theorem 1.3.

Next, denote the sublattice L \ {u} by L−u. Since u is the only atom of L that
is also a coatom, ψ(u) = u for every ψ ∈ Aut(L). Hence, the restriction from L to
L−u gives a group isomorphism from Aut(L) onto Aut(L−u). So it suffices to focus
only on L−u. By (2.8) and the sentence right above Lemma 2.2 , H = {x ∈ L−u :
depth(x) ≤ 16 or x = 0}. Similarly, L′ = {x ∈ L−u : depth(x) ≤ 16 fails}. These
first-order characterizations show that both H and L′ are closed with respect to
every ψ ∈ Aut(L). Thus, for ψ ∈ Aut(L), ψ is determined by its restriction ψ′ to
L′ and its restriction ψH to H . But ψ′ is the identity map by (2.6), and it follows
that the map Aut(L−u) → Aut(H), defined by ψ 7→ ψH , is a group isomorphism.
Hence, (2.8) yields that Aut(L) ∼= Aut(L−u) ∼= Aut(H) ∼= G, proving part (d) of
Theorem 1.3.

Since H is of length 16, (2.3) remains valid for L instead of Lp(κ), that is, L
satisfies the Descending Chain Condition. Elementary cardinal arithmetics based
on (2.2) and |H | ≤ κ from (2.9) shows that |L| = κ. Hence, it follows from
Lemma 2.1 that L has exactly κ many filters. Every ideal of Lp(κ) is an ideal of L′

and thus of L, whereby Lemma 2.3 yields that L has 2κ many ideals. This yields
(a) and completes the proof of Theorem 1.3. �

For a lattice M , J(M) denotes the ordered set of nonzero join-irreducible ele-
ments of M .

Proof of Observation 1.4. Let P = J(D). Take the finite selfdual lattice H from
(2.8) and (2.9). It is well known from, say, Grätzer [13, Page 39] that Θ ∈
J(Con(H)) iff Θ is generated by a prime interval. Hence, the second half of (2.9)
yields that J(Con(H)) = Princ(H) ∼= P = J(D). Thus, the structure theorem of
finite distributive lattices, see Grätzer [13, Corollary 2.15], gives that Con(H) = D.
Letting L := H , the rest follows from the choice of H . �

Proof of Corollary 1.5. Let P := J(D) and take L from Theorem 1.3. We have that
G ∼= Aut(L), |Id(L)| = 2κ, |Filt(L)| = κ, and Princ(L) ∼= P . Every congruence is
the join of principal congruences, whereby Con(L) is finite since there are |P |, that is
finitely many, principal congruences. The same fact implies J(Con(L)) ⊆ Princ(L),
since the above-mentioned join for a join-irreducible congruence contains only a
single joinand. Assume that Θ ∈ Princ(L) and Θ = Ψ0 ∨ Ψ1 for Ψ1,Ψ2 ∈ Con(L).
By Theorem 1.3(c), Θ is generated by a pair 〈a, b〉 ∈ L2 such that a ≺ b. By
the well-known description of joins, see Grätzer [13, Theorem 1.2], there is an
n ∈ N0 and there are x0, x1, . . . , xn ∈ L such that a = x0 ≺ x1 ≺ · · · ≺ xn = b and
〈xi−1, xi〉 ∈ Ψ0∪Ψ1. Since a ≺ b, we have that n = 1 and 〈a, b〉 = 〈x0, x1〉 ∈ Ψ0∪Ψ1,
whereby Θ ≤ Ψ0 or Θ ≤ Ψ1. This implies that Θ ∈ J(Con(L)), so J(Con(L)) =
Princ(L) ∼= P , and we obtain Con(L) ∼= D from the structure theorem of finite
distributive lattices as in the previous proof. �

Lemma 2.5. Let L0 and L1 be as in the paragraph right before Lemma 2.3. Then

|Con(L0+̇L1)| = |Con(L0)| · |Con(L1)|. Also, a lattice identity holds in L0+̇L1 iff

it holds both in L0 and in L1.

Proof. The required equality follows from the straightforward fact that every Θ ∈
Con(L0+̇L1) is determined by its restriction to L0 and L1, and these restrictions
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can be chosen arbitrarily. For i ∈ {0, 1}, let Ψi be the congruence of L0+̇L1 whose
restriction to Li and L1−i are ∆Li

and ∇L1−i
, respectively. Then (L0+̇L1)/Ψi

∼= Li,

for i ∈ {0, 1}, and Ψ0 ∩Ψ1 = ∆L0+̇L1
. Hence, L0+̇L1 is (isomorphic to) a subdirect

product of L0 and L1, and the second part of the lemma follows easily. �

Next, we prove our first theorem.

Proof of Theorem 1.1. In order to prove part (i), take a dually well-ordered bounded
chain P such that |P | = λ. Let G be the one-element group, and take the lat-
tice L provided by Theorem 1.3. It suffices to show that |Con(L)| = λ. Every
Ψ ∈ Con(L) is a join of principal congruences, whence Ψ is the join of the set
{Θ : Θ ∈ Princ(L) and Θ ≤ Ψ}. Containing ∆L, this set is nonempty. Thus,
Princ(L) ∼= P implies that this set has a largest element Θ0. The join above is
clearly Θ0, whence Ψ = Θ0 ∈ Princ(L). Hence, Con(L) ⊆ Princ(L), which gives
that Princ(L) = Con(L). Thus, |Con(L)| = |Princ(L)| = |P | = λ, whereby we
conclude that part (i) holds.

In order to prove (ii), let L be the sublattice {x ∈ Nκ
0 : x(ι) = 0 for all but finitely

many ι with ι ∈ κ} of the κ-th direct power of N0 = 〈N0;≤〉. As a sublattice of
a distributive lattice, L is distributive. For X ⊆ κ, we let Θ(X) = {〈x, y〉 ∈
L2 : x(ι) = y(ι) for all ι ∈ X} and I(X) = {x(ι) = 0 for all ι ∈ X}. Using that
Θ(X) ∈ Con(L), I(X) ∈ Id(L), and X1 6= X2 implies that Θ(X1) 6= Θ(X2) and
I(X1) 6= I(X2), we obtain that |Con(L)| = |Id(L)| = 2κ. Since L satisfies the
Descending Chain Condition, Lemma 2.1 gives that |Filt(L)| = κ. This shows the
validity of part (ii).

Finally, we turn our attention to part (iii). If 〈m, n〉 = 〈1, 0〉, then Lemma 2.3
yields that Lp(κ) has 2κ many ideals but only κ many filters. It is a relatively
complemented simple lattice by Lemma 2.4 and it generates Vp by Lemma 2.2.
Hence, the lattice L(p, 2, κ) := Lp(κ) satisfies the requirements of (iii). Similarly,
for 〈m, n〉 = 〈0, 1〉, we let L(p, 3, κ) := L+

p(κ), which has 2κ many ideals but only
κ many filters by Lemma 2.3. This lattice generates Vp by Lemma 2.2 and it has
exactly three congruences by Lemma 2.4, so part (iii) holds for 〈m, n〉 = 〈0, 1〉.

We cannot apply Lemma 2.3 to the undefined sum Lp(κ)+̇Lp(κ), since Lp(κ)
has no largest element. Instead of recalling a more general concept of sums from
Czédli [5] and giving the easy generalization of Lemma 2.3 for it, it is more economic
to take the 2m−1-element boolean lattice Bm−1 ; it will be needed only for 2 ≤ m ∈
N∗. It belongs to the folklore and we know also from Crawley [4, Theorem 3.2] that
Con(Bm−1) ∼= Bm−1. Hence, Bm−1 has exactly 2m−1 congruences. Interrupting
the proof, note that Con(M) is a boolean lattice and |Con(M)| is a power of 2 for
every finite modular lattice M ; see, e.g., Grätzer [14, Corollary 249 and Theorem
282].

Now, for the general case, we let

L(p, 2m · 3n, κ) = L(p, 3, κ)+̇ . . . +̇L(p, 3, κ)
︸ ︷︷ ︸

n copies

+̇Bm−1+̇L(p, 2, κ), (2.13)

where the summands Bm−1 and L(p, 2, m) are present only if m ≥ 2 and if m ≥ 1,
respectively. Distributive lattices form a minimal (nontrivial) lattice variety; see,
for example, Grätzer [14, Page 421]. Combining this fact with Lemma 2.2, we
obtain that every lattice identity Φ satisfied by Vp holds in all summands occurring
in (2.13). Thus, Φ holds in L(p, 2m · 3n, κ) by Lemma 2.5. Conversely, if Φ holds in
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L(p, 2m ·3n, κ), then it holds in all summands of (2.13). Hence, applying Lemma 2.2
to a summand distinct from Bm−1 , we obtain that Φ holds in Vp. Thus, L(p, 2m ·
3n, κ) generates Vp.

Clearly,L(p, 2m·3n, κ) has 2κ many ideals, since Lemma 2.3 applies to at least one
of the summands in (2.13). Observe that since each of the finitely many summands
in (2.13) satisfies the Descending Chain Condition, so does L(p, 2m · 3n, κ). It is
clear by (2.2) that |L(p, 2m ·3n, κ)| = κ. Thus, Lemma 2.1 yields that L(p, 2m ·3n, κ)
has exactly κ many filters. Using that we already know that |Con(L(p, 3, κ))| = 3,
|Con(L(p, 2, κ))| = 2, and |Con(Bm−1)| = 2m−1, Lemma 2.5 implies that L(p, 2m ·
3n, κ) has exactly 2m · 3n many congruences. This completes the proof of part (iii)
and that of Theorem 1.1. �

3. An elementary proof of Theorem 1.1(i)

We begin this section with proving two easy auxiliary statements. The first of
them generalizes Lemma 2.1 as follows.

Lemma 3.1. Let I be an ideal of a lattice K and assume that whenever x0 > x1 >
· · · > xn > xn+1 > . . . with xn ∈ K for all n ∈ N0, then xn ∈ I for all but finitely

many n ∈ N0. Then every non-principal filter of K is generated by a filter of I.

Note that, by letting I = {0}, Lemma 2.1 follows easily from Lemma 3.1.

Proof of Lemma 3.1. Let F be a non-principal filter of K. Since F contains an
infinite descending chain, T := F ∩ I is nonempty. Clearly, T is a filter of I, so we
need to show only that ↑KT = F . Fix a t0 ∈ T and let f be an arbitrary element
of F . Since t0 ∧ f ∈ F ∩ I = T and f ≥ t0 ∧ f , we have that f ∈ ↑KT . Hence,
F ⊆ ↑KT while the converse inclusion is trivial by T ⊆ F . Consequently, F = ↑KT ,
which completes the proof. �

For a (general) algebra A, the members of Con(A) \ {∆A,∇A} are the nontrivial

congruences on A. Next, we are going to formulate a lemma on a very special
directed system of algebras. To be more precise, let ι > 0 be an ordinal number,
and let 〈Aµ : µ < ι〉 be a system of non-singleton general algebras of the same type
such that the following condition holds.

For every µ and µ′ such that µ′ < µ < ι, Aµ′ is a proper
subalgebra of Aµ. Furthermore, for every µ < ι and every
nontrivial congruence Θ on Aµ, there exists a µ′ < µ such
that Aµ′ is a block of Θ and all other Θ-blocks are singletons.

(3.1)

The first sentence of (3.1) says that 〈Aµ : µ < ι〉 is a directed system of algebras.
Hence, the union Aι in the following lemma is an algebra again. If the Aµ are
lattices, then so is Aι. Note that if the directed system above satisfies (3.1), then
A0 is necessarily simple.

Lemma 3.2. Let ι be an infinite limit ordinal, and let 〈Aµ : µ < ι〉 be a directed

system of algebras satisfying (3.1). If Aι :=
⋃
{Aµ : µ < ι} is the union of the

members of this system, then the directed system 〈Aµ : µ < ι + 1〉 also satisfies

(3.1).

Proof. Denote the systems 〈Aµ : µ < ι〉 and 〈Aµ : µ < ι + 1〉 by A(ι) and A(ι+1),
respectively. For µ < ι, Aµ is clearly a subalgebra of the union Aι. Since so is Aµ+1
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and we have that Aµ ⊂ Aµ+1 , Aµ is a proper subalgebra of Aι, and we conclude

that A(ι+1) satisfies the first part of (3.1).
Next, let Θ be a nontrivial congruence on Aι and, for µ < ι, let Θµ denote the

restriction of Θ to Aµ. Clearly, Θ cannot have two non-singleton blocks, because
otherwise some Θµ would do the same. So, let U be the only non-singleton block
of Θ. Pick x1, . . . , x4 ∈ Aι such that 〈x1, x2〉 ∈ Θ, x1 6= x2, and 〈x3, x4〉 /∈ Θ.

Since A(ι) is a directed system, we can pick a µ0 < ι such that Aµ0
contains each

of x1, . . . , x4. We claim that U ⊆ Aµ0
. For contradiction, let u ∈ U \ Aµ0

. Then
u ∈ Aµ1

for some µ1 with µ0 < µ1 < ι. Since U ∩ Aµ1
, containing x1 and x2, is a

non-singleton block of Θµ1
and since 〈x3, x4〉 /∈ Θµ1

shows that Θµ1
is a nontrivial

congruence on Aµ1
, there exists a µ2 < µ1 such that U ∩ Aµ1

= Aµ2
. Clearly,

µ0 < µ2, as u /∈ Aµ0
. But then {x3, x4} ⊆ Aµ0

⊆ Aµ2
⊆ U , which contradicts

〈x3, x4〉 /∈ Θ. So, U ⊆ Aµ0
, which means that U is a block of Θµ0

. Hence, U = Aµ

for some µ < µ0 < ι+ 1, whereby A(ι+1) satisfies (3.1). �

Figure 2. Lι = Lµ+1 and the only nontrivial congruence on W

Second proof of part (i) of Theorem 1.1. Let τ be the smallest ordinal such that
2 + τ is of cardinality λ; the existence of τ is guaranteed by the assumption λ ≥ 2.
We define a sequence 〈Lι : ι ≤ τ 〉 of lattices by induction as follows. We let
L0 = Lp(κ). If ι is a successive ordinal of the (unique) form ι = µ + 1, then
we obtain Lι from Lµ by adding a new bottom and a new top first, and adding
two incomparable new elements, uι and vι, that are atoms and also coatoms; see
Figure 2 on the left and, for ι = ω + ω + 1 (and even for ι = ω + ω), see Figure 3.
Note that a triple of three dots in Figure 2 stands for an edge if Lµ is bounded but
this is not always so; for example, neither Lω, nor Lω+ω is bounded. In Figure 3,
the triples of three dots stand for infinite repetitions of order type ω. If ι is a limit
ordinal, then let Lι be the union of the lattices Lµ for µ < ι; it is a lattice since we
have formed a directed union. We claim that L := Lτ CFI-represents 〈λ, κ, 2κ〉.

First, we show by induction on ι that for all ι ≤ τ ,

H(ι) :
|Con(Lι)| = |2 + ι| and the system

L(ι) := 〈Lν : ν < ι+ 1〉 satisfies (3.1).

The validity of H(0) follows from Lemmas 2.3 and 2.4. For the induction step,
assume that 0 < ι and H(µ) holds for all µ that are less than ι; we need to show
the validity of H(ι). Depending on ι, there are two cases.

First, let ι be a successor ordinal with ι = µ + 1; we are going to show that
L(ι) satisfies (3.1). Since the proper inclusion Lν′ ⊂ Lν for ν ′ < ν < ι + 1 is
trivial and since the induction hypothesis takes care of the congruences on Lν for
ν < µ + 1 = ι, it suffices to consider the congruences on Lι. Let Θ ∈ Con(Lι)
be a nontrivial congruence. Guided by the congruence structure of the lattice W



12 G. CZÉDLI AND C. MUREŞAN

Figure 3. Lω+ω+1 , Cω+ω = {black-filled elements}, and Lω+ω =
Lω+ω+1 \ {grey-filled pentagon-shaped elements}

in Figure 2, it is easy to see that the Θ-class of each of uι, vι, 0ι and 1ι is a
singleton; see Figure 2 again. For example, if we had 〈uι, x〉 ∈ Θ for some x ∈ Lµ,
then 〈1ι, x〉 = 〈x ∨ uι, x ∨ x〉 ∈ Θ, so 〈0ι, 1ι〉 ∈ Θ since the diamond sublattice
{0ι, uι, vι, x, 1ι} is simple, whereby we would obtain Θ = ∇Lι

, contradicting the
assumption that Θ is nontrivial. So the non-singleton Θ-blocks are subsets of Lµ.

Using that L(µ) satisfies (3.1) by the induction hypothesis, we conclude that there
exists exactly one non-singleton Θ-block and it is Lν for some ν ≤ µ. Thus, L(ι)

satisfies (3.1). Hence, Lι has exactly |2+ι| congruences: the two trivial congruences
and, for each ν < ι, the congruence whose only non-singleton block is Lν .

Second, let ι be a limit ordinal, and assume the validity of H(µ) for all µ < ι.
Then the directed system 〈Lµ : µ < ι〉 satisfies (3.1), and it follows from Lemma 3.2

that so does L(ι) = 〈Lµ : µ < ι+ 1〉. The required equality |Con(Lι)| = |ι| = |2 + ι|
follows from (3.1) in the same way as in the paragraph above. We have shown that
H(ι) holds for all ι ≤ τ ; we need only the validity of H(τ ) in the rest of the proof.

By H(τ ), the lattice L = Lτ has exactly |2 + τ | = λ congruences. It is straight-
forward to see that |Lτ | = κ and distinct ideals of Lp(κ) generate distinct ideals of
Lτ . These facts and Lemma 2.3 yield that Lτ has exactly 2κ many ideals. Finally,
since κ is an infinite cardinal and Lτ has |Lτ | = κ many principal filters, it suffices
to show that it has at most κ many non-principal filters. Denoting the bottom of
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Lµ by 0µ as in Figures 2 and 3, let

C :=

{

{0µ : µ < τ}, if τ is a limit ordinal, and

{0µ : µ ≤ τ}, if τ is a successor ordinal.

For example, for τ = ω + ω, C is the set of the black-filled elements in Figure 3.
Since L0 = Lp(κ) satisfies the Descending Chain Condition and C is an ideal of
Lτ , it is straightforward to see that C and L = Lτ (in place of I and K) satisfy
assumptions of Lemma 3.1. Hence, Lemma 3.1 yields that L has at most |Filt(C)|
many non-principal filters. Since C is a chain, its nontrivial filters are exactly the
complements of its nontrivial ideals, whereby |Filt(C)| = |Id(C)|. Observe that C
satisfies the ascending chain condition, so each of its ideals is principal. Hence,
|Filt(C)| = |Id(C)| = |C| ≤ |τ + 1| ≤ |τ + 2| = λ ≤ κ, and it follows that L = Lτ

has at most κ many non-principal filters, as required. Therefore, L represents the
triple 〈λ, κ, 2κ〉. �

Acknowledgment. The referee’s careful work and his hints to simplify the proof
of Lemma 3.2 and the second proof of part (i) of Theorem 1.1 are appreciated.
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14 G. CZÉDLI AND C. MUREŞAN
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