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Abstract. Let I and µ be an infinite index set and a cardinal, respectively,

such that |I| ≤ µ and, starting from ℵ0, µ can be constructed in countably
many steps by passing from a cardinalλ to 2λ at successor ordinals and forming

suprema at limit ordinals. We prove that there exists a system X = {Li : i ∈
I} of complemented lattices of cardinalities less than |I| such that whenever

i, j ∈ I and ϕ : Li → Lj is an order embedding, then i = j and ϕ is the
identity map of Li. If |I| is countable, then, in addition, X consists of finite

lattices of length 10. Stating the main result in other words, we prove that
the category of (complemented) lattices with order embeddings has a discrete

full subcategory with |I| many objects. Still in other words, the class of these
lattices has large antichains (that is, antichains of size |I|) with respect to

the quasiorder “embeddability”. As corollaries, we trivially obtain analogous
statements for partially ordered sets and semilattices.

1. Introduction and the main result

Although the main result we prove is a statement on lattices, the problem we
deal with is meaningful for many other classes of algebras and structures, including
partially ordered sets, ordered sets in short, and semilattices. A minimal knowledge
of the rudiments of lattice theory is only assumed, as it is presented in any book
on lattices or universal algebra; otherwise the paper is more or less self-contained
for most algebraists.

As usual, ℵ0 and ω = ω0 denote the smallest infinite cardinal and ordinal,
respectively. Otherwise, we follow the convention that cardinals are denoted by
κ, λ, and µ, while α, β, and γ stand for ordinals. The cardinality of an ordinal
α is denoted by |α|. Define a transfinite sequence κα of cardinals as follows. Let
κ0 = ℵ0. If κα is defined, then let κα+1 = 2κα . Finally, if α is a limit ordinal and
κβ is defined for all β < α, then let κα = sup{κβ : β < α} or, equivalently, let
κα =

∑
{κβ : β < α}. Let us say that a cardinal λ is ℵ0-step accessible, if there

exists an ordinal α such that |α| ≤ ℵ0 and λ ≤ κα. For example, κω3+ω+2 is an
ℵ0-step accessible cardinal.

For ordered sets A and B, a map ϕ : A→ B is called an order embedding if ϕ is
injective and x ≤ y ⇐⇒ ϕ(x) ≤ ϕ(y) holds for all x, y ∈ A. Note that an injective
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monotone map need not be an order embedding, since then the “⇐” implication
above can fail. Let I be an index set, and let Li be a lattice for i ∈ I. We say that
{Li : i ∈ I} is a system of lattices without order embeddings if for all i, j ∈ I and
every order embedding ϕ : Li → Lj , we have that i = j and that ϕ is the identity
map idLi

, defined by x 7→ x for all x ∈ Li. (Note that {Li : i ∈ I} is actually a
set but, in order to emphasize the implication i 6= j ⇒ Li 6= Lj , we prefer to call
it a system here and in analogous situations.) For a nonnegative integer n and a
lattice L, length(L) = n means that L has an (n+1)-element chain (in other words,
linearly ordered subset) but it has no (n + 2)-element chain. Now we are in the
position to formulate our main result.

Theorem 1.1. Let I be an index set. If |I| is an ℵ0-step accessible cardinal, then

there exists a system {Li : i ∈ I} of complemented lattices without order embeddings.

Furthermore, this system can be chosen so that

(i) |Li| < |I| for all i ∈ I, provided |I| ≥ ℵ0, and

(ii) |Li| < ℵ0 and length(Li) = 10 for all i ∈ I, provided |I| ≤ ℵ0.

Outline. In Section 2, we formulate some corollaries of Theorem 1.1 for lattices,
semilattices, and ordered sets. Also, we give some historical comments on other
structures. Section 3 is devoted to proofs and auxiliary statements. Lemma 3.2 of
that section can be of separate interest in lattice theory. Lemmas 3.3 and 3.9 reveal
some additional properties of the lattices Li that can also be required.

2. Comments and corollaries

A lattice L will be called order-rigid, if the identity map idL : L→ L is the only
L→ L order-embedding. For brevity, systems of lattices without order embeddings
will also be called order-rigid systems. A lattice L is order-rigid if the singleton
system {L} is order-rigid. While rigidity in the sense of all lattice homomorphisms
would only hold for the one-element system consisting of the one-element lattice,
order-rigidity is an interesting property even for a single lattice. At the end of
Section 3, we will derive the following statement from Theorem 1.1.

Corollary 2.1. If λ is an ℵ0-step accessible cardinal, then there exists an order-

rigid complemented lattice L such that λ < |L| ≤ 22λ

.

Let LatE, SLatE, and POSetE denote the category of lattices, that of semilat-
tices, and that of ordered sets, respectively, with lattice embeddings, semilattice
embeddings, and order embeddings, respectively, as morphisms. (The suffix “E”
comes from “embeddings”.) Note that if A and B are lattices or meet-semilattices
and ϕ : A→ B is a meet-preserving injective map, then ϕ is necessarily an order em-
bedding. Hence, the following statement obviously follows from Theorem 1.1. We
express the absence of nontrivial embeddings in terms of category theory, and also
in the language of quasiordered sets; this explains the terminology we use below.

Corollary 2.2. If λ is an ℵ0-step accessible cardinal, then each of the categories

LatE, SLatE, and POSetE has a discrete full subcategory with λ many objects. In

other terms, each of LatE, SLatE, and POSetE has an antichain of cardinality λ
with respect to the quasiorder “embeddability”.

There are several earlier results of similar nature. For example, Duffus, Erdős,
Nešetřil, and Soukup [2] and Nešetřil and Tardiff [7] deal with discrete full subcate-
gories of graphs with the usual graph homomorphisms. Jakub́ıková-Studenovská [6],
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Pinus [8], and Primavesi and Thompson [9] consider antichains with respect to suit-
able embeddings. The titles of these papers but [8] indicate that the terminology
is far from being unique. In order to find not only discrete full subcategories, one
usually has to take a larger class of structures. For example, Hedrĺın and Lam-
bek [4] proved that each small category has a full embedding into the category of
all semigroups with homomorphisms, while Fried and Sichler [3] proved an anal-
ogous result for some integral domains with 1-preserving homomorphisms. These
results on other structures raise the problem if Theorem 1.1 and its corollaries hold
for larger cardinalities or for more specific lattices.

3. Proofs and auxiliary statements

3.1. Finite lattices. A lattice is called a ranked lattice if all of its maximal chains
are of the same finite length. This common length is the length of the lattice. For x
in a ranked lattice, the order ideal ↓x = {y : y ≤ x} is also a ranked lattice, and its
length is the height of x, denoted by h(x). The following lemma is almost trivial.

Lemma 3.1. If A and B are ranked lattices of the same finite length and ϕ : A→ B
is an order embedding, then ϕ preserves height, that is, h(ϕ(x)) = h(x) holds for

all x ∈ A.

Proof. Let n = length(A). If 0 = a0 ≺ a1 · · · ≺ an = 1 is a maximal chain of A,
then ϕ(0) = ϕ(a0) < ϕ(a1) < · · · < ϕ(an) = ϕ(1). Since length(B) = n, this is also
a maximal chain, that is, 0 = ϕ(0) = ϕ(a0) ≺ ϕ(a1) ≺ · · · ≺ ϕ(an) = 1. Hence,
h(ai) = i = h(ϕ(ai)), for every i ∈ {0, 1, . . . , n}. This implies the lemma, because
each element of A belongs to some maximal chain. �

Figure 1 shows that modularity cannot be dropped from the following lemma.

Figure 1. Lemma 3.2 would fail without modularity

Lemma 3.2. If A and B are modular lattices of the same finite length, then every

order embedding ϕ : A→ B is a lattice embedding.

Proof. Let n = length(A) = length(B). We prove by induction on h(b) that

(3.1) ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b)

holds for any a, b ∈ A. Since ϕ is monotone, we can assume that a and b are
incomparable elements, in notation, a ‖ b. To handle the base of the induction, let
h(b) = 1; that is, let b be an atom. By the dimension equation of modular lattices,
see Birkhoff [1, Corollary to Theorem III.§3.15], h(a∨ b) = h(a) +h(b)−h(a∧ b) =
h(a) + 1 − h(0) = h(a) + 1. Since ϕ preserves incomparability and, by Lemma 3.1,
height, the dimension equation also gives that h(ϕ(a)∨ϕ(b)) = h(ϕ(a))+h(ϕ(b))−
h(ϕ(a)∧ϕ(b)) = h(a)+ 1−h(0) = h(a) +1. Hence, ϕ(a)∨ϕ(b) and ϕ(a∨ b) are of
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the same height. Therefore, using that ϕ(a)∨ϕ(b) ≤ ϕ(a∨ b) since ϕ is monotone,
we obtain that (3.1) holds if b is an atom.

Next, assume that h(b) > 1 and that (3.1) holds for every element of smaller
height. Pick a lower cover b∗ of b, and let c = a∨ b∗. By the induction hypothesis,
ϕ(c) = ϕ(a) ∨ ϕ(b∗). Since ϕ preserves height, it maps the order filter ↑b∗ = {y ∈
A : y ≥ b∗} into the order filter ↑ϕ(b∗), and these two filters are modular lattices of
the same height n− h(b∗). Applying (3.1) for the restriction ϕe↑b∗ of ϕ to ↑b∗ and
using that b is an atom in ↑b∗, we obtain that ϕ(c ∨ b) = ϕ(c) ∨ ϕ(b). Therefore,
ϕ(a∨ b) = ϕ(c∨ b) = ϕ(c)∨ϕ(b) = ϕ(a)∨ϕ(b∗)∨ϕ(b) = ϕ(a)∨ϕ(b), proving (3.1).
Finally, (3.1) and its dual completes the proof. �

Let Primes denote the set of prime numbers, and fix an integer d ≥ 3. For
p ∈ Primes, the lattice of all subspaces of the d-dimensional vector space Z

d
p (over

the prime field Zp) will be denoted by M
(d)
p . We know that M

(d)
p is a complemented

modular lattice of length d. (Note that M
(d)
p is the lattice of submodules of Z

d
p,

and “module” is where the name “modular” came from.) The one-dimensional
subspaces generated by 〈1, 1, . . . , 1〉, 〈1, 0, . . . , 0〉, 〈0, 1, 0, . . . , 0〉, . . . , 〈0, . . . , 0, 1〉

will be denoted by e
(d,p)
0 , e

(d,p)
1 , e

(d,p)
2 , . . . , e

(d,p)
d , respectively. They are distinct

atoms in M
(d)
p . It follows from the easier direction of the main result, Theorem

4.1, of Herrmann and Huhn [5] (and it is explicitely stated in [5, Lines 6–7 of page
113]) that

(3.2) {e
(d,p)
0 , e

(d,p)
1 , . . . , e

(d,p)
d } generates the lattice M (d)

p .

Since M
(d)
p has many lattice automorphisms, it cannot be a member of an order-

rigid system. Therefore, we modifyM
(d)
p to obtain M̂

(d)
p in the following way. First

of all, take the direct product of the 2-element chain and the 3-element chain. To

obtain an auxiliary lattice T
(d,p)
j for j ∈ {0, . . . , d}, we glue a chain of length (j+1)

to the bottom and a chain of length (d − j + 1) to the top of this direct product.
For d = 3, these auxiliary lattices are also given in Figure 2. (They do not depend
on p, which is here for technical reasons.)

Figure 2. The auxiliary lattices T
(3,p)
j

Each of T
(d,p)
0 , . . . , T

(d,p)
3 is a modular lattice of length d + 5. The chain of

length d + 5 will be denoted by Cd+5; it consists of d + 6 elements. To obtain
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M̂
(d)
p from M

(d)
p , for each atom a ∈ M

(d)
p we do the following. If a = e

(d,p)
i for

some i ∈ {0, 1, . . . , d}, then we replace the prime interval [0, a] by T
(d,p)
i . That

is, we identify the bottom and the top of T
(d,p)
i with 0

M
(d)
p

and a, respectively. If

a /∈ {e
(d,p)
0 , . . . , e

(d,p)
d }, then we replace [0, a] by Cd+5 such that distinct copies of

Cd+5 are used for distinct atoms. That is, we identify the bottom and the top of
Cd+5 with 0

M
(d)
p

and a, and the copies of Cd+5 we use for distinct atoms a and b

will be disjoint in the new lattice, except their bottom elements. This way, gluing

a modular lattice of length d + 5, T
(d,p)
i or Cd+5, into each prime interval of the

form [0, a], as described above, we obtain the lattice M̂
(d)
p . Note that this lattice is

a ranked lattice of length 2d+ 4. Note also that M̂
(d)
p a complemented lattice but

it is not modular. Observe that M
(d)
p is a sublattice of M̂

(d)
p , and

(3.3) M (d)
p = {x ∈ M̂ (d)

p : h(x) = 0 or h(x) ≥ d+ 5}.

Next, we state a bit more than Part (ii) of Theorem 1.1.

Lemma 3.3. For each integer d ≥ 3, {M̂
(d)
p : p ∈ Primes} is an order-rigid system

of ranked, finite, complemented lattices of length 2d+ 4.

Proof. Clearly, the lattices in question are ranked, finite, complemented lattices of

length 2d + 4. Assume that p, q ∈ Primes and that ϕ : M̂
(d)
p → M̂

(d)
q is an order

embedding. By Lemma 3.1, ϕ is height-preserving. Hence, by (3.3), ϕ(M
(d)
p ) ⊆

M
(d)
q . Therefore, the restriction ψ = ϕe

M
(d)
p

of ϕ to M
(d)
p is an order embedding

ψ : M
(d)
p → M

(d)
q . It follows from Lemma 3.2 that ψ : M

(d)
p → M

(d)
q is a lattice

embedding.
Next, we assert that

(3.4) ϕ(e
(d,p)
i ) = e

(d,q)
i , for i ∈ {0, 1, . . . , d}.

We know that ϕ preserves height, whence ϕ(e
(d,p)
i ) is an atom of M

(d)
q . Sup-

pose, for a contradiction, that ϕ(e
(d,p)
i ) /∈ {e

(d,q)
0 , . . . , e

(d,q)
d }. Since ϕ is monotone,

ϕ(↓e
(d,p)
i ) ⊆ ↓ϕ(e

(d,p)
i ). This gives

d+ 8 = |T
(d,p)
i | = |↓e

(d,p)
i | = |ϕ(↓e

(d,p)
i )| ≤ |↓ϕ(e

(d,p)
i )| = |Cd+5| = d+ 6.

This is a contradiction, proving that ϕ(e
(d,p)
i ) ∈ {e

(d,q)
0 , . . . , e

(d,q)
d }. Hence, there

is a j ∈ {0, 1, . . . , d} such that ϕ(↓e
(d,p)
i ) ⊆ ↓e

(d,q)
j . Applying Lemma 3.2 to the

restriction ϕe
↓e

(d,p)
j

, we obtain that this restriction is a lattice embedding of ↓e
(d,p)
j

into ↓e
(d,q)
j . Therefore, T

(d,p)
i has a lattice embedding into T

(d,q)
j . But each of these

two lattices consists of d+ 8 elements, and we conclude that they are isomorphic.
This clearly implies that i = j, proving (3.4).

Combining (3.2) and (3.4), we obtain that ψ = ϕe
M

(d)
p

maps the set of genera-

tors of M
(d)
p onto the set of generators of M

(d)
q . Hence, the embedding ϕe

M
(d)
p

is

surjective, whence it is a lattice isomorphism. Thus, M
(d)
p

∼= M
(d)
q . For a prime r,

let f(r) denote the number of atoms of M
(d)
r , that is, the number of 1-dimensional

subspaces of Z
d
r . It belongs to the folklore that f(r) = (rd − 1)/(r− 1) =

∑d−1
i=0 r

i,

which is a strictly increasing function of r. (The reason is simple: on Z
d
r \{0}, these
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subspaces induce a partition such that every block consists of r− 1 points.) Hence,

since M
(d)
p

∼= M
(d)
q gives f(p) = f(q), we conclude p = q. Thus, by (3.2) and (3.4),

ψ is the identity map of M
(d)
p .

Finally, since M̂
(d)
q = M̂

(d)
p and ϕ is an injective self-map, it is a permutation

of M̂
(d)
p that acts identically on M

(d)
p . For each atom u of M

(d)
p , we have that

ϕ(↓u) ⊆ ↓(ϕ(u)) = ↓u, because ϕ is monotone. We know that ϕ(u) is isomorphic

to one of Cd+5, T
(d,p)
0 , . . . , T

(d,p)
d . Applying Lemma 3.2 to ϕe↓u, we obtain that

ϕe↓u : ↓u → ↓u is a lattice embedding. But none of the lattices Cd+5, T
(d,p)
0 , . . . ,

T
(d,p)
d has a lattice embedding into itself that is different form the identity map.

(In fact, these lattices are order-rigid.) Hence, we conclude that ϕ acts identically

on ↓u. Therefore, ϕ is the identity map of M̂
(d)
p . �

3.2. Cardinal sum of lattices and the class G(H). A bounded lattice L is
atomic if ↓x contains an atom for each x ∈ L \ {0}. Coatomic lattices are defined
dually. In what follows, H will always denote a subset of the set of all prime
numbers. To capture all properties we need to prove Theorem 1.1, we define the
class of “appropriate” lattices in the following way.

Definition 3.4. For H ⊆ Primes, let G(H) be the class of all lattices L that satisfy

(i) L is an order-rigid, complemented, atomic, coatomic lattice and |L| ≥ 6, and

(ii) for every p ∈ H , {M̂
(3)
p , L} is a two element order-rigid system.

An order-rigid system of lattices belonging to G(H) will be called an order-rigid

system in G(H). Let J be an index set with size at least 2, and let Lj ∈ G(H)
for j ∈ J . For a moment, we can assume that these lattices are pairwise disjoint,
since otherwise we can take their appropriate isomorphic copies. On the set of
L := {0, 1, c} ∪

⋃
{Lj : j ∈ J}, where {0, 1, c} ∩

⋃
{Lj : j ∈ J} = ∅, we define an

ordering by the following rule, where ≤j stands for the ordering of Lj :

x ≤ y
def
⇐⇒

{
x ≤j y, if x and y belong to the same Lj ,

x = 0 or y = 1, otherwise.

This way we obtain a new lattice 〈L;≤〉. We call this lattice the complemented

cardinal sum of the lattices Lj. It is denoted by
∑(c)

j∈J Lj ; see Figure 3 for an

illustration. We will only form cardinal sums of (not necessarily disjoint but pair-
wise distinct) lattices that belong to G; let us emphasize that we do not allow that
|J | ≤ 1, that is, at least two summands are always required

Figure 3. The complemented cardinal sum of three bounded lattices



LARGE SETS OF LATTICES WITHOUT ORDER EMBEDDINGS 7

Lemma 3.5.

(i) G(H) is closed with respect to forming complemented cardinal sums of order-

rigid systems.

(ii) Let {Ls : s ∈ S} be an order-rigid system in G(H). Let J ⊆ S and K ⊆ S such

that |J | ≥ 2 and |K| ≥ 2. If ϕ :
∑(c)

j∈J Lj →
∑(c)

k∈K Lk is an order embedding,

then J ⊆ K and, for every x ∈
(∑(c)

j∈J Lj

)
\ {c}, we have ϕ(x) = x. In

particular, if J = K, then ϕ is necessarily the identity map.

Proof. Clearly, complemented cardinal sums of lattices in G(H) are complemented,
atomic, coatomic lattices with at least 6 elements. To prove Part (ii), let J and

K be as in the lemma. Let A =
∑(c)

j∈J Lj and B =
∑(c)

k∈K Lk. For s ∈ S, the
top and the bottom of Ls are denoted by 0s and 1s, respectively. Suppose, for
a contradiction, that ϕ(1A) 6= 1B. Since ϕ is monotone, ϕ(A) ⊆ ↓ϕ(1A), which
excludes that ϕ(1A) ∈ {cB, 0B}. Hence, there is a unique k ∈ K with ϕ(1A) ∈ Lk,
and we have that ϕ(A) ⊆ ↓1k holds in B. There are three cases to consider.

Case 1. We suppose that ϕ(0A) = 0B and 0k is a ϕ-image. Let u denote its unique
preimage, that is, ϕ(u) = 0k. Since 0k is comparable to all elements of ↓1k in B
and ϕ is an order embedding, we obtain that u is comparable to all elements of
A. Since A is a complemented lattice, u ∈ {0A, 1A}. The equality ϕ(0A) = 0B

excludes u = 0A. Hence, u = 1A, and ϕ(A) = ϕ(↓u) ⊆ ↓ϕ(u) = ↓0k = {0B, 0k}.
This contradicts |A| ≥ 6. Hence, Case 1 cannot occur.

Case 2. We suppose that ϕ(0A) = 0B but 0k is not a ϕ-image. Define a new map
ϕ′ : A→ B by

ϕ′(x) =

{
ϕ(x), if x 6= 0A,

0k, if x = 0A.

This is an order embedding, because 0k is not a ϕ-image and ϕ(A) ⊆ ↓1k. Note that
ϕ′ is actually an order-embedding ofA into Lk. Pick a j ∈ J . Clearly, the restriction
ϕ′eLj

is an order embedding of Lj into Lk such that 0k = ϕ′eLj
(0A) < ϕ′eLj

(0Lj
).

Hence, ϕ′eLj
is not the identity map, which contradicts the order-rigidity of the

system {Ls : s ∈ S}. Consequently, we can exclude Case 2.

Case 3. We suppose that ϕ(0A) 6= 0B. Since ϕ(0A) < ϕ(1A) ∈ Lk, we conclude
that ϕ(A) ⊆ Lk. Hence, for every j ∈ J , the restriction ϕeLj

is an order embedding
of Lj into Lk, and we obtain the same contradiction as in the previous case.

Now, after excluding all possible cases, we see that ϕ(1A) 6= 1B is impossible.
Consequently, ϕ(1A) = 1B and, by dualizing the argument above, ϕ(0A) = 0B .

Next, consider an arbitrary j ∈ J . The injectivity of ϕ excludes that ϕ(0j) or
ϕ(1j) belongs to {0B, 1B}. Hence, there are k1, k2 ∈ K such that ϕ(0j) ∈ Lk1 and
ϕ(1j) ∈ Lk2 . Since ϕ(0j) ≤ ϕ(1j), we have k1 = k2. That is, ϕ(0j), ϕ(1j) ∈ Lk and
ϕ(Lj) ⊆ Lk for a unique k ∈ K. Thus, since ϕeLj

is an order embedding of Lj into
Lk and {Ls : s ∈ S} is an order-rigid system, we conclude that j = k ∈ K and that
ϕ(x) = x for all x ∈ Lj . This, together with ϕ(1A) = 1B and ϕ(0A) = 0B, implies
Part (ii) of the lemma, because j ∈ J was arbitrary.

To prove Part (i), consider an order-rigid system {Lj : j ∈ J} (of pairwise

distinct lattices) in G(H). Let L =
∑(c)

j∈J Lj , and let p ∈ H . We have to show

that {M̂
(3)
p , L} is an order-rigid system. We know from Lemma 3.3 that M̂

(3)
p is
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an order-rigid lattice. The order-rigidity of L follows from (the last sentence of)

Part (ii). If we had an order embedding L → M̂
(3)
p , then its restriction to any of

the Lj , j ∈ J , would be an order embedding Lj → M̂
(3)
p , which would contradict

p ∈ H and Lj ∈ G(H). Finally, we suppose, for a contradiction, that there exists

an order-embedding ϕ : M̂
(3)
p → L. Clearly,

(3.5) for every x ∈ M̂ (3)
p , |↓x∪ ↑x| ≥ 4.

This implies that c = cL is not in ϕ(M̂
(3)
p ). Let a and b be distinct coatoms of

M̂
(3)
p . Then |↑a| = 2 and |↑b| = 2 yield that 1L /∈ {ϕ(a), ϕ(b)}. Since any two lines

of a projective plane intersect in a point, a ∧ b is not the least element of M̂
(3)
p .

Hence, ϕ(a) and ϕ(b) has a nonzero lower bound in L. Thus, since ϕ is monotone,
ϕ(a) and ϕ(b) belong to the same summand Lj. The bottom of Lj will be denoted
by 0j. Since b was arbitrary, we obtain that Lj contains the images of all coatoms.

Using that each element of M̂
(3)
p \{0, 1} is less than or equal to a coatom, we obtain

that ϕ
(
M̂

(3)
p \ {0, 1}

)
⊆ Lj . Thus, since ϕ is monotone, ϕ(M̂

(3)
p ) ⊆ Lj ∪ {0L, 1L}.

Assume that ϕ(1) = 1L. If we had an u ∈ M̂
(3)
p such that ϕ(u) = 1j, then

↓ϕ(u)∪ ↑ϕ(u) = ↓1j ∪ ↑1j ⊇ Lj ∪ {0L, 1L} ⊇ ϕ(M̂
(3)
p ) would imply ↓u∪ ↑u⊇ M̂

(3)
p ,

which would be a contradiction, because M̂
(3)
p is a complemented lattice, but u 6= 1

and |↑ϕ(u)| = |↑1j| = 2 excludes u = 0. Hence, the map

ϕ′ : M̂ (3)
p → L, defined by ϕ′(x) =

{
1j, if x = 1,

ϕ(x), if x 6= 1

is still an order-embedding, but ϕ′(1) 6= 1L. Observe that ϕ′(M̂
(3)
p ) ⊆ Lj ∪ {0L},

since ϕ(M̂
(3)
p ) ⊆ Lj ∪ {0L, 1L}. If ϕ(1) 6= 1L, then we simply let ϕ′ = ϕ, and

ϕ′(M̂
(3)
p ) ⊆ Lj ∪ {0L} holds again.

Applying the dual of the previous paragraph to ϕ′, we obtain an order-embedding

ϕ′′ : M̂
(3)
p → L such that ϕ′′(0) 6= 0L and ϕ′′(M̂

(3)
p ) ⊆ Lj . This is a contradiction,

because ϕ′′ is an order embedding of M̂
(3)
p to Lj, p ∈ H , and Lj ∈ G(H). �

3.3. Another auxiliary construction. Let A,B ∈ G. Temporarily, we assume
that A ∩ B = {1A} = {0B}; if this is not the case, then we replace B by an
appropriate isomorphic copy. We define a new lattice T (A,B) = 〈T (A,B);≤〉 by
letting T (A,B) = A ∪B ∪ {c}, where c /∈ A ∪B, and defining the ordering by

x ≤ y
def
⇐⇒

{
x, y ∈ A and x ≤A y, or x, y ∈ B and x ≤B y, or

x ∈ A and y ∈ B, or x = 0A, or y = 1B , or x = y.

This construction is illustrated in Figure 4. Note that 1A = 0B will usually be
denoted by d.

Lemma 3.6. Let A and B be bounded lattices and let p be a prime number. If

ϕ : M̂
(3)
p → T (A,B) is an order embedding, then exactly one of the following possi-

bilities holds.

(i) ϕ : M̂
(3)
p → A is an order embedding;

(ii) the map ϕ1 : M̂
(3)
p → A, defined by 1 7→ 1A = d and x 7→ ϕ(x) for x 6= 1, is

an order embedding;

(iii) ϕ : M̂
(3)
p → B is an order embedding;
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Figure 4. T (A,B).

(iv) the map ϕ0 : M̂
(3)
p → B, defined by 0 7→ 0B = d and x 7→ ϕ(x) for x 6= 0, is

an order embedding.

Proof. It follows from (3.5) that ϕ(M̂
(3)
p ) ⊆ A ∪ B. Since the ϕ-images of atoms

form an antichain, either they all belong to A, or all belong to B. The same holds

for the ϕ-images of coatoms. Since each atom of M̂
(3)
p is incomparable with some

coatom and the same holds for their ϕ-images, either ϕmaps all atoms and coatoms
into A, or it maps them into B. We can assume the first possibility, because the
second one can be settled by a dual argument. That is, ϕ maps all atoms and
coatoms into A. If ϕ(1) ≤ d = 1A, then (i) holds, since ϕ is monotone. Thus, we

can assume ϕ(1) > 1A. Since ϕ is monotone and maps the coatoms of M̂
(3)
p into

A, and since M̂
(3)
p is a coatomic lattice, we have ϕ(M̂

(3)
p \ {1}) ⊆ A. Therefore,

to show that (ii) holds, it suffices to show that d = 1A /∈ ϕ(M̂
(3)
p ). Suppose, for a

contradiction, that ϕ(x) = 1A for some x ∈ M̂
(3)
p . We have x 6= 1 since ϕ(1) > 1A.

Since ϕ(M̂
(3)
p \ {1}) ⊆ A = ↓1A = ↓ϕ(x) and ϕ is an order embedding, we obtain

that M̂
(3)
p \ {1} ⊆ ↓x. Hence, M̂

(3)
p \ {1} ⊆ ↓y for some coatom y ∈ ↑x, which is

clearly a contradiction. This proves the lemma. �

Lemma 3.7. Let H be set of prime numbers. If H0 ⊆ H and, for each p ∈ H0,

{B
(p)
i : i ∈ Jp} is an order-rigid system in G(H), then {T (M̂

(3)
p , B

(p)
i ) : p ∈ H0, i ∈

Jp} is an order-rigid system in G(H \H0).

Proof. Assume that p1, p2 ∈ H0, i1 ∈ Jp1 , i2 ∈ Jp2 , and that ψ : T (M̂
(3)
p1 , B

(p1)
i1

) →

T (M̂
(3)
p2 , B

(p2)
i2

) is an order embedding. Let ϕ denote the restriction of ψ to M̂
(3)
p1 .

Since p1 ∈ H0 ⊆ H and B
(p2)
i2

∈ G(H), there is no order embedding M̂
(3)
p1 → B

(p2)
i2

.

Hence we obtain from Lemma 3.6 that ϕ or ϕ1 embeds M̂
(3)
p1 into M̂

(3)
p2 , where ϕ1

is defined in Lemma 3.6(ii). Applying Lemma 3.3 to ϕ or ϕ1, we conclude that
p1 = p2 and ϕ or ϕ1 is the identity map. This implies, in both cases, that the

restriction η of ψ to B
(p1)
i1

embeds B
(p1)
i1

into B
(p2)
i2

. We let p := p1 = p2. Using

that {B
(p)
i : i ∈ Jp} is an order-rigid system, we obtain that i1 = i2 and η is the

identity map. In particular, η(d) = d, which shows that ϕ rather than ϕ1 embeds

M̂
(3)
p1 into M̂

(3)
p2 . We have obtained that, except possibly for d, ψ acts identically

on T (M̂
(3)
p1 , B

(p1)
i1

) = T (M̂
(3)
p2 , B

(p2)
i2

). Using its injectivity, we conclude that ψ is

the identity map. This proves that K := {T (M̂
(3)
p , B

(p)
i ) : p ∈ H0, i ∈ Jp} is an

order-rigid system.
Next, to show that K ⊆ G(H \H0), assume that p ∈ H0, i ∈ Jp, and q ∈ H \H0;

we have to show that {M̂
(3)
q , T (M̂

(3)
p , B

(p)
i )} is an order-rigid system. Since K is
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an order-rigid system, T (M̂
(3)
p , B

(p)
i ) is an order-rigid lattice. By Lemma 3.3, so is

M̂
(3)
q . If we had an order embedding ϕ : T (M̂

(3)
p , B

(p)
i ) → M̂

(3)
q , then Lemma 3.3,

applied to the restriction of ϕ to M̂
(3)
p , would give p = q, which would contradict

p ∈ H0 and q ∈ H \H0. Hence, T (M̂
(3)
p , B

(p)
i ) cannot be order-embedded into M̂

(3)
q .

Finally, suppose, for a contradiction, that there is an order embedding ϕ : M̂
(3)
q →

T (M̂
(3)
p , B

(p)
i ). Since there is no order embedding M̂

(3)
q → M̂

(3)
p by Lemma 3.3,

Lemma 3.6 gives that M̂
(3)
q is order-embeddable into B

(p)
i . This contradicts q ∈ H

and B
(p)
i ∈ G(H). Thus, T (M̂

(3)
p , B

(p)
i ) ∈ G(H \H0) and K ⊆ G(H \H0). �

3.4. The rest of the proof. The following lemma belongs to the folklore of set
theory. However, for the reader’s convenience, we give a short proof. The powerset
lattice of a set J is denoted by P (J) = 〈P (J);⊆〉 = 〈{X : X ⊆ J};⊆〉, and we let
P≥2(X) := {X ∈ P (J) : |X| ≥ 2}.

Lemma 3.8. For an infinite set J , there is an antichain I ⊆ P≥2(J) with |I| = 2|J|.

Proof. Pick J1, J2 ∈ P (J) such that J = J1∪J2, J1∩J2 = ∅, and |J1| = |J2| = |J |.
Let η : J1 → J2 be a bijective map. Clearly, I = {X ∪

(
J2 \ η(X)

)
: X ∈ P (J1)} is

an antichain of cardinality |I| = |P (J1)| = |P (J)| = 2|J| and I ⊆ P≥2(J). �

In some sense, the following lemma asserts more than Theorem 1.1.

Lemma 3.9. If λ is an ℵ0-step accessible cardinal and H ⊂ Primes such that

|H | = |Primes \H | = ℵ0, then there exists an order-rigid system {Li : i ∈ I} in

G(H) such that |I| = λ and, for all i ∈ I, |Li| < max{λ,ℵ0}.

Proof. Suppose, for a contradiction, that the lemma fails for some ℵ0-step accessible
cardinal. Let λ be the smallest ℵ0-step accessible cardinal witnessing this failure.
Pick an H ⊂ Primes such that |H | = |Primes \ H | = ℵ0 and the lemma fails for
the pair 〈λ,H〉. Denote by α the smallest ordinal such that λ ≤ κα. Note that
|α| ≤ ℵ0, since λ is ℵ0-step accessible. It follows from Lemma 3.3 that 0 < α. Thus,
λ > ℵ0.

First, we assume that α is a successor ordinal, that is, α = β+1 for some ordinal
β. By the definition of α, we have κβ < λ. Since the lemma holds for κβ, there
exists an order-rigid system {Aj : j ∈ J} in G(H) such that |J | = κβ and, for
all j ∈ J , |Aj| < κβ. By Lemma 3.8 and λ ≤ κα = 2κβ , there is an antichain I
in the powerset lattice P (J) such that |I| = λ. Note that ∅ /∈ I. For i ∈ I, let

Li =
∑(c)

j∈iAj . By Lemma 3.5, {Li : i ∈ I} is an order-rigid system in G(H). For

i ∈ I, we have |Li| = 3+
∑

j∈i |Aj| ≤ 3+
∑

j∈J |Aj| ≤ 3+|J | ·κβ = κβ ·κβ = κβ < λ.

This is a contradiction, since the lemma fails for 〈λ,H〉.
Consequently, α cannot be a successor ordinal. Hence, α = sup{β : β < α} and

κα = sup{κβ : β < α}. By the choice of α, this implies λ = κα and, for all β < α,
κβ < λ. Note that |α| = ℵ0, because |α| < ℵ0 would imply that α is a successor
ordinal. Let H1 be a subset of Primes\H such that |H1| = |(Primes\H)\H1| = ℵ0.
In other words, {H,H1,Primes \ (H ∪ H1)} is a partition of Primes with three
infinite blocks. Since |{β : β < α}| = |α| = ℵ0 = |H1|, there exists a bijective
map τ : H1 → {β : β < α}. We have {κβ : β < α} = {κτ(p) : p ∈ H1}. The
lemma holds for these κτ(p). Hence, for each p ∈ H1, we can pick an order-rigid set

{B
(p)
i : i ∈ Jp} in G(H∪H1) such that |Jp| = κτ(p) and, for all i ∈ Jp, |B

(p)
i | < κτ(p).
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By Lemma 3.7, K = {T (M̂
(3)
p , B

(p)
i ) : p ∈ H1, i ∈ Jp} is an order-rigid system in

G(H). We have

|K| =
∑

p∈H1

|Jp| =
∑

p∈H1

κτ(p) =
∑

β<α

κβ = sup{β : β < α} = κα = λ.

Furthermore, assume that L = T (M̂
(3)
p , B

(p)
i ) ∈ K, that is, if p ∈ H1 and i ∈ Jp. If

L is infinite, then |L| = |M̂
(3)
p |+ |B

(p)
i | = |B

(p)
i | < κτ(p) < κα = λ. This contradicts

the assumption that the lemma fails for the pair 〈λ,H〉. �

Proof of Theorem 1.1. Lemmas 3.3 and 3.9. �

Proof of Corollary 2.1. For λ ∈ {0, 1}, we can take the 2-element lattice. Denoting

the λ-element chain by Cλ−1, the lattice L =
∑(c)

j∈{1,2}Cλ−1 proves the statement

for 1 < λ < ℵ0. Thus, we assume that ℵ0 ≤ λ. Since λ is ℵ0-step accessible, there
is a smallest ordinal α such that λ ≤ κα and |α| ≤ ℵ0. Let β = α + 1. Clearly,
κβ is still an ℵ0-step accessible cardinal and λ < κβ. If α is a successor ordinal of

the form α = γ + 1, then κγ < λ and κβ = 22κγ

≤ 22λ

. If α is a limit ordinal,

then the minimality of α implies λ = κα, and we again have κβ = 2λ ≤ 22λ

. By
Theorem 1.1, there exists an order-rigid system {Li : i ∈ I} such that |I| = κβ

and, for all i ∈ I, |Li| < κβ . It follows from Lemma 3.5 that L :=
∑(c)

i∈I Li is an
order-rigid lattice. Finally,

λ < κβ =
∑

i∈I

1 ≤ 3 +
∑

i∈I

|Li| = |L| ≤
∑

i∈I

(1 + |Li|) ≤ |I| · κβ = κβ ≤ 22λ

.
�
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