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ABSTRACT. Let L be a lattice of finite length, £ = (x1,...,2%) €
LF andy € L. The remoteness r(y, €) of y from € is d(y, 1)+ - -+
d(y, x), where d stands for the minimum path length distance in
the covering graph of L. Assume, in addition, that L is a graded
planar lattice. We prove that whenever r(y,§) < r(z,€) for all
z € L, then y < 21V ---V x. In other words, L satisfies the
so-called ¢y -median property.

1. INTRODUCTION

Let L be a lattice of finite length, £ = (xy,...,2;) € L*, and y €
L. The remoteness r(y,&) of y from & is d(y,z1) + -+ + d(y, xx),
where d stands for the minimum path length distance in the covering
graph of L. The set of medians of £ is M(§) = {y € L : r(y,§) <
r(z,€) forall z € L}. The determination of median sets based on
different types of metric spaces is an important problem in mathematics
with applications in areas such as cluster analysis and social choice [2],
consensus and location [4] [9], and classification theory [1].

The determination of median sets in terms of the ordering on L leads
to some interesting results. For any & = (21,...,2;) € L* and for any
integer t such that 1 <t < k we let

a€) =\ { Nwi:IC{1,... k4|l =t}
icl
and
GO =N {\aw:IC{1,.. k| =t}
i€l
In 1980, Monjardet [10] showed that if L is a finite distributive lattice,
then

M(&) = [ar(€), ¢t (€)]

where ¢ = [£ + 1]. The functions € k4q) and c

L5+1)
majority rule and dual majority rule, respectively. Thus L being finite

are known as the
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and distributive implies that the median set for a given & € L* is an
order interval with bounds given by the majority and dual majority
rule.
In 1990, Leclerc [8] proved that the converse holds. Specifically, for a
finite lattice L, if the median set M (£) is equal to [CL§+1J (&), C/Lﬁ+1J ()]
2

for any &€ € L*, then L is distributive. Leclerc also proved that a finite
lattice L is modular if and only if M(&) C [CL§+1J (6),C/LE+1J (&)] for
2

every & € LF. Moreover, he showed that L is upper semimodular if
and only if M(§) C [CL§+1J (€),1z] for every £ € L* where 1, = \/ L.
The lower bound ClEq) (&) is tight as shown when L is distributive, but
the upper bound of 1; seems a bit crude and it is natural to ask for a
better upper bound. Leclerc suggested the element

k
iel i=1
as a possible upper bound for M (). In 2000, Li and Boukaabar [6]
gave a nontrivial example of an upper semimodular lattice L with 101
elements in which there existed a £ € L? such that ¢;(£) was not an
upper bound for M(&). This example leads us to ask the following
question. What conditions does a lattice L have to satisfy so that ¢ (€)
does serve as an upper bound for M (&) for any € € L*?
We say that the lattice L satisfies the c¢i-median property if

\/ M) < i)

holds for all £ = (x1,...,2;) € L*. The motivation for the ¢;-median
property is the idea that this property may provide insight into the use
of ordinal tools to help limit the search for medians. In this note we
prove that a lattice of finite length satisfies the c¢;-median property if
it is graded and planar. Consequently, any planar upper semimodular
lattice satisfies the ¢;-median property. The class of slim semimodular
lattices, which has been of interest in this journal [3], are known to be
planar and so these lattices satisfy the c¢;-median property as well.

2. PRELIMINARIES

A lattice L is graded if any two maximal chains of L have the same
number of elements. Let L be a graded lattice of finite length. For
x € L, the height h(z) of = is equal to the length of the interval [0y, z]
where 0, = A L. Also, for z,y € L, the classic distance between x
and y in the undirected covering graph associated with L is denoted by
d(x,y). The graded condition imposes a structure that links d(z,y),
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h(z), and h(y). Namely, the following can be found as Lemma 2.1
in [5].

Lemma 2.1. Let L be a graded lattice of finite length and let x and y
be elements of L. Then
(i) d(z,y) > [h(z) — Wy)|,
(ii) d(z,y) = h(z) — h(y) if and only if x >y, and
(ili) d(z,y) = [h(z) = h(y)|+ 2 if = || y.

Leclerc made the following observation in the conclusion of his paper
8]. Suppose that L is a finite upper semimodular lattice, £ € L*, and
m € M(€). Leclerc asserted (without proof) that h(m) > h(ci(€))
implies m = ¢1(£). The next Lemma gives a result that is similar to
Leclerc’s observation. However, we assume that L is a graded lattice
of finite length.

Lemma 2.2. Let L be a graded lattice of finite length. For any & =
(x1,...,2) € L¥ and for any y € L such that y # c1(€),

hy) = hen(§)) = y & M(E).

Proof. Let L be a graded lattice of finite length, £ = (x1,...,23) € L¥,
and let z = ¢;(§). Assume that y € L satisfies h(y) > h(z) and y # x.
Then, for each z; € &,

(2.1) d(x, ;) = h(x) = h(z:) < h(y) — h(z:) < d(y, z:).

i) <
If h(y) > h(z), then from (2.1) we get d(x,z;) < d(y,x;) for all z; € £
and so r(x,&) < r(y,§). Thus, y & M(§). If h(y) = h(zx), then, since
y # x, there exists z; € £ such that x; £ y. It follows from Lemma
2.1 that d(y,z;) > h(y) — h(z;) = h(z) — h(z;) = d(x,z;). So then
d(z,z;) < d(y,z;) along with (2.1) imply that r(z,£) < r(y,&). Again
we have y € M(&). O

We note that the converse of Lemma 2.2 does not hold. The lattice
N5 provides an example of a lattice that satisfies the conclusion of
Lemma 2.2 that is not graded.

3. MAIN REsuULT

A lattice L is planar if it has a planar Hasse diagram; see Kelly and
Rival [7]. We now give the statement and proof of our main result.

Theorem 3.1. Let L be a graded lattice of finite length. If L is planar,
then L satisfies the ci-median property.



4 G. CZEDLI, R. C. POWERS, AND J. M. WHITE

Proof. Let L be a graded lattice of finite length, £ = (x1,...,23) € L¥,
and let = = ¢1(§). We assume that a planar diagram of L is fixed.
Suppose, for a contradiction, that y € L\ [0,z] but y € M(£). By
Lemma 2.2, h(y) < h(z). Hence, y || 2. Let Cy and C; be the left
boundary chain and the right boundary chain of |0, z], respectively, in
the fixed planar Hasse diagram of L; see Kelly and Rival [7]. They
are maximal chains of [0, z]. Pick a maximal chain D in [z, 1], and let
C; = C; UD. Since y || #, we know from Propositions 1.6 and 1.7 of
Kelly and Rival [7] that either y is strictly on the left of every maximal
chain containing x, or y is strictly on the right of all these maximal
chains. Hence, by left-right symmetry, we can assume that y is strictly
on the left of C,.

For i € {1,...,k}, take a path of length d(y,z;) from y to x; in
the covering graph of L. Further, the work found in [7] implies that
this path contains an element z; € Cy. We can assume that z; € Cj,
because otherwise z; < z < z; and Lemma 2.1 allows us to mod-
ify the path so that it goes through both x and z;. Since the path
in question is of minimal length, d(y,z;) = d(y,z) + d(z,x;), for
i € {1,...,k}. Forming the sum of these equalities and denoting
(z1,...,2r) and d(z1,21) + -+ + d(zg,xx) by ¢ and D((, &), respec-
tively, we obtain (y, &) = r(y, () + D((, £). Let z; be one of the largest
components of (. If z; < y, then Lemma 2.1 and the triangle in-
equality give 7’(2’1,6) < T(Zla C) + D(Cag) < T(y> C) + D(Cag) = T(y>€)>
which contradicts y € M(&). So, we can assume z; £ y. Further-
more, since y £ x, z1 || y. Let z € Cy be the unique element of
Co with h(z) = h(y), and note that {z,zy,..., 2} is a chain. By
Lemma 2.1, d(z, z;) = |h(2) — h(z)| = |h(y) — h(z:)| < d(y, z;) for all
i€{L,....k} and d(z, z1) = [h(2) — h(z1)| = |h(y) — h(z1)] < d(y, z1),
since z; || y. Combining these inequalities, r(z,() < r(y,(). Thus,

r(z,§) < 7(2,0) + D(C,€) < r(y, Q) + D(C,§) = r(y, &), contradicting
y € M(E). UJ

The dual of Proposition 5.1 in [8] says that if a finite lattice L is
lower semimodular, then for any ¢ € L* and for any m € M(§) the

inequality m < C/L%_HJ (&) holds. Since C/L%_HJ (€) < ¢1(€) for any & € LF,

we can combine the dual of Proposition 5.1 in [§8] with our main result
to get the following corollary.

Corollary 3.2. If L is a finite graded lattice that is planar or lower
semimodular, then L satisfies the ci-median property.

Finally, note that Theorem 3.1 and its dual lead to the following
result.
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Corollary 3.3. Suppose L is a finite lattice. If L is both graded and
planar, then

M (&) € [¢1(8), er(8)]
for any € = (x1,...,23) € LF.

4. CONCLUDING REMARKS

In this note, we have shown that a lattice L of finite length satisfies
the c;-median property if L is both planar and graded. These condi-
tions are sufficient but not necessary. Indeed, if L is distributive and
nonplanar or if L is the ungraded and planar lattice N5, then L satis-
fies the c¢i-median property. On the other hand, the following simple
example shows why we can’t stray too far from the graded condition.
Let L = {0 = 1, a1, a2,as,a4 = Ta,y, 1} be the 7-element lattice with
ap < -+ <agand y || a fori € {1,...,4}. If & = (1, x2), then it
is easy to check that M (&) = {z1,x2,y,1}. Since y £ x1 V 29 = 29
it follows that L does not satisfy the c;-median property. The sim-
plest example we know of a graded and nonplanar lattice L such that
L does not satisfy the ¢;-median property is the example given in [6].
Moreover, White [12] showed that if L is upper semimodular and L
does not satisfy the c¢;-median property, then the height of L is at least
7. Therefore, it would be interesting to uncover the precise connection
between upper semimodularity and the c¢;-median property.
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