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Abstract. Convex subsets of affine spaces over the field of real
numbers are described by so-called barycentric algebras. In this
paper, we discuss extensions of the geometric and algebraic defini-
tions of a convex set to the case of more general coefficient rings.
In particular, we show that principal ideal subdomains of the re-
als provide a good framework for such a generalization. Since the
closed intervals of these subdomains play an essential role, we pro-
vide a detailed analysis of certain cases, and discuss differences
from the “classical” intervals of the reals. We introduce a new
concept of an algebraic closure of “geometric” convex subsets of
affine spaces over the subdomains in question, and investigate their
properties. We show that this closure provides a purely algebraic
description of topological closures of geometric generalized convex
sets. Our closure corresponds to one instance of the very general
closure introduced in an earlier paper of the authors. The approach
used in this paper allows to extend some results from that paper.
Moreover, it provides a very simple description of the closure, with
concise proofs of existence and uniqueness.

Affine spaces over a subring R of the field R of real numbers may be
described as abstract algebras with infinitely many binary operations
indexed by the elements of R and the ternary Mal’cev operation. If R
is a subfield F of R, the restriction of the set of basic operations to the
operations indexed by the open unit interval of F provides an algebraic
description of convex subsets of affine spaces over F . (See e.g. [24].)

Traditionally, a convex set is defined as a subset of a real affine space
which contains the entire line segment joining any pair of its points.
This fact was used to describe convex sets as abstract algebras. Both
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the concepts of convex sets and the corresponding algebras were then
generalized to the case where, instead of the field R, one considers any
of its subfields. The algebras one obtains are idempotent and entropic,
so they form a class of modes (see [19] and [24]). There are a number
of further algebraic properties of convex sets providing several other
equivalent definitions. These are summarized in Section 1.3.

We would like to extend the concept of a convex set to the case
of convex subsets of affine spaces over some more general commuta-
tive unital rings. The natural requirements for such rings R are the
following: They should be linearly ordered, and should have a non-
trivial unit interval. Moreover, our generalized convex sets should be
embeddable into affine spaces over the ring R, but not into an affine
space over a non-trivial homomorphic image of R (that may not be
an ordered ring). It is well known that linearly ordered commutative
unital rings are integral domains of characteristic 0 (see [12, Ch.V.1]).
Among these, principal ideal domains play a special role. Modules and
affine spaces (affine modules) over such rings have a very well-known
structure. Moreover, there exists a nice characterization of quasivari-
eties of modules over such rings provided by Belkin [1] that carries over
to the corresponding quasivarieties of affine spaces [14]. In particular,
faithful affine spaces over such a ring form a (minimal) quasivariety,
and our generalized convex sets may be considered as embeddable into
such affine spaces. Hence they also form a quasivariety. It follows that
principal ideal subdomains of R properly containing the ring Z should
be suitable candidates for our extensions.

If we replace the ring R of real numbers by a principal ideal subdo-
main R, not all of the equivalent properties defining convex sets over
subfields of R carry over. However, at least some of them can be used
in a possible definition of a generalized convex set.

The paper starts with introductory sections providing a short survey
of basic definitions and facts concerning the algebraic description of
affine spaces and convex sets, necessary for understanding the subse-
quent parts of the paper. The main objective of the paper is to develop
an appropriate concept of a convex subset of an affine space over a prin-
cipal ideal subdomain of R, and to investigate some of its properties.
The discussion of such generalized convexity is contained in Section 2.
Convex subsets of affine spaces over a principal ideal subdomain R of
R are specified as subreducts (subalgebras of reducts) of faithful affine
spaces over R, defined by binary operations determined by the open
unit interval of R. For a fixed R, they form a (minimal) quasivariety
Cv(R). The definition of such convex sets forms a direct generalization
of the algebraic definition of convex subsets of real affine spaces. We
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then select a subclass of the quasivariety Cv(R), consisting of so-called
geometric convex subsets of affine spaces over R that are defined in a
“geometric” fashion that stays close to the traditional geometric def-
inition of convex sets over the field of reals. This class generates the
quasivariety Cv(R). If R is not a subfield of R, the two classes do not
coincide. The class of geometric convex sets also plays a significant role
in the final sections of the paper.

The algebraization of convex subsets of real affine spaces was possible
because all non-trivial line segments (bounded closed intervals) of R,
considered as algebras, are isomorphic and are generated by their end-
points. This is no longer true if the ring of reals is replaced by a subring
R that is not a subfield. As the closed intervals of R play a basic role
in the definition of convex subsets of affine spaces over R, it is essential
to understand their structure. Such an analysis was previously carried
out for the case of the ring R = D = Z[1/2] of dyadic rational numbers.
(See [15].) The second part (Section 3) of the paper is devoted to the
(bounded) closed intervals of the subdomain R = Z[1/p] of R, where p
is a prime number. We show that, unlike the classical case, there are
infinitely many isomorphism types of such intervals, and they are not
necessarily generated by their endpoints. However, as we show, they
are all finitely generated. This result extends a result of [15] concern-
ing the case p = 1/2. The section also provides some insight into the
issues involved in developing an appropriate extension of the concept
of a convex set.

Finally, the third part of the paper (Sections 4 and 5) discusses
the concept of algebraic closure of a generalized convex set. A very
general concept of closures of subreducts of “classical” convex sets was
introduced and investigated in [7]. The construction of such closures
was complex, and the corresponding proofs were long and complicated.
In the present paper, we are interested in the concept of a closure in
relation to convex subsets of affine spaces over the subdomains R of R
mentioned above, and in particular in relation to the geometric convex
sets introduced in Section 2. We take an approach different from the
approach of [7], and define our algebraic closure in a different way.
The concept of algebraic closure presented in this paper is defined in a
simple, direct fashion, and has a very easy and natural interpretation.
Moreover, the proofs of its existence and uniqueness, quite long and
complex in the general case of [7], are much simpler and more concise
here. We show, however, that in the case of interest our algebraic
closure coincides with a special instance of the closure introduced in
[7]. If R is a field, all the concepts of closure considered in both papers
coincide. If R is not a field, then this is no longer true. Moreover,
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one obtains new results extending some results of [7]. In particular, we
show that the algebraic and topological closure of a geometric convex
subset of an affine space over a principal ideal subdomain of R coincide.

Although this paper should be mostly self-contained, we refer the
readers to the monographs [19], [24], and [22] for additional informa-
tion about algebraic concepts used in the paper, especially those con-
cerning convex sets, barycentric algebras and affine spaces; to [4] for
basic geometric properties of convex subsets of Rn, and to [7] for more
information about the general closures of subreducts of convex sets.
Our notation generally follows the conventions established in the first
three monographs mentioned above.

1. Preliminaries

The algebras under consideration in this section, affine spaces and
barycentric algebras, are all modes. That means they are idempotent
and entropic algebras, as defined and investigated in [19], [20] and [24].

1.1. Affine spaces. Let R be a commutative unital ring. An affine
space over R (or an affine R-space) may be defined as the reduct
(A, P, R) of an R-module (A, +, R), where P is the Mal’cev operation

(1.1) P : A3 → A; (x, y, z) 7→ xyzP = x− y + z,

and R is the family of binary operations

(1.2) r : A2 → A; (x, y) 7→ xyr = x(1− r) + yr

for each r ∈ R. Equivalently, it is defined as the full idempotent reduct
of such a module (and is sometimes called an affine R-module). The
class of all affine R-spaces is a variety. (See [5].) Abstractly, this variety
may be defined as the class R of Mal’cev modes (A, P, R) with a ternary
Mal’cev operation P and binary operations r for each r ∈ R, satisfying
the identities:

xy0 = x = yx1,

xyp xyq r = xy pqr,

xyp xyq xyr P = xy pqrP

for all p, q, r ∈ R. (See [19] and [24, S. 6.3]). If 2 = 1+1 is invertible in
R, then xyzP = y xz2−1 2 and affine R-spaces may be equivalently de-
scribed as modes (A, R) satisfying the identities in the first and second
displayed lines above.

Note as well that the variety R satisfies the entropic identities

(1.3) xyp ztp q = xzq ytq p
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for all p, q ∈ R. In other words, any two of the operations p and q
commute. Also, the operations p commute with P . This shows that
affine spaces are indeed modes. Moreover, since the binary operations
r are interpreted by (1.2), it follows that for each invertible p ∈ R, the
operation p satisfies the cancellation law

(1.4) (xyp = xzp) −→ (y = z).

If R is a subring of R, the cancellation laws are satisfied in any faith-
ful1 affine R-space for all p ∈ R with p 6= 0. (Note that in gen-
eral all cancellative modes embed into affine spaces [23] and [24, S.
7.7].) The structure of a ring R is determined by the free R-algebra
on two generators. If we denote the free generators by 0 and 1, then
the set of elements of this free algebra {0, 1}R coincides with the set
{01r | r ∈ R} = R, and the algebra is in fact isomorphic to the R-line
(R,R), the one-dimensional affine R-space. If the ring R is a field F ,
then the F -line (F, F ) is generated by any two distinct points. This
is no longer true if R is not a field. Consider for example the ring
D = Z[2−1] of rational dyadic numbers. Then the affine D-space (D, D)
is freely generated by 0 and 1. However, 0 and 3 generate a D-subspace
(A, D) of (D, D) that is isomorphic but not equal to (D, D).

Note that a non-trivial faithful affine R-space contains, along with
any two distinct points a and b, the line `R(a, b) = {abr | r ∈ R}
generated by a and b, as a subalgebra. As an R-algebra, the line
`R(a, b) is isomorphic to the R-line (R,R).

Note also that varieties of affine spaces over fields are minimal as
varieties and as quasivarieties, i.e. they do not contain non-trivial
subvarieties or quasivarieties [2].

1.2. Quasivarieties of affine spaces over principal ideal domains.
Let R be a principal ideal domain, and let ModR be the variety of uni-
tal R-modules. See e.g. [8] and [22] for basic facts about the structure
of such modules. In particular, it is well-known that a finitely gener-
ated torsion-free R-module is free, and hence it is isomorphic to a finite
power of the R-module R. There exists a nice classification of subqua-
sivarieties of ModR provided by D. V. Belkin [1]. (See also [14], where
this result is surveyed.) It shows that one of the minimal subquasiva-
rieties of ModR is the quasivariety QM(R) generated by the R-module
R. It does not contain torsion modules, and is defined by infinitely
many quasi-identities

(1.5) (xp = 0) → (x = 0)

1Recall that an affine R-space is faithful if any two operations r and s, for distinct
r and s in R, are different. See [24, S. 5.3].
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for all p in the set P(R) of representatives of irreducible (and hence
prime) elements of R modulo invertible elements. One easily observes
that QM(R) consists precisely of faithful R-modules, and that finitely
generated members of QM(R) are free and are (finite) powers of R.
The classification of subquasivarieties of ModR carries over to the clas-
sification of subquasivarieties of the variety R of affine R-spaces [14].
The quasivariety corresponding to QM(R) is the quasivariety QA(R) of
affine R-spaces generated by the affine R-space R, with the following
characteristic properties:

(1.6) QA(R) consists precisely of the faithful affine R-spaces.

(1.7) Finitely generated members of QA(R) are free.

(1.8)
The free affine R-space on n+1 generators,
where n = 0, 1, . . . , is isomorphic to Rn.

If an affine R-space is isomorphic to Rn, where n = 1, . . . , then the
number n is called the dimension of the affine R-space.

Most of the rings considered in this paper are principal ideal sub-
domains of the ring R of real numbers. Note however that not all
unital subrings of the ring R are principal ideal domains. An example
is provided by the ring Z[π]. We will be especially interested in affine
spaces over the rings Z[p−1] = {m/pn | m, n ∈ Z}, where p is a prime
number. The ring Z[p−1] is the localization of the ring Z at the monoid
(M, ·, 1), where M = {pn | n ∈ N}. And since the localization of a
principal ideal domain is again a principal ideal domain [11, Ch. 2], it
follows that the ring Z[p−1] is a principal ideal subdomain of the ring
R. The set P(Z[p−1]) consists of prime numbers different from p. The
minimal quasivariety QA(Z[p−1]) of affine Z[p−1]-spaces, generated by
the affine Z[p−1]-space Z[p−1], consists of faithful affine Z[p−1]-spaces
(cf.1.6). Note also that principal ideal subdomains of R are not nec-
essarily subrings of the ring of rational numbers. The ring Z[

√
2] is a

principal ideal ring, however the ring Z[
√

10] is not. (See e.g. [18].)

1.3. Convex sets and barycentric algebras. Recall that reducts
and subreducts (subalgebras of reducts) of modes are modes again. In
this section we are interested in certain subreducts of affine F -spaces,
where F is a subfield of the field R of real numbers. Note that the
subreducts of a given type of algebras in a given quasivariety also form
a quasivariety. (See [13, Section 11.1].) This concerns, in particular,
the subreducts of a given type of affine R-spaces.
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Let I(F ) = [0, 1] ⊂ F be the closed unit interval {x ∈ F | 0 ≤ x ≤ 1}
of F . Let Io(F ) = ]0, 1[ be the corresponding open unit interval {x ∈
F | 0 < x < 1}. More generally, for a, b ∈ F with a 6= b, the closed
interval [a, b]F is the set {x ∈ F | a ≤ x ≤ b}, and the open interval
]a, b[F is the set {x ∈ F | a < x < b}. If a subfield F of R is replaced
by a (unital) subring R of R, then I(R), Io(R), [a, b]R and ]a, b[R are
defined in a similar way. It is well known that the convex subsets of
affine F -spaces may be described as Io(F )-subreducts of affine F -spaces
(A, F ) (see [19] and [24]), which means as algebras (B, Io(F )) of type
Io(F )× {2}, equipped with a binary operation

p : B ×B → B; (x, y) 7→ xy p

for each p in Io(F ). In particular all closed (and open) intervals of F
form such algebras.

To be more specific, let us first recall that traditionally, a convex
set is defined as a subset C of the space A = Rn, where n = 1, 2, . . . ,
containing together with any two different points a and b, all points of
the segment [a, b]`R(a,b) := {abp | p ∈ I = I(R)} of the (real) line `R(a, b)
joining them. It is easy to see that C is a subalgebra of the algebra
(A, Io = Io(R)), i.e. it is an Io-subreduct of the affine R-space (A, R).
Note that, as an Io-algebra, [a, b]`R(a,b) is isomorphic to the closed unit
interval I = I(R). More generally, convex sets over R (or R-convex
sets) are defined as Io-subreduct of the affine R-spaces. (See [19] and
[24].) The class Cv(R) of convex sets described in this way generates the
variety B(R) of barycentric algebras over R (or R-barycentric algebras).
The variety B(R) is defined by the identities

(1.9) xx p = x

of idempotence for each p in Io, the identities

(1.10) xy p = yx 1− p

of skew-commutativity for each p in Io, and the identities

(1.11) xy p z q = x yz q/(p ◦ q) p ◦ q

of skew-associativity for each p, q in Io. Here p ◦ q = p + q − pq. (See
[16], [19], [20] and [24].)

Among R-barycentric algebras, R-convex sets are characterized by
cancellativity, i.e. they form the subquasivariety C(R) of B(R) defined
by the cancellation laws (1.4) that hold for all p ∈ Io, whence Cv(R) =
C(R). (See [16] and [24, S. 5.8]. Note however that, by [16], each of
these cancellative laws implies the remaining ones.)
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The definition of the variety B(R) of R-barycentric algebras extends
to the definition of the variety B(F ) of F-barycentric algebras, barycen-
tric algebras over any subfield F of the field R, with the same axiom-
atization as above for all p, q ∈ Io(F ) [24, S. 5.8]. Convex sets over F
(or F -convex sets) are defined in a similar way as in the case F = R,
as Io(F )-subreducts of affine F -spaces. The class Cv(F ) of F -convex
sets forms a quasivariety that coincides with the subquasivariety C(F )
of the cancellative members of the variety B(F ), that means

(1.12) Cv(F ) = C(F ).

(See [24, Ch. 7].) Note however that in [24] these algebras are called
simply convex sets and barycentric algebras. The quasivariety C(F )
contains algebras like subalgebras of (F n, Io(F )) for n = 0, 1, 2, . . . , but
also Io(F )-reducts of G-convex sets for any subfield G of R containing
F . (At the same time they may be considered as Io(F )-subreducts of
R-convex sets.) However, as geometric objects, G-convex sets are more
naturally considered as Io(G)-algebras.

Note also that one of the consequences of a more general result in
[17] is the following proposition. (Recall again that the class of sub-
reducts of a given type of algebras in a given quasivariety is again a
quasivariety.)

Proposition 1.1. [17] Let R be a (unital) subring of R. Then the free
algebra over X in the quasivariety of subreducts of a given type τ of
affine R-spaces is isomorphic to the τ -subreduct, generated by X, of
the free affine R-space over X.

Corollary 1.2. [17] Let R be a (unital) subring of R. Then the free
algebra over X in the quasivariety of Io(R)-subreducts of affine R-
spaces is isomorphic to the Io(R)-subreduct, generated by X, of the
free affine R-space over X.

The set of elements of the free Io(R)-algebra over X = {x0, . . . , xn}
coincides with the set

(1.13) {x0a0 + · · ·+ xnan | ai ∈ I(R),
n∑

i=1

ai = 1}.

This set will be called an n-dimensional simplex over R and will be
denoted by Sn(R).

In particular, the free C(F )-algebra on n+1 generators is just the n-
dimensional simplex over the field F . Since each F -polytope (finitely
generated F -convex set) contains as a subalgebra an n-dimensional
simplex for some maximal natural number n, it also generates an affine
F -space (F n, F ). The affine F -space (F n, F ) will be considered as a
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subreduct of the corresponding real space (Rn, R), and may be equipped
with the usual coordinate axes.

Some essential properties of F -barycentric algebras and F -convex
sets are summarized in the following propositions. (Recall that F is a
subfield of R.)

Proposition 1.3. [24, S. 5.8] [17] The following conditions are equiv-
alent for any non-trivial subalgebra (A, Io(F )) of (F, Io(F )):

(a) (A, Io(F )) is a line segment of (F, Io(F ));
(b) (A, Io(F )) is isomorphic to (I(F ), Io(F ));
(c) (A, Io(F )) is generated by two (different) elements;
(d) (A, Io(F )) is a free algebra on two free generators in the quasi-

variety C(F ) and in the variety B(F ).

In particular, any two segments of the line F are isomorphic as F -
barycentric algebras, and they are generated by their endpoints. More-
over, the algebra (I(F ), Io(F )) embeds into each non-trivial F -convex
set.

Proposition 1.4. [9] [24, S. 7.6] The quasivariety C(F ) = Cv(F ) of
F -convex sets is a minimal subquasivariety of the variety B(F ).

In particular, Cv(F ) coincides with the subquasivariety QB(F ) gener-
ated by (F, Io(F )), and with the subquasivariety QB(I(F )) generated
by (I(F ), Io(F )).

The variety B(F ) is equivalently described as the class of homomor-
phic images of F -convex sets [24, Ch. 7].

2. Convex subsets of affine spaces over principal ideal
subdomains of R

Our aim is to extend the algebraic definitions of convex sets and
barycentric algebras over subfields of the field R of reals to the case
of principal ideal subdomains R of R. However such a generalization
is not so obvious as one could expect. We would like to keep most of
the characteristic properties of traditional convex sets. In particular,
it would be natural to define convex sets, as subsets of affine R-spaces
containing with any two points all points lying between them on each
one-dimensional subspace containing them. However, as we will see,
not all of the (equivalent) basic properties of convex sets described in
Propositions 1.3 and 1.4 of Section 1.3 will then be preserved, and our
definition would require some further clarifications.

Recall that, for a subfield F of R, all line segments (bounded closed
non-trivial intervals) of the line F , considered as barycentric algebras,
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are isomorphic to the closed unit interval (I(F ), Io(F )), and are gen-
erated by their endpoints. This is no longer true for subrings R of R
which are not fields. First note that the closed unit interval of Z con-
sists only of 0 and 1. So in what follows we will always assume that
R 6= Z. In [15], a subset of Dk, for k = 1, 2, . . . , is called a dyadic convex
set if it is the intersection of a convex subset C of Rk with its subspace
Dk. Such sets may also be called convex relative to D. (Compare [3],
for instance.) In fact, dyadic convex sets were considered in [15] not as
algebras (C, Io(D)) but as (term) equivalent algebras (C, 1/2). It was

shown there that the closed intervals [a, b]D = {x ∈ D | a ≤ x ≤ b} of
D are not necessarily generated by their endpoints, and are not nec-
essarily pairwise isomorphic. There are infinitely many isomorphism
types of them. Moreover, a subalgebra of (D, Io(D)) generated by two
different elements may not be a closed interval of the line D. A simple
example was provided by a subalgebra of (D, Io(D)) generated by 0
and 3, since it does not contain, say, 1 and 2. However, such a two
generated subalgebra of (D, Io(D)) is always isomorphic to the interval
(I(D), Io(D)), and this interval is a free algebra on two free generators
0 and 1 in the (quasi)variety it generates. (See Proposition 1.1 and
[17].)

Yet another difference between the case of affine F -spaces and affine
D-spaces is that the dyadic unit interval does not embed into each
Io(D)-subreduct of an affine D-space. Since the residue class rings
Z2n+1 are homomorphic images of the ring D, some affine D-spaces are
in fact equivalent to affine Z2n+1-spaces. Moreover, Io(D)-subreducts
of such affine D-spaces are equivalent to affine Z2n+1-spaces. (See [14].)
So these affine spaces should be excluded from our considerations. Let
us note as well that each dyadic convex set belongs to the quasivariety
of Io(D)-subreducts of faithful affine D-spaces. Moreover the (closed)
dyadic unit interval embeds into each (non-trivial) dyadic convex set.

The considerations above together with results of Section 1.3 suggest
the following definition.

Definition 2.1. Let R be a principal ideal subdomain of the ring R
such that Z ⊂ R. Then a subset C of an affine R-space (A, P, R)
is called an R-convex set if the affine space is faithful and C is an
Io(R)-subreduct of (A, P, R).

In other words, R-convex subsets of a faithful affine R-space (A, P, R)
are subsets of A closed under Io(R)-operations.

Let us note that the above mentioned subalgebra of (D, Io(D)) gen-
erated by 0 and 3 is a D-convex set but it does not contain all points
of the D-line (D, D) lying between 0 and 3. In particular, it is not a
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dyadic convex set as defined above. This example shows that two dis-
tinct points of an R-convex subset of an affine R-space (A, P, R) may
belong to more than one of its one-dimensional subspaces.

As the class of faithful affine R-spaces forms a quasivariety, the class
of Io(R)-subreducts of its members is also a quasivariety. Similarly as
before, this quasivariety will be denoted by Cv(R).

Recall Proposition 1.1 and Corollary 1.2, which hold also if R is
a principal ideal subdomain of R. Then the free Io(R)-algebra over
X = {x0, . . . , xn} is the n-dimensional simplex Sn(R) over R.

If R is a principal ideal subdomain of R, then an n-dimensional affine
R-space, where n = 1, 2, . . . , is isomorphic to the affine R-space Rn, it
may be considered as a subreduct of the corresponding affine R-space
Rn, and may be equipped with the usual coordinate axes. As the set
of free generators of the affine R-space Rn, one can take the standard
affine basis consisting of e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1). This set of generators also generates the free Io(R)-
algebra, and the affine R-space Rn.

If C is an R-convex subsets of a finite dimensional affine R-space
A, then the affine R-hull affR(C) of C is the intersection of all affine
subspaces of A containing C. If affR(C) is of (finite) dimension n,
then we say that C is finite dimensional, and that its dimension dim C
equals n.

For an R-convex subset C of an affine R-space Rn, the convex R-hull
convR(C) of C in the space Rn can be considered as the subalgebra of
(Rn, Io) generated by the set C. Then the convex R-hull of C in Rn is
defined to be

convR(C) := convR(C) ∩Rn.

The relative interior of an n-dimensional R-convex set C is the in-
tersection of the relative interior of convR(C) in its affine R-hull and
Rn.

Note the following lemma.

Lemma 2.2. Let C be an n-dimensional R-convex set, where n =
1, 2, . . . . Then C contains a subalgebra isomorphic to the n-dimensional
simplex Sn(R).

Proof. Let A be the affine R-hull affR(C) of C. Since R is a principal
ideal subdomain of R, the affine R-space A can be identified with Rn,
and considered as a subreduct of the affine R-space Rn. Let e0 =
(0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) be the standard affine
basis of Rn, the set of free generators of the affine R-space Rn, of the
affine R-space Rn and of the free Io(R)-algebra Sn(R).
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Now let a = (a0 = 1−
∑n

i=1 ai, a1, . . . , an) be an element of the rel-
ative interior of C different from e0. Then there is b ∈ R small enough
so that the elements a′0 = a, a′1 = (a0 − b, a1 + b, a2, . . . , an), . . . , a′n =
(a0 − b, a1, . . . , an−1, an + b) are also in C. These elements form an
affinely independent set both in Rn and in Rn (i.e. no a′i is in the
subspace generated by the remaining elements). The mapping e0 7→
a′0, e1 7→ a′1, . . . , en 7→ a′n extends to an isomorphism between Sn(R)
and its image contained in C. �

In particular, if C is an n-dimensional R-convex subset of the affine
R-space Rn, then C generates this affine R-space and also the corre-
sponding affine R-space Rn.

We will show that similarly as in the case of subfields of R, the
quasivariety Cv(R) is a minimal quasivariety, i.e. it does not contain
any non-trivial subquasivariety.

Proposition 2.3. The quasivariety Cv(R) is generated by either of the
algebras (R, Io(R)) and (I(R), Io(R)). Hence, it does not contain any
non-trivial subquasivariety.

Proof. Let Q(R) be the subquasivariety of Cv(R) generated by (R, Io(R)),
and let Q(I(R)) be the subquasivariety generated by (I(R), Io(R)). As
(I(R), Io(R)) is a subalgebra of (R, Io(R)), and (R, Io(R)) is an Io(R)-
reduct of (R,R), it follows that Q(I(R)) ≤ Q(R) ≤ Cv(R).

To show that Q(R) ≤ Q(I(R)), let us first note that the mode
(R, Io(R)) is a directed co-limit of its finitely generated subalgebras.
If (A, Io(R)) is a submode of (R, Io(R)), finitely generated by say
g1, . . . , gk, where g1 < · · · < gk, then A is a subalgebra of the in-
terval [g1, gk] := [g1, gk]R. (In what follows all intervals of the line R
are denoted in a similar way.) This interval is isomorphic to the inter-
val [0, a = gk − g1], and the last one embeds isomorphically into the
interval (I(R), Io(R)). Indeed, first note that for any element r ∈ R
there is εr ∈ Io(R) small enough so that rεr < 1. Then consider the
mapping h : [0, a] → [0, aεa]; x 7→ xεa. It is easy to check that h is
an Io(R)-monomorphism. Since each quasivariety is closed under di-
rected co-limits, it follows that Q(I(R)) ≥ Q(R). Consequently, both
quasivarieties coincide, i.e.

Q(I(R)) = Q(R).

To show that Cv(R) ≤ Q(R), it is sufficient to prove that each
finitely generated member of Cv(R) belongs to Q(R), and then use
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the fact that each algebra is a directed co-limit of its finitely gen-
erated subalgebras, and the fact that quasivarieties are closed un-
der directed co-limits. So let (C, Io(R)) be a finitely generated al-
gebra in Cv(R). This means that (C, Io(R)) is an Io(R)-subreduct
of a faithful affine R-space. In fact, it is a subreduct of its affine
R-hull A = affR(C). Since C is finitely generated, the affine space
(A, P, R) has a finite dimension, say k, and is isomorphic to (Rk, P, R).
Hence (A, Io(R)) ∼= (Rk, Io(R)) ∼= (R, Io(R))k belongs to Q(R). Since
(C, Io(R)) is a subalgebra of (A, Io(R)), it follows that (C, Io(R)) is
also a member of Q(R). Consequently, Cv(R) ⊆ Q(R), and finally one
obtains the required equalities:

(2.1) Q(I(R)) = Q(R) = Cv(R).

As each non-trivial Io(R)-subreduct of a faithful affine R-space con-
tains a subalgebra isomorphic to (I(R), Io(R)), it follows that the qua-
sivariety Cv(R) is minimal. �

Note that by [13, Sect. 14.3], a non-trivial quasivariety is minimal
precisely when it is generated by any of its non-trivial members.

We will select a class of R-convex sets that can be defined similarly as
traditional real convex sets. To do so, we will need a precise definition
of the concept of a line segment joining two given points of an R-convex
set.

Definition 2.4. Let a 6= b be elements of an affine R-space (A, P, R).
As before, let `R(a, b) = {abr | r ∈ R} be the line generated by a and
b. Let us agree that, for c = abr and d = abs belonging to `R(a, b), we
write c < d if r < s. This defines a linear order on the line `R(a, b).
In particular, a < b. Note that `R(a, b) and `R(b, a) are the same lines
but with opposite orders.

For c, d ∈ `R(a, b), with c < d, the segment of `R(a, b) joining c and
d is defined to be the set

[c, d]`R(a,b) := {x ∈ `R(a, b) | c ≤ x ≤ d}.

For u, v ∈ A, the geometric segment of A joining u and v is defined as
follows:

[u, v]geom :=
⋃
{[u, v]`R(a,b) | a, b ∈ A and u, v ∈ `R(a, b) with u < v}.

Finally, an R-convex subset C of a faithful affine R-space (A, P, R) is
called geometric, if u, v ∈ C implies [u, v]geom ⊆ C.

Note that C is a geometric R-convex subset of A if c, d ∈ C∩`R(a, b)
and c < d imply [c, d]`R(a,b) ⊆ C for all a, b ∈ A with a 6= b.
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If R is a subfield F of the field R, all F -convex subsets are geometric.
If R is not a field, then roughly speaking, an R-convex subset C of a
finite dimensional affine R-space A is geometric, if it contains together
with any two of its different points c and d, all points lying between
them on each one-dimensional subspace of (A, P, R) containing c and
d.

In the last case, geometric convex sets may be described in a more
direct way. As a k-dimensional affine R-space A over a principal ideal
subdomain R of R is isomorphic to the affine R-space Rk, we will con-
sider now only the affine R-spaces Rk. As noted before, the affine
R-space Rk is a subreduct of the affine R-space Rk. The space Rk will
be equipped with the standard basis, and with the standard coordina-
tization with 0̄ = (0, . . . , 0) as the origin. R-convex subsets of Rk are
Io(R)-subreducts of the affine R-space Rk and of the affine R-space Rk.
In particular, the affine R-space R is a subreduct of the affine R-space
R, both generated by 0 and 1. In the space Rk, we will also consider
lines `R(a, b) for a, b ∈ Rk and their affine R-subspaces `R(a, b) ∩ Rk.
Since translations of affine spaces are their automorphisms, such lines
are isomorphic to translated lines with one of the points a, b being the
origin 0̄ of Rk. In many situations, this allows us to consider only the
translate `R(0̄, c), where 0̄ 6= c = b − a ∈ Rk, of `R(a, b) instead of
`R(a, b), and its affine R-subspaces `R(0̄, c).

Lemma 2.5. Let a and b be different points of Rk. Then there is an
affine R-space isomorphism ιR : `R(a, b) → R which restricts to the
R-embedding ιR : `R(a, b) ∩Rk → R.

Proof. Without loss of generality, we will consider the translate `R(0̄, c)
of `R(a, b).

Each axis of Rk, considered as an affine R-space, is isomorphic to
the affine R-space R. If c belongs to one of the axes, then `R(0̄, c) is
isomorphic to the axis, and for any different a, b ∈ R, we have

`R(0̄, c) = `R(a, b) ∼= R.

Obviously, R ∩ R = R = `R(0, 1). Then ιR : `R(0, c) → R is just the
identity mapping, and ιR is its restriction to R.

Let k ≥ 2. Assume that c does not belong to any of the axes. Then
the isomorphism ιR is given by the projection onto any of the axis, e.g.
Oxi-axis, where i = 1, . . . , n,

(2.2) ιR : `R(0̄, c) → R : x = (x1, . . . , xk) 7→ xi.

Obviously, its restriction to `R(0̄, c) ∩Rk,

(2.3) ιR : `R(0̄, c) ∩Rk → R : x = (x1, . . . , xk) 7→ xi,
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is an R-homomorphism. It is injective, but not necessarily surjective.
�

Lemma 2.6. Let c and d be different points of Rk. Let x ∈ `R(d, c)∩Rk

and assume that on the line `R(d, c), d < x < c. Then there are a and
b in Rk such that the three elements d, x and c belong to `R(a, b).

Proof. As in the proof of Lemma 2.5, we will consider only lines of the
form `R(0̄, c) for c 6= 0̄, and in the case k ≥ 2, with c not belonging to
any of the axes. Let c = (c1, . . . , ck) and x = (x1, . . . , xk). Consider the
mappings ιR and ιR of (2.2) and (2.3). By Lemma 2.5, `R(0̄, c) ∩Rk is
isomorphic to the affine R-subspace I = ιR(`R(0̄, c) ∩ Rk) of R. Since
R is a principal ideal domain, the elements c1 and x1 have a greatest
common divisor g1. There are c′, x′ ∈ R such that c1 = g1c

′ and
x1 = g1x

′. Moreover, there are s, t ∈ R such that g1 = sc1 + tx1. Then
c1 = 0(1− c′) + g1c

′ = 0g1c
′ and x1 = 0(1− x′) + g1x

′ = 0g1x
′. Hence

the elements c1, x1 of I belong to `R(0, g1). Now note that g := sc + tx
belongs to `R(0̄, c)∩Rk since s, t ∈ R and c, x ∈ `R(0̄, c)∩Rk. Moreover
ιR(g) = g1. Hence the elements 0, c, x belong to `R(0̄, ι−1

R (g)). �

Let C be an R-convex subset of the affine R-space Rk. Recall that
the convex R-hull of C in Rk was defined by

convR(C) := convR(C) ∩Rk.

Proposition 2.7. Let (C, Io(R)) be an R-convex subset of an affine
space (Rk, P, R), where k = 1, 2, . . . . Then the following two conditions
are equivalent.

(a) C is a geometric convex subset of Rk;
(b) C = convR(C).

Proof. (⇐) Let c, d ∈ C. Let a, b ∈ Rk with a 6= b such that c, d ∈
`R(a, b) and let x = abr with r ∈ R such that x is between c and d on
the R-line `R(a, b). Obviously, x ∈ convR(C) ∩Rk. Hence x ∈ C.

(⇒) As in Lemmas 2.5 and 2.6, instead of lines `R(c, d), for c, d ∈ Rk,
we will consider only lines `R(0̄, c) for 0̄ 6= c ∈ Rk. Assume that
0̄, c ∈ C. Let x ∈ `R(0̄, c)∩Rk be strictly between 0̄ and c. By Lemma
2.6, there are a, b ∈ Rk such that x ∈ `R(a, b). Since C is geometric, it
follows that x ∈ C. �

In particular, dyadic convex subsets of affine D-spaces Dk, as defined
above and in [15], are precisely geometric D-convex subsets of finite
dimensional affine D-spaces.

Let us note that by Proposition 2.3 and the comment following it,
the quasivariety Cv(R) of R-convex sets is generated by any non-trivial
geometric R-convex subset of a faithful affine R-space.
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The subspace 3D = {3m/(2n) | m, n ∈ Z} of D, considered as an
Io(D)-convex subset of the affine D-space (D, D), is surely not geomet-
ric. However, it is isomorphic to the geometric convex set (D, Io(D)),
and it is a geometric subset of the affine D-subspace (3D, D). Below is
a more complicated example.

Example 2.8. Consider the D-convex subset C of the affine D-space
D2, consisting of all points of the half plane {(x, y) ∈ D2 | y > 0}
together with the subspace {(x, 0) | x ∈ 3D}. Proposition 2.7 shows
that C is not geometric in D2. And since the smallest affine D-space
containing C is D2, it cannot be geometric in any proper subspace of
D2 containing C.

3. Intervals of the lines Z[1/p]

In this section we will classify, up to isomorphism, the closed intervals
[a, b] := [a, b]Z[1/p] = {x ∈ Z[1/p] | a ≤ x ≤ b} of the lines Z[1/p],
where a, b ∈ Z[1/p] and a < b. We will call them simply intervals, and
consider them as Io(Z[1/p])-subreducts of affine Z[1/p]-spaces. The
classification allows one to understand the issues involved in developing
an appropriate extension of the concept of convex sets. On the other
hand, it provides a nice generalization of the classification of dyadic
intervals [15] and a good starting point for further investigation of
the corresponding generalizations of polygons and polytopes in affine
Z[1/p]-spaces.

First recall that Z[1/2] = D and that the operation x · y = (x + y)/2
endows each D-convex set with the algebraic structure of a commuta-
tive binary mode (CB-mode or CBM -groupoid for short). Recall that
such groupoids have a well developed algebraic theory (see [10] and
[24, Ch. 5, 6, 7]). It can be easily deduced from [24, S. 5.5 and 7.5]
that each D-convex set is (term) equivalent to its 1/2-reduct. Conse-

quently, all D-convex sets can be considered as CB-modes. In [15], it
was shown that each (closed) interval of the line D (considered as a CB-
mode or as an Io(D)-algebra) is minimally generated by two or three
generators. D-convex sets, considered as CB-modes, form the (mini-
mal) quasivariety consisting of subalgebras of 1/2-reducts of faithful

affine D-spaces. It is equivalent to the quasivariety Cv(D). The vari-
ety generated by this quasivariety is the variety of commutative binary
modes, and may be considered as a dyadic counterpart of the variety
B(R) of real barycentric algebras. (Cf. [14], [15], [21] and [24].)

Now Z[1/p]-convex sets form an obvious generalization of D-convex
sets. We will show that similarly as in the dyadic case, also for p > 2,
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the intervals of the lines Z[1/p] are not necessarily pairwise isomor-
phic and are not necessarily generated by their endpoints. They are,
however, all finitely generated.

The classification of intervals of Z[1/p] is based on the following
general observation.

Proposition 3.1. Let R be a principal ideal subdomain of the ring
R. Let (C, Io(R)) and (C ′, Io(R)) be finite dimensional R-convex sets.
Then (C, Io(R)) and (C ′, Io(R)) are isomorphic if and only if there is
an isomorphism h : (A, P, R) → (A′, P, R) from the affine R-hull A =
affR(C) onto the affine R-hull A′ = affR(C ′) such that h(C) = C ′.

Proof. It is evident that the restriction of the isomorphism h provides
an Io(R)-isomorphism between C and its image C ′ = h(C).

Now assume that g : (C, Io(R)) → (C ′, Io(R)) is an isomorphism,
and that dimC = dimC ′ = k. By Lemma 2.2, C contains a subalge-
bra (S, Io(R)) isomorphic to the k-dimensional simplex Sk(R), the free
Io(R)-algebra with vertices as free generators. Its image is an isomor-
phic simplex contained in C ′. The generators of (S, Io(R)) also generate
the affine R-hull A of C, isomorphic to the free affine space (Rk, P, R).
(Cf. Corollary 1.2). Similarly the images of those generators generate
the affine R-hull A′ of C ′. Hence g extends to an isomorphism from
the affine R-space A to the affine R-space A′. �

Corollary 3.2. Let (C, Io(R)) and (C ′, Io(R)) be geometric R-convex
subsets of a finite dimensional affine R-space B. Then (C, Io(R)) and
(C ′, Io(R)) are isomorphic if and only if there is an automorphism h
of the affine space B such that h(C) = C ′.

Proof. It is evident that the restriction of the automorphism h provides
an Io(R)-isomorphism between C and its image C ′ = h(C).

Assume that C and C ′ are isomorphic under an Io(R)-isomorphism
g, and that they are k-dimensional. By Proposition 3.1, their affine
R-hulls A and A′ are isomorphic under the isomorphism ḡ extend-
ing g. Note that A and A′ are maximal affine subspaces of B of
dimension k. If k = n = dimB, then ḡ is an automorphism of B.
Now let k < n and let {a0, a1, . . . , ak} be a set of free generators of
affRC contained in C. Then {g(a0), g(a1), . . . , g(ak)} is the set of
free generators of affR(C ′) contained in C ′. Both these sets may be
extended to sets of free generators: {a0, a1, . . . , ak, b1, . . . , bn−k} and
{g(a0), g(a1), . . . , g(ak), c1, . . . , cn−k} of B. Then the affine R-space ho-
momorphism extending the mapping ai 7→ g(ai) for i = 0, 1, . . . , k and
bi 7→ ci for i = 1, . . . , n− k, is an automorphism of B. �
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Recall that, for any positive integer n, the automorphisms of an affine
Z[1/p]-space Z[1/p]n form the n-dimensional affine group GA(n, Z[1/p]),
the group generated by the linear group GL(n, Z[1/p]) and the group of
translations of the affine space Z[1/p]n. (Cp. e.g. [22, Ex. III.2.4.6].)
Each element of the affine group GA(n, Z[1/p]) is also an automor-
phism of any reduct of the affine space Z[1/p]n. In particular if n = 1,
then an element of GA(1, Z[1/p]) transforms any interval of Z[1/p] into
an isomorphic interval. On the other hand, since each interval of Z[1/p]
is a geometric convex subset of Z[1/p], Corollary 3.2 shows that an iso-
morphism between two intervals of Z[1/p] extends to an automorphism
of the affine space Z[1/p].

We will use this observation to consider isomorphisms of intervals
of Z[1/p] as restrictions of automorphisms of the affine space Z[1/p].
Now the affine automorphisms of the affine space Z[1/p] are given by

(3.1) κ(a, b) : Z[1/p] → Z[1/p]; x 7→ ax + b,

where a = ±pr for some integer r, and b ∈ Z[1/p]. The linear group
GL(1, Z[1/p]) is isomorphic to the group Z[1/p]∗ of units, consisting of
the elements a = ±pr for some integer r.

The following lemma generalizes Lemma 3.1 in [15].

Lemma 3.3. The following hold for intervals in Z[1/p]:

(1) For each positive integer k and each integer r, the intervals [0, k]
and [0, kpr] are isomorphic.

(2) An interval is generated by its endpoints precisely when it is
isomorphic to the interval I(Z[1/p]).

(3) Two intervals [0, k] and [0, l], where k and l are positive integers
not divisible by p, are isomorphic precisely if k = l.

Proof. First observe that each interval [a, b] in Z[1/p] translates isomor-
phically to an interval of the form [0, k], where k is a positive integer.
Indeed, [a, b] is surely isomorphic to [0, b− a]. Without loss of general-
ity assume that b− a = kpr for some positive integer k and an integer
r. Then it is very easy to check that the mapping

[0, kpr] → [0, k]; x 7→ xp−r

is an Io(Z[1/p])-isomorphism, whence (1) holds. In particular, the
intervals [0, 1] and [0, pr] are isomorphic for each integer r.

Note that obviously, each interval [0, pr] is generated by its endpoints.
Now assume that k > 1 is a positive integer and the interval [0, k] is
generated by its endpoints. Note that 0 and k generate the set

(3.2) A = {km/pr | r ∈ N, m = 0, 1, . . . , pr} .
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If for each positive integer r, one has k 6= pr, then none of the numbers
1, 2, . . . , k−1 belongs to A. This contradicts the assumption that [0, k]
is generated by 0 and k. It follows that k is a power of p, whence by the
first part of the proof, the interval [0, k] is isomorphic to the interval
[0, 1].

Now assume that k and l are positive integers bigger than 1 and not
divisible by p. Suppose that the intervals [0, k] and [0, l] are isomorphic.
Then by Corollary 3.2, and by (3.1), one is obtained from the other by
an action of the group Z[1/p]∗. In particular, this means that l belongs
to the orbit of k, whence l = kpr for some integer r. Since l is an
integer not divisible by p, it follows that k = l. �

Note that Z[1/p] is the disjoint union of the GL(1, Z[1/p])-orbits:
{0} = 0Z[1/p]∗ and kZ[1/p]∗ for positive integers k not divisible by p.
The isomorphism classes of intervals in Z[1/p] are determined by such
non-zero orbits. For a positive integer k not divisible by p, the class
containing the interval [0, k] is the set of intervals

{[a, a + kpr] | a ∈ Z[1/p], r ∈ Z} .

As a corollary one obtains the following theorem.

Theorem 3.4. Each interval in Z[1/p] is isomorphic to some interval
[0, k] := [0, k]Z[1/p], where k is a positive integer not divisible by p. Two
such intervals are isomorphic precisely when their right-hand ends are
equal.

Let us note that the natural numbers contained in the interval [0, k]
provide a finite set of its generators. We will describe another, smaller
set.

Each positive integer k has a unique representation

(3.3) k = k1p
n1 + k2p

n2 + · · ·+ kjp
nj ,

where all ni, for i = 1, . . . , j, are pairwise different non-negative integers
and ki ∈ {0, 1, . . . , p− 1}.

Lemma 3.5. Let k > 1 be a positive integer with the representation
(3.3). Then

G ={0, pn1 , 2pn1 , . . . , k1p
n1 , k1p

n1 + pn2 , . . . ,

k1p
n1 + k2p

n2 , . . . ,

j∑
i=1

kip
ni = k}

forms a set of generators of the interval [0, k].
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We omit the obvious proof. The set G provides a quite convenient
set of generators of the interval [0, k]. However, it is not necessarily a
minimal one.

Corollary 3.6. Each interval of Z[1/p] is finitely generated.

4. Algebraic closures of geometric R-convex sets

Consider a ring R such that Z ⊂ R ⊆ R. In [7], a concept of a
closure was introduced for cancellative members of the variety gener-
ated by the mode (R, Io(R)). At this level of generality, it was long
and complicated to prove that this closure exists and is unique. In
this section, we take an approach different from that in [7], and define
an algebraic closure in a different, much simpler and more direct way,
however only in the case of R-convex subsets of affine R-spaces over a
principal ideal subdomain R of the ring R. We show that in the case
of finite dimensional geometric R-convex subsets of affine R-spaces our
algebraic closure has indeed all properties attributed to a closure.

We start with some basic definitions.

Definition 4.1. [7] Let R be a ring such that Z ⊂ R ⊆ R, and consider
a mode (C, Io(R)). Let (a, b) ∈ C×C. Denote by 〈a, b〉 the subalgebra
generated by a and b, and by 〈a, b〉o its subalgebra 〈a, b〉 \ {a, b}.

Let s ∈ Io(R). The pair (a, b) is called s-eligible, if for each x ∈ 〈a, b〉o
there is a y ∈ C with b = xys. The symbol Es(C) denotes the set of
s-eligible pairs of (C, Io(R)).

Recall that a groupoid (A, ·) is a left quasigroup if the equation a·x =
b has a unique solution for each pair (a, b) ∈ A2. (See e.g. [22, Ch.1,
S.4.3].)

Lemma 4.2. Let R be a ring such that Z ⊂ R ⊆ R, containing an
invertible element s ∈ Io(R). Let (A, Io(R)) be the Io(R)-reduct of an
affine R-space (A, P, R). Then (A, s) is a left quasigroup and

Es(A) = A× A.

Proof. First note that A is in fact closed under each operation r for
r ∈ R. Hence for a, b ∈ A, one has ab 1/s ∈ A. Let c = ab 1/s. Note
that

(4.1) a ab 1/s s = a abs 1/s = b.
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Indeed, the first equality follows by the idempotent and entropic laws,
and the second by the following:

acs = a ab 1/s s

= a(1− s) + [a(s− 1)/s) + b(1/s)]s

= a(1− s) + a(s− 1) + b = b.

By cancellativity, c is the unique element of A such that acs = b.
This shows that (A, s) is a left quasigroup, and also that each pair of
elements of A is s-eligible. It follows that Es(A) = A× A. �

In what follows we will assume that the ring R is a principal ideal
subdomain of R, such that Z ⊂ R, containing an invertible element
s ∈ Io(R).

Lemma 4.3. Let (C, Io(R)) be an R-convex set. Then the set Es(C)
forms a subalgebra of the algebra (C×C, Io(R)), whence it is a member
of the quasivariety Cv(R).

Proof. The first part is a direct consequence of [7, Lemma 7.1]. The
second follows by the fact that R is a principal ideal subdomain of R,
whence the R-convex set (C, Io(R)) is a member of the quasivariety
Cv(R), the class of Io(R)-subreducts of faithful affine R-spaces. (Cp.
the comments following Definition 2.1.) �

Note that if a ∈ C, then 〈a, a〉o = ∅, whence (a, a) ∈ Es(C). It follows
that Es(C) is in fact a subdirect square of C.

Lemma 4.4. Let (C, Io(R)) be an R-convex subset of an affine R-
space (A, P, R). Let (a, b) ∈ C × C. Then (a, b) is an s-eligible pair of
(C, Io(R)) if and only if xb1/s ∈ C for each x ∈ 〈a, b〉o.

Proof. By (4.1), for any elements x, b ∈ A the element y = xb1/s is the
unique element y ∈ A such that xys = b. �

Recall that R is a principal ideal subdomain of the ring R, such that
Z ⊂ R, containing an invertible element s ∈ Io(R).

Definition 4.5. An R-convex subset (C, Io(R)) of an affine R-space
(A, P, R) is called algebraically s-closed, if for each s-eligible pair (a, b) ∈
C × C, there is a c ∈ C such that b = acs.

Note that in [7], such a set C would be called s-closed.

Proposition 4.6. An R-convex subset (C, Io(R)) of an affine R-space
(A, P, R) is algebraically s-closed if and only if ab1/s ∈ C for each

s-eligible pair (a, b) ∈ C × C.
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Proof. The proof follows by the fact that c = ab1/s is the unique

element of A such that b = acs. (Cf. (4.1).) �

Now for an R-convex subset (C, Io(R)) of a (necessarily faithful)
affine R-space (A, P, R) over a principal ideal subdomain R of R and
an invertible element s ∈ Io(R), let

(4.2) clR,s(C) := {ab1/s | (a, b) ∈ Es(C)}.
We will call the set clR,s(C) the s-closure of (C, Io(R)). Obviously,
if C is algebraically s-closed, then clR,s(C) = C. We will show in
this section that the operator clR,s, when applied to geometric R-
convex sets, has indeed all the properties usually attributed to a closure
operator.

Lemma 4.7. The s-closure clR,s(C) of an R-convex subset (C, Io(R))
of an affine R-space (A, P, R) is a subalgebra of (A, Io(R)).

Proof. Let (a, b), (a′, b′) ∈ Es(C). To prove that clR,s(C) is a subal-
gebra (A, Io(R)), it is sufficient to show that for each p ∈ Io(R), one
has

ab1/s a′b′1/s p ∈ clR,s(C).

Now, the entropicity implies that

ab1/s a′b′1/s p = aa′p bb′p 1/s,

and by Lemma 4.3,

(aa′p, bb′p) = (a, b)(a′, b′) p ∈ Es(C).

It follows that the element ab1/s a′b′1/s p has the required form, whence

indeed, it belongs to clR,s(C). �

Note that the s-closure clR,s(C) is also a member of the quasivariety
Cv(R).

Lemma 4.8. The following hold for the s-closures clR,s(B) and clR,s(C)
of R-convex subsets (C, Io(R)) and (B, Io(R)) of an affine R-space
(A, P, R).

(a) C ≤ clR,s(C);
(b) If (B, Io(R)) ≤ (C, Io(R)), then

(clR,s(B), Io(R)) ≤ (clR,s(C), Io(R)).

Proof. Let c ∈ C. To show that c ∈ clR,s(C), one should find (a, b) ∈
Es(C) such that c = ab 1/s. And indeed, (c, c) ∈ Es(C) and c = cc 1/s.

Hence c ∈ clR,s(C). Obviously C is an Io(R)-subalgebra of clR,s(C).
To show (b), note that any pair (a, b) ∈ Es(B) is also a member

of Es(C). By (4.1), c = ab 1/s is the unique element of A such that
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ac s = b. It follows that if ab 1/s is in clR,s(B), then it is also a member

of clR,s(C). Clearly, clR,s(B) is a subalgebra of clR,s(C). �

From now on all R-convex sets we consider in this Section will be
geometric convex subsets of a finite dimensional affine R-spaces A = Rk

over a principal ideal subdomain of R different from Z. The affine R-
space Rk will be considered as a subreduct of the affine R-space Rk,
and may be equipped with the standard basis. (See the comments
following Definition 2.1.) As before, geometric R-convex subsets of Rk

will be considered as Io(R)-subreducts of the affine R-space Rk and
of the affine R-space Rk. In particular, the affine R-space R will be
considered as a subreduct of the affine R-space R, both generated by 0
and 1.

For distinct a, b ∈ Rk, consider the line `R(a, b) and the geometric
segment [a, b]geom. Define

[a, b[geom:= [a, b]geom \ {b}.

Lemma 4.9. Let C be a geometric R-convex subset of an affine R-
space (Rk, P, R) and let (a, b) ∈ Es(C). Then

[a, ab 1/s[geom⊆ C.

Proof. Recall that (a, b) ∈ Es(C) means that xb 1/s ∈ C for each

x ∈ 〈a, b〉o. If a < x < y < b on the line `R(a, b), then obviously
b < yb 1/s < xb 1/s < ab 1/s. Since C is geometric, it follows by
Proposition 2.7 that

[a, ab 1/s[geom =
⋃

x∈〈a,b〉o
[a, xb 1/s]geom ⊆ C.

�

Corollary 4.10. A geometric R-convex subset C of an affine R-space
(Rk, P, R) is s-closed if an only if for all (a, b) ∈ Es(C)

[a, ab 1/s]geom ⊆ C.

Proof. This is a direct consequence of Proposition 4.6 and Lemma 4.9.
�

Example 4.11. Let C ′ be the interior of the (closed) square C in
the dyadic plane D2 with the vertices (0, 0), (0, 1), (1, 0), (1, 1), together
with the (closed) side joining the points (0, 0) and (1, 0). Obviously,
both C and C ′ are geometric convex subsets of D2. The convex set
C ′ is not algebraically 1/2-closed. (E.g. C ′ does not contain the point
(1/2, 1/2)(1/2, 3/4)2 = (1/2, 1) for the eligible pair
((1/2, 1/2), (1/2, 3/4)).) On the other hand, it is easy to see that the
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square C contains all points ab2 for all 1/2-eligible pairs (a, b) of ele-
ments of C ′. In particular, for any c on the boundary of C and a ∈ C ′,
there is a b ∈ C ′ such that ab2 = c, namely b = ac1/2. It follows that

C is the algebraic 1/2-closure of C ′.

Lemma 4.12. Let s and t be two invertible elements of the ring R,
belonging to Io(R). Let (C, Io(R)) be a geometric R-convex subset of
an affine R-space (Rk, P, R). Then its s-closure clR,s(C) and t-closure
clR,t(C) coincide.

Proof. We can assume that s 6= t. Let c ∈ clR,s(C). Then (by defi-
nition) c = ab1/s for some (a, b) ∈ Es(C). We will show that there is

b′ ∈ C such that (a, b′) ∈ Et(C) and ab 1/s = ab′ 1/t. Let b′ = ab t/s.

Obviously, b′ ∈ L = `R(a, b). Since 0 < t/s < 1/s, it follows that
a < b′ < c, whence by Lemma 4.9, b′ ∈ C. Then

ac t = a (ab1/s) t

= a(1− t) + a(t− t/s) + b(t/s)

= a(1− t/s) + b(t/s) = ab t/s = b′.

Hence, by (4.1),

ab′ 1/t = a (act) 1/t = c = ab 1/s.

To prove that (a, b′) ∈ Et(C), we have to show that xb′ 1/t ∈ C

for each x ∈ 〈a, b′〉o. Indeed, by Lemma 4.9 , the segment [a, c[geom is
contained in C, moreover all xb′ 1/t belong to [a, c[geom and hence to

C, since c = ab′ 1/t > xb′ 1/t.

By Lemma 4.4, it follows that c ∈ clR,t(C), whence clR,s(C) ⊆
clR,t(C). Since t and s have been chosen arbitrarily, one obtains that
clR,s(C) = clR,t(C). �

Definition 4.13. A geometric R-convex subset (C, Io(R)) of an affine
R-space (Rk, P, R) over a principal ideal subdomain R of R is called
algebraically closed, if it is s-closed for some invertible element s ∈
Io(R). Then, in view of Lemma 4.12, the s-closure clR,s(C) of C
will be called the algebraic closure or simply the closure of C. It will
sometimes be denoted by clR(C).

Let us note that this definition concerns only invertible elements
s ∈ Io(R), while the definition of a closure in [7] considers all s ∈ Io(R).

Recall that the convex R-hull convR(C) of an R-convex subset C of
Rk in the affine space Rk is the subalgebra of (Rk, Io) generated by the
set C. Then the convex R-hull convR(C) of C in Rk is convR(C)∩Rk.
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Lemma 4.14. Let C be a k-dimensional geometric convex subset of
the affine R-space (Rk, P, R), where k = 1, 2, . . . . Let s be an invertible
element of Io(R). Then

(4.3) clR,s(convR(C)) ∩Rk = convR(clR,s(C)) ∩Rk.

Proof. First note that Proposition 2.7 implies

(4.4) C = convR(C) = convR(C) ∩Rk.

It follows that

(4.5) clR,s(C) = clR,s(convR(C)) = clR,s(convR(C) ∩Rk).

On the other hand

(4.6) convR(C) ⊆ convR(clR,s(C)) ⊆ clR,s(convR(C)).

Indeed, the first inclusion follows by Lemma 4.8(a). To show the second
one, note that all s-eligible pairs of elements in C are also s-eligible in
convR(C). It follows by (4.2) that

(4.7) clR,s(C) ⊆ clR,s(convR(C)).

Note that by Lemma 4.7 applied to R, clR,s(convR(C)) is an R-convex
set, i.e. it is a convex set in the usual traditional sense. This fact,
together with (4.7), implies the second inclusion in (4.6).

Finally we prove the following equality

(4.8) clR,s(convR(C) ∩Rk) = clR,s(C) = clR,s(convR(C)) ∩Rk.

The first equality of (4.8) follows by (4.5). By (4.7), we have

clR,s(C) ⊆ clR,s(convR(C)) ∩Rk.

We need to show the reverse inclusion. Recall that by (4.2)

(4.9) clR,s(C) = {ab1/s | (a, b) ∈ Es(C)}.

Note that

(4.10) A := clR,s(convR(C)) = {ab1/s | (a, b) ∈ Es(convR(C))}.

Let c = ab1/s ∈ A ∩ Rk. Let d ∈ C belong to the relative interior

of C. (See the definition right before Lemma 2.2.) Without loss of
generality assume that on the line `R(d, c), one has d < c. Consider
the (geometric) segment [d, c]R of `R(d, c).

First note that [d, c]R is contained in A. Indeed, by Corollary 2.5
of [7], the algebraic s-closure of an R-convex subset of Rk coincides
with its topological closure, and obviously, the topological closure of
an R-convex subset of Rk is again R-convex. Since A is an R-convex
subset of Rk and d ∈ C ⊆ A, it follows that [d, c]R ⊆ A.
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Next we show that [d, c[R is contained in convR(C). Recall that, by
Theorem 3.3 of [4], if B is a convex subset of Rk in the usual sense (i.e.
it is R-convex), x belongs to the relative interior of B and y belongs
to the topological closure of B with x 6= y, then [x, y[⊂ B. We apply
this fact to A = convR(C) and x = d, and to y = c, to obtain that
[d, c[R⊆ convR(C).

Now, since dcs ∈ [d, c[R and C is geometric, we conclude by (4.4)
that

dcs ∈ [d, c[R∩Rk ⊆ convR(C) ∩Rk = convR(C) = C.

By (4.1), we know that c = d(dcs)1/s. Since (d, dcs) ∈ Es(A), both

d and dcs belong to C and c belongs to Rk, it follows that (d, dcs) ∈
Es(C), and finally that c ∈ clR,s(C). This completes the proof of (4.8).

Now we are ready to prove the equality (4.3). The inclusion⊇ follows
by (4.6). By (4.8), the left-hand side of (4.3) equals clR,s(C). Hence
the inclusion ⊆ of (4.3) follows by the obvious fact that clR,s(C) ⊆
convR(clR,s(C)). �

Proposition 4.15. Let C be a k-dimensional geometric convex subset
of the affine R-space Rk, where k = 1, 2, . . . . Let s be an invertible
element of Io(R). Then the closure clR,s(C) is also a geometric convex
subset of Rk. In particular,

(4.11) clR,s(C) = convR(clR,s(C)).

Proof. First note that, by definition,

(4.12) convR(clR,s(C)) = convR(clR,s(C)) ∩Rk.

By (4.5), clR,s(C) = clR,s(convR(C)∩Rk). This and (4.12) imply that
(4.11) can be written as

(4.13) clR,s(convR(C) ∩Rk) = convR(clR,s(C)) ∩Rk,

or by (4.8), as

(4.14) clR,s(convR(C)) ∩Rk = convR(clR,s(C)) ∩Rk,

which holds by Lemma 4.14. �

The following proposition and Lemma 4.8 justify the name of a clo-
sure for the closure clR(C) of a geometric convex set C.

Proposition 4.16. Let C be a k-dimensional geometric convex sub-
set of the affine R-space (Rk, P, R), where k = 1, 2, . . . . Let s be an
invertible element of Io(R). Then

(4.15) clR,s(clR,s(C)) = clR,s(C).
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Proof. By Proposition 4.15, the closure clR,s(C) is also a geometric
convex subset of Rk. The equality (4.15) is clear if C is the Io(R)-
reduct of the affine space Rk, and in the case when clR,s(C) = C. So
assume now that C is a proper subreduct of Rk different from clR,s(C).
If k = 1, then C is an interval of R, and clR,s(C) consists of all elements
of C together with those end-points of convR(C) in R that belong to
R. In this case, the proposition obviously holds. In what follows we
assume that k is at least 2.

Consider the geometric segment [c1, c2]geom of Rk such that (c1, c2) ∈
Es(clR,s(C)). In view of Lemma 4.9 and Corollary 4.10, it is sufficient
to show that c := c1c2 1/s also belongs to clR,s(C).

First note that if both c1 and c2 are in C, then obviously c1c2 1/s ∈
clR,s(C). Now assume that at least one of c1 and c2 is not in C. Let,
say, c1 /∈ C. Since clR,s(C) is geometric, it follows that [c1, c2]geom ⊆
clR,s(C). Moreover, by Lemma 4.9, [c1, c[geom⊆ clR,s(C). Since dim C >
1, we may pick a point a1 ∈ C such that a1, c1 and c are affinely inde-
pendent. These three points generate the R-plane, the real plane, and
the closed triangle ∆ contained in the real plane. Let ∆′ be the trian-
gle ∆ without the side joining the vertices a1 and c. Since clR,s(C) is
geometric, it follows by Proposition 2.7 that ∆′

R = ∆′∩Rk ⊆ clR,s(C).
Let a be in the interior of ∆′

R. Similarly as in the proof of Lemma 4.14,
one shows that b = acs ∈ C and (a, b) ∈ Es(C). Hence c = a acs1/s =

ab1/s ∈ clR,s(C). �

5. The algebraic and other closures

In this section we discuss relations between the algebraic closure in-
troduced in Section 4 and the closures of [7]. We show that in the case
of interest our algebraic closure coincides with the one-step p-closure
of [7]. Nevertheless, the existence and uniqueness of our algebraic clo-
sure follow in a much simpler and more concise way. Moreover, we
show that in the case of finite dimensional geometric convex subsets
of affine R-spaces over principal ideal subdomains of R, their algebraic
and topological closures coincide.

Let R be a commutative unital ring and let s ∈ R. Consider an affine
R-space (A, P, R). Define the following relation ∼s on the set A× A:

(a1, b1) ∼s (a2, b2) if and only if a1b2s = a1a2s b1s.

Lemma 5.1. For any commutative unital ring R and s ∈ R, the rela-
tion ∼s is a congruence relation of the affine space (A× A, P, R).

Proof. First note that the variety R is a Mal’cev variety. Hence a

subalgebra of the affine R-space A4 is a congruence on A × A if and
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only if it is reflexive. (Cf. [25].) The reflexivity of ∼s follows easily by
idempotence:

a1b1s = a1a1s b1s.

To show that the operations r, for r ∈ R, are compatible with ∼s

assume that for i = 1, 2, one has (ai, bi) ∼s (ci, di) , whence aidis =
aicis bis. By entropicity and the definition of ∼s

a1a2r d1d2r s = a1d1s a2d2s r

= (a1c1s b1s) (a2c2s b2s) r

= (a1c1s a2c2s r) (b1b2r) s

= (a1a2r c1c2r s) (b1b2r) s.

It follows that (a1a2r, b1b2r) ∼s (c1c2r, d1d2r). Similarly, one proves
that P is compatible with ∼s. It follows that ∼s is a congruence on
(A× A, P, R). �

Lemma 5.2. Let R be a commutative unital ring and let s ∈ R. Let
a and b be elements of an affine space (A, P, R). If the operation s is
cancellative, then the following hold:

(1) (b, b) ∼s (a, abs);
(2) the mapping

ϕ : A → (A× A)/ ∼s ; a 7→ (a, a)∼s

is a monomorphism of affine R-spaces.

Proof. Idempotence and entropicity imply that b abs s = bbs abs s =
basb s. Hence the first condition holds.

To show that ϕ is injective, assume that (a, a) ∼s (b, b), whence
abs = abs a s = abs aas s = aas bas s = a bas s. Since the operation s
is cancellative, it follows that b = bas. Idempotence and cancellativity
again imply that a = b. This shows that ϕ is injective. As ϕ is the
composition of the homomorphism A → A × A; a 7→ (a, a) and the
natural homomorphism A × A → (A × A)/ ∼s; (a, a) 7→ (a, a)∼s , it
follows that ϕ is a homomorphism. �

Note that the relation ∼s restricts to subreducts of an affine space
(A×A, P, R). In particular, if R is a subring of R and s ∈ Io(R), then
it is a congruence relation of its Io(R)-subreducts.

The relation ∼s was introduced in [7] under the name of an aiming
congruence for all cancellative members of the variety generated by
(R, Io(R))) and any s ∈ Io(R), where Z ⊂ R ⊆ R. However, in such a
general case, although ∼s is reflexive and compatible, it is not necessar-
ily a congruence relation. Some necessary conditions for this relation
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to be a congruence relation were discussed in [7]. In the present paper
we are mainly interested in the case where the ring R is a principal
ideal subdomain of R and the corresponding Io(R)-subreducts of affine
R-spaces are R-convex sets. In such a case, for any s ∈ Io(R), the re-
lation ∼s is a congruence relation of (C ×C, Io(R)) for each R-convex
set (C, Io(R)). In particular, ∼s is a congruence relation of the algebra
(Es(A), Io(R)) for any faithful affine R-space A. (Compare Lemma
4.2).

Lemma 5.3. Let R be a ring such that Z ⊂ R ⊆ R, containing an
invertible element s ∈ Io(R). Let (A, Io(R)) be the Io(R)-reduct of
an affine R-space (A, P, R). Then (Es(A), Io(R))/∼s is isomorphic to
(A, Io(R)).

Proof. Let us consider the quotient Es(A)/∼s = (A× A)/∼s, and the
mapping ϕ of Lemma 5.2 (2). The mapping is obviously a monomor-
phism of Io(R)-reducts. We will show that it is surjective. Let (a, b)∼s ∈
Es(A)/∼s. Let c be the (uniquely defined) element such that acs = b.
By Lemma 5.2 (1), (a, b) = (a, acs) ∼s (c, c). Hence ϕ(c) = (a, b)∼s ,
and the mapping ϕ is onto. �

If R = F , where F is a subfield of the field R, the congruence ∼s

has a nice geometric interpretation. Assume that (C × C, Io(F )) is a
subreduct of (F n × F n, F ). Consider two pairs (a1, b1) and (a2, b2) of
elements of C lying on distinct lines of F n and intersecting at the point
c, and such that {a1, b1} 6= {a2, b2}. Without loss of generality assume
that the points c, a1 and a2 form the vertices of a (non-trivial) triangle.
Then (a1, b1) ∼s (a2, b2) (i.e. a1b2s = a1a2s b1s) means that

b1 = a1cs and b2 = a2cs.

(Compare Figure 1 in [7].) Moreover the lines through a2 and c, and
through b1 and a1a2s are parallel. We may say that the pairs (a1, b1)
and (a2, b2), both “aim” at the same point c with respect to s. Note
that the point c is not necessarily a member of the set C.

Now let us consider the quotient (Es(C), Io(R))/∼s of (Es(C), Io(R))
by the aiming congruence ∼s. This quotient coincides with the one-step

s-closure K
(1)
s (C) introduced in [7, Sect. 7] for a broader class of modes.

The next proposition shows that if the Io(R) contains an invertible

element s, then in the case of R-convex sets, K
(1)
s (C) coincides with

the algebraic s-closure clR,s(C) introduced in the previous section.

Proposition 5.4. Let (C, Io(R)) be an R-convex subset of an affine
R-space (A, P, R). If Io(R) contains an invertible element s, then
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the algebraic s-closure (clR,s(C), Io(R)) of (C, Io(R)) is isomorphic to
(Es(C), Io(R))/∼s , i.e.

(clR,s(C), Io(R)) ∼= (Es(C), Io(R))/∼s.

Proof. Let us fix an invertible s ∈ Io(R) and define the following map-
ping

h : Es(C) −→ clR,s(C); (a, b) 7→ ab1/s.

We will show that h is an Io(R)-homomorphism. Indeed, for each
p ∈ Io(R):

h((a, b) (c, d) p)

= h((acp, bdp))

= acp bdp 1/s

= ab1/s cd1/s p

= h((a, b)) h((c, d)) p.

This shows that h is indeed a homomorphism.
Now it remains to show that kerh =∼s. Recall that (a1, a2) ∼s

(b1, b2) means that

a1b2s = a1b1s a2 s,

or

a1(1− s) + b2s = a1(1− s)2 + b1s(1− s) + a2s,

or equivalently

(5.1) b1(s
2 − s) + b2s = a1(s

2 − s) + a2s.

The last equality means that

b1b21/s = b1(1− 1/s) + b2(1/s) = a1(1− 1/s) + a2(1/s) = a1a21/s.

�

As an immediate corollary of Proposition 5.4 we obtain the following.

Corollary 5.5. Let R be a principal ideal subdomain of the ring R
properly containing Z and containing an invertible element s ∈ Io(R).
The following conditions are equivalent for a k-dimensional geometric
R-convex subset C of the affine R-space Rk, where k = 1, 2, . . . .

(a) (C, Io(R)) is algebraically closed, i.e.
(C, Io(R)) = (clR,s(C), Io(R)),

(b) (C, Io(R)) ∼= (Es(C), Io(R))/∼s.
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Recall that the quotient (Es(C), Io(R))/∼s coincides with the one-

step s-closure K
(1)
s (C) of C introduced in [7, S.7] for a broader class

of modes. This class is a certain subquasivariety H(T ) of cancella-
tive members of the variety generated by the (T, Io(T )), where T is
a subring of R properly containing Z, and containing the quasivariety
Q(T ) generated by (T, Io(T )). The one-step s-closure (defined for any
s ∈ Io(T )) is then used to define a much more general type of a clo-
sure denoted K∞

Γ (C), where Γ ⊆ Io(T ). By the main result of [7], all
members C of H(T ) have a uniquely defined closure K∞

Γ (C), which
is also contained in H(T ). This closure is constructed as a directed
co-limit of certain intermediate closures (the first being a one-step clo-
sure). In particular, if T is a subring of a subfield F of R and C is an
F -convex subset of the affine F -space F n, then the closure K∞

Io(T )(C) of

the reduct (C, Io(T )) of (C, Io(F )) is isomorphic to its one-step closure

K
(1)
p (C) for any p ∈ Io(T ), and is also isomorphic to its topological

closure. Moreover, K
(1)
p (C) belongs to the quasivariety Q(T ). (See

[7, Prop. 2.4].) Note however that this algebra is generally not an
R-convex subset of the affine R-space Rn for n = 1, 2, ....

Proposition 5.4 shows that in the case of finite dimensional geomet-
ric convex subsets of (faithful) affine spaces over principal ideal subdo-

mains of R, the concept of the one-step s-closure K
(1)
s (C) coincides with

the concept of an algebraic closure introduced in this paper. And also
in this case, the (algebraic) closure belongs to the quasivariety Q(R).

Moreover, Proposition 5.4 provides a simple description of K
(1)
s (C).

It is clear that if R = F = R, then our algebraic closure, the closure
defined in [7] and the topological closure of any (C, Io(R)) coincide.
(Compare [7, Cor. 2.5].) We will show that our algebraic closure and
the topological closure coincide also in the case of finite dimensional
geometric R-convex subsets discussed above. We consider the usual
Euclidean topology on Rk. Then Rk is a topological subspace of Rk.
Its closed (open) sets are simply closed (open) subsets of Rk intersected
with Rk.

For a geometric convex subset C of Rk, let cltop
R (C) be its topological

closure in Rk, and cl
top
R (C) its topological closure in Rk. Observe that

(5.2) cl
top
R (C) = cl

top
R (C) ∩Rk

and since R is dense in R,

(5.3) cl
top
R (C) = cl

top
R (convR(C)).

Theorem 5.6. Let R be a principal ideal subdomain of the ring R
properly containing Z. Let (C, Io(R)) be a k-dimensional geometric
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convex subset of an affine R-space (Rk, P, R). Then the algebraic clo-
sure clR(C) of C and the topological closure cl

top
R (C) of C in Rk co-

incide:
clR(C) = cl

top
R (C).

Proof. First note that if C is the Io(R)-reduct of the affine space Rk,
then C is obviously both algebraically and topologically closed. So in
what follows we assume that C is a proper Io(R)-subreduct of Rk.

Recall that by Proposition 2.7, an R-convex subset C of Rk is geo-
metric precisely if C = convR(C). In particular,

C = convR(C) = convR(C) ∩Rk.

Note also that by (4.3)

(5.4) clR(convR(C)) ∩Rk = convR(clR(C)) ∩Rk.

Now since algebraic and topological closures of convex subsets in affine
R-spaces coincide, it follows by (5.2) , (5.3), (5.4), (4.12) and (4.11)
that

cl
top
R (C) = cl

top
R (C) ∩Rk = cl

top
R (convR(C)) ∩Rk

= clR(convR(C)) ∩Rk = convR(clR(C)) ∩Rk

= convR(clR(C)) = clR(C).

�

Let us note that Theorem 5.6 and Proposition 4.16 hold also without
the assumption that C is k-dimensional. Indeed, if dimC = n < k,
then C is n-dimensional in its affine R-hull.

Note also that Theorem 5.6 and Proposition 5.4 complement and
extend Proposition 2.4 of [7].

Example 5.7. In particular, Theorem 5.6 holds for geometric con-
vex subsets of affine Z[1/p]-spaces (among them also affine D-spaces)
providing a simple purely algebraic description of their topological clo-
sures.

Example 5.8. Consider the closed interval [0, 3]R and the open in-
terval ]0, 3[R of R, and similarly, the closed and open intervals [0, 3]D
and ]0, 3[D of D. The symbol 〈0, 3〉 denotes the Io(D)-subalgebra of
([0, 3]D, Io(D)) generated by 0 and 3, and 〈0, 3〉o = 〈0, 3〉 \ {0, 3} de-
notes its Io(D)-subalgebra. Note that clD(]0, 3[D) = [0, 3]D. And since
〈0, 3〉 is isomorphic with the interval [0, 1]D and 〈0, 3〉o is isomorphic
with the interval ]0, 1[D, it follows that clD(〈0, 3〉o) = 〈0, 3〉. On the
other hand, the topological closure of both of these algebras in the space
D is equal to [0, 3]D = [0, 3]R ∩ D. This shows that for an R-convex



GENERALIZED CONVEXITY AND CLOSURE CONDITIONS 33

set which is not geometric the algebraic closure does not need to co-
incide with the topological closure. It also shows that two R-convex
sets with the same topological closures may have different algebraic
closures. (Cf. an example in [7, Lemma 2.7] of two isomorphic convex
subsets in an infinite dimensional affine space over a subfield of R, hav-
ing an isomorphic closure (as defined in [7]) but different topological
ones).

Let us also note that for a k-dimensional geometric convex subset C
of the affine R-space Rk, its algebraic closure clR(C) is the algebraic
closure of only one open geometric convex subset of Rk, namely the
interior of clR(C).

Example 5.9. Consider any two open bounded 2-dimensional geo-
metric convex subsets C and D of the affine R-space R2. By Corollary
3.2, the Io(R)-algebras C and D are isomorphic precisely if there is
an automorphism of the affine space R2 that takes C to D. The same
automorphism provides an Io(R)-isomorphism of the algebraic closures
clR(C) and clR(D) which by Theorem 5.6 coincide with the topologi-
cal closures cltop

R (C) and cl
top
R (D), respectively. In particular, it maps

the boundary of clR(C) onto the boundary of clR(D). So if there
is no such an automorphism of R2, then clR(C) and clR(D) cannot
be isomorphic. Moreover, two open convex sets C and D cannot be
isomorphic if their closures are non-isomorphic. (Compare this exam-
ple with Exercise 2.6 of [7] containing an example of non-isomorphic
infinite dimensional convex sets.)

The algebraic closure introduced in this paper concerns geometric
convex subsets of finite-dimensional affine spaces. The finite dimen-
sionality is essential here, and it was also essential in defining our gen-
eralization of convex sets. Results of [7] show that the methods used
in this section do not necessarily extend to the case of R-convex sub-
sets of affine R-spaces that are not finite-dimensional, or to arbitrary
subreducts of F -convex sets for subfields F of R containing R. On the
other hand, the results of [7] are not powerful enough to yield the re-
sults of this section. It is still an open question as to which other classes
of Io(T )-subreducts of affine spaces over subrings T of R would admit
a (possibly simple) algebraic description of the topological closure of
their members.

Another interesting problem concerns a characterization of isomor-
phic Io(T )-subreducts of affine T -spaces and, more generally, their re-
ducts of a fixed type. Section 3 provided some results of this kind.
Let us also mention a result of [6] characterizing isomorphic Io(T )-
subreducts of F -convex sets for subfields F of R containing T , in a
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similar way as in Corollary 3.2. The proof of this result is, however,
much more difficult, and requires different methods. Surprisingly, nei-
ther of the two results implies the other one.
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