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Abstract. Let ϕ be a {0,1}-homomorphism of a finite distributive lattice D into the

congruence lattice ConL of a rectangular (whence finite, planar, and semimodular)
lattice L. We prove that L is a filter of an appropriate rectangular lattice K such that

ConK is isomorphic with D and ϕ is represented by the restriction map from Con K
to ConL. The particular case where ϕ is an embedding was proved by E. T. Schmidt.

Our result implies that each {0,1}-lattice homomorphism between two finite distribu-
tive lattices can be represented by the restriction of congruences of an appropriate

rectangular lattice to a rectangular filter.

1. Introduction and the main result

Congruence lattices of lattices are distributive (and algebraic), see N. Fu-
nayama and T. Nakayama [8]. While the natural converse fails by a deep
result of F. Wehrung [30], a classical result of R.P. Dilworth (see [7] and [10])
states that each finite distributive lattice D is isomorphic to the congruence
lattice ConL of an appropriate finite lattice L. As surveyed in G. Grätzer [10,
Chapter III], many improvements of this theorem yield an L with some nice
additional properties. For example,

Theorem 1.1 (G. Grätzer, H. Lakser and E.T. Schmidt [20] and G. Grätzer
and E. Knapp [14] and [15]). Each finite distributive lattice D is (isomorphic
to) the congruence lattice of a planar semimodular lattice L. If, in addition, D
is non-trivial (that is, |D| ≥ 2), then it is the congruence lattice an appropriate
rectangular lattice.

We adopt the convention that a planar lattice is finite by definition; see
G. Grätzer and E. Knapp [13]. Hence, all lattices occurring in the paper
are assumed to be finite, unless otherwise stated. A finite lattice M is called
semimodular if x ≺ y implies that x ∨ z � y ∨ z for all x, y, z ∈M .

By a left weak corner (resp., right weak corner) of a planar lattice M we
mean a doubly-irreducible element of M − {0, 1} on the left (resp., right)
boundary ofM . This concept was introduced in G. Grätzer and E. Knapp [14].
Since we need three different “corner” concepts, we usually add an adjective
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such as “weak”. As in G. Grätzer and E. Knapp [14], a rectangular lattice
means a planar semimodular lattice M such that |M | ≥ 3 and, in addition, M
has exactly one left weak corner, wL

M , and exactly one right weak corner, wR

M ,
and they are complementary, that is, wL

M ∨wR

M = 1 and wL

M ∧ wR

M = 0. For
example, S7 and S8 in Figure 2 are rectangular lattices. Another example is
M3, the five-element modular, nondistributive lattice.

A lattice L is called isoform if any two blocks of each congruence of L are
isomorphic sublattices. If L is a convex sublattice (in particular, a filter or an
ideal) of another lattice K, then the restriction map %K

L : ConK → ConL is
a lattice homomorphism preserving 0 and 1, a {0, 1}-lattice homomorphism,
for short. Every lattice homomorphism between two finite distributive lattices
can be represented this way. Moreover, even some nice properties of K and L
can be stipulated:

Theorem 1.2 (G. Grätzer and H. Lakser [17], [18], and [19]). Let K be one
of the following three classes:

(i) the class of planar lattices with no nontrivial automorphisms;
(ii) the class of finite isoform lattices;
(iii) the class of finite sectionally complemented lattices.

Let D and E be finite distributive lattices, and let ϕ : D → E be a {0, 1}-lattice
homomorphism. Then there are lattices K,L ∈ K and isomorphisms α : D →
ConK and β : E → ConL such that L is an ideal of K and ϕ = β−1 ◦ %K

L ◦α.
By the duality principle, if K is one of the first two classes, then L can be
chosen to be a filter of K instead of an ideal.

Next, E = ConL is given but we are not allowed to choose L freely:

Main Theorem 1.3. Let L be a rectangular lattice, and let ϕ be an arbitrary
{0, 1}-lattice homomorphism of a finite distributive lattice D to ConL. Then
ϕ can be represented by a restriction map in the following sense: there is a
rectangular lattice K and there is a lattice isomorphism α : D → ConK such
that L is a filter of K and ϕ = %K

L ◦ α.

Note that E.T. Schmidt [29] proved this result for the special case when ϕ
is injective. Theorem 1.3 extends the “filter variant” of Theorem 1.2 to the
class of rectangular lattices (see Corollary 1.5), and offers an interesting new
proof of Theorem 1.1 (see Corollary 1.4; see also Section 8).

Corollary 1.4 (G. Grätzer and E. Knapp [14]). Every finite non-trivial dis-
tributive lattice D is (isomorphic to) the congruence lattice of a rectangular
lattice.

First proof. The Prime Ideal Theorem yields a {0, 1}-homomorphism D →
ConM3. Hence, Theorem 1.3 applies. �

The next statement follows obviously from Theorem 1.3 and Corollary 1.4.
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Corollary 1.5. Assume that D and E are finite distributive lattices. Assume
also that ϕ : D → E is a {0, 1}-lattice homomorphism. Then there are rectan-
gular lattices K and L and isomorphisms α : D → ConK and β : E → ConL
such that L is a filter of K and ϕ = β−1 ◦ %K

L ◦ α.

Method. This work was motivated and influenced by G. Grätzer [10] and
E. T. Schmidt [29]. The new features are as follows. We introduce the concept
of quasi-colorings, whose ranges are quasiordered sets rather than orders. (An
order (A; %) is a nonempty set A with an ordering % ⊆ A2. Orders are also
called partially ordered sets or posets.) The advantage is that, as opposed
to orderings, the quasiorderings of a set form a lattice. This allows us to
construct the desired lattice by a sequence of elementary steps. Each step is
accompanied by a quasiordering. If several steps are carried out, then the join
of the corresponding quasiorderings gives some insight into the construction.
It is the left adjoint of the homomorphism ϕ : D → ConL that extends this
insight to a proper understanding of where to navigate with the elementary
steps.

Outline. In Section 2, we introduce the notion of quasi-colorings. We describe
congruence-preserving extensions of lattices by means of certain extensions of
quasi-colorings in Section 3. Based on G. Grätzer and E. Knapp [13] and
G. Czédli and E. T. Schmidt [5], Section 4 provides the structure theory of
planar semimodular lattices that we shall need later. The longest part of
the present paper is Section 5, which describes some important elementary
lattice extensions by means of quasi-colorings. After exploring the structure
of rectangular lattices in Section 6, we prove two auxiliary results on their
congruence-preserving rectangular filters in Section 7. Utilizing the previous
sections, the key construction is given in Section 8, where we prove that each
extension of a quasi-coloring of a rectangular lattice L is realized by a “filter
extension” of L to a rectangular lattice K. The strength of this construction
is illustrated by a new proof of Lemma 1.4. In Section 9, we deal with the left
adjoint of ϕ, which leads to the proof of Theorem 1.3.

Notation and terminology. For the basic concepts and notation, the reader
is referred to G. Grätzer [10]. The Glossary of Notation of [10] is available as
a pdf file at

http://mirror.ctan.org/info/examples/Math_into_LaTeX-4/notation.pdf

Acknowledgment. I thank George Grätzer for his advice on revising the
paper.
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Figure 1. Congruence-perspectivities

2. Quasi-colored lattices

For a finite lattice M , let Ji(M ) denote the set of (non-zero) join-irreducible
elements of M . The set of non-unit meet-irreducible elements is denoted by
Mi(M ). The following well-known property of a finite distributive lattice D0,
see G. Grätzer [9, proof of Thm. II.1.9], will frequently be used:

if a ∈ Ji(D0), X ⊆ D0 and a ≤
∨
X, then a ≤ x for some x ∈ X. (2.1)

Let Int(M ) denote the set of all intervals of a lattice M . For p = [a, b] ∈
Int(M ), let conM (p) = conM (a, b) stand for the smallest congruence collapsing
a and b. When there is no danger of confusion, we drop the subscript M .
Sometimes we write 0p and 1p instead of a and b, respectively. The set of
prime (that is, two-element) intervals of M will be denoted by Pri(M ). Prime
intervals are also called edges. By the folklore, see e.g. G. Grätzer [10, Sect.
I.3.2],

Ji(ConM ) = {con(p) : p ∈ Pri(M )}. (2.2)

Let p1 = [x1, y1] and p2 = [x2, y2] be intervals of M . Following the termi-
nology of G. Grätzer [11], we say that p1 is up congruence-perspective to p2,
in notation p1

up→→ p2, if y1 ∨ x2 = y2 and x1 ≤ x2; see Figure 1 for illustration.
If p1

up→→ p2 and y1 ∧ x2 = x1, then we say that p1 transposes up to p2, or p2

transposes down to p1, and we also say that p1 and p2 are transposed intervals.
Down congruence-perspectivity is defined dually: p1

dn→→ p2, if x1 ∧ y2 = x2 and
y1 ≥ y2. We say that p1 is congruence-perspective to p2, in notation p1 � p2, if
p1

up→→ p2 or p1
up→→ p2. If p1 � p2, then there are two possibilities: either p2 is a

subinterval of p1 and we speak of a comparable congruence-perspectivity, or p2 is
not a subinterval of p1 and we speak of a parallel congruence-perspectivity. The
transitive closure of congruence-perspectivity is called congruence-projectivity.
In this paper, it will be denoted by p ⇒⇒ q. Let p ⇐⇔⇒ q (to be read as
congruence-equivalent) stand for the conjuction of p ⇒⇒ q and q ⇒⇒ p. Some-
times we will use subscripts like p1 �M p2 and p ⇒⇒M q to avoid ambiguity.

We will often rely, usually implicitly, on the fact that

for p, q ∈ Pri(M ), p ⇒⇒ q iff con(p) ⊇ con(q), (2.3)
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see, e.g. G. Grätzer [10, Lemma I.3.6] or [11, Thm. 230], or see also G. Grätzer
[9, Sect. III.1] with a different terminology. We shall need the following par-
ticular case of (2.3):

if p, q ∈ Pri(M ) are transposed intervals, then conM (p) = conM (q). (2.4)

Relations which are reflexive and transitive are called quasiorderings (many
authors call them preorderings). If ν is a quasiordering on a set A, then (A; ν)
is said to be a quasiordered set. We recall some basic properties of these sets,
see G. Grätzer [11]. Let ν∩∩∩ denote ν ∩ ν−1, the equivalence induced by ν.
On the quotient set A/ν∩∩∩ we can define ν̂ = {([a]ν∩∩∩, [a]ν∩∩∩) : (a, b) ∈ ν}.
Then ν̂ and (A/ν∩∩∩; ν̂) are called the ordering and the order associated with
the quasiordering ν.

For H ⊆ A2, the least quasiordering of A that includes H will be denoted
by quoA(H), or simply by quo(H) if there is no danger of confusion. For
H = {(a, b)}, we will of course write quo(a, b). Quite often, especially if we
intend to exploit the transitivity of ν, we write a ≤ν b or b ≥ν a instead of
(a, b) ∈ ν. The set of all quasiorderings on A form a complete lattice QuoA
under set inclusion. For ν, τ ∈ QuoA, the join ν ∨ τ is quo(ν ∪ τ ).

Next, let (A1; ν1) and (A2; ν2) be quasiordered sets. A homomorphism
g : (A1; ν1) → (A2; ν2) is a map g : A1 → A2 such that g(ν1) ⊆ ν2, that is,(
g(x), g(y)

)
∈ ν2 holds for all (x, y) ∈ ν1. Following G. Czédli and A. Lenke-

hegyi [3],
~Ker g :=

{
(x, y) ∈ A2

1 :
(
g(x), g(y)

)
∈ ν2

}
(2.5)

is called the directed kernel of g. Clearly, it is a quasiordering on A1.
A quasi-colored lattice is a lattice M of finite length together with a surjec-

tive map γ, called quasi-coloring, from Pri(M ) onto a quasiordered set (H; ν)
such that γ satisfies the following two properties:
(C1) if γ(p) ≥ν γ(q), then con(p) ≥ con(q),
(C2) if con(p) ≥ con(q), then γ(p) ≥ν γ(q).

The values of γ are called colors (rather than quasi-colors). If γ(p) = b,
then we say that p is colored by b. In figures, colors appear as labels of
edges. Usually, not all the edges are labeled. If (H; ν) is an order, then the
above γ is called a coloring. This concept of coloring is due to G. Grätzer
and E. Knapp [14]. The name “coloring” was used for surjective maps onto
antichains satisfying (C2) in G. Grätzer, H. Lakser, and E. T. Schmidt [20],
and for surjective maps onto antichains satisfying (C1) in G. Grätzer [10, page
39].

With a quasi-coloring γ : Pri(M ) → (H; ν), we can associate the map

γ̂ : Pri(M ) → (H/ν∩∩∩; ν̂), p 7→ [γ(p)]ν∩∩∩. (2.6)

Clearly, γ̂ is a coloring. Let D0 be a finite distributive lattice. Since it is deter-
mined by the order

(
(Ji(D0);≤

)
, we know from G. Grätzer and E. Knapp [14]

that
D0

∼= ConM iff M can be colored by
(
Ji(D0);≤

)
. (2.7)
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Figure 2. S7 and the semimodular gadget S8

Furthermore, let γ : Pri(M ) →
(
Ji(D0);≤

)
be a coloring. Then

α : D0 → ConM, where x 7→
∨{

conM (p) : p ∈ Pri(M ) and γ(p) ≤ x
}
,

(2.8)
is an isomorphism. Note that [14] attributes (2.7) and (2.8) to J. Jakub́ık [25].
Note also that (2.6) and (2.7) imply that every quasi-coloring of M determines
ConM up to isomorphism. As (2.7) suggests, a part of our job is to find a
rectangular lattice K together with a coloring γ : Pri(K) →

(
Ji(D);≤

)
. While

(C1) for γ is fairly easy to achieve, (C2) needs a bit more work.
An example of a coloring is given by our “basic gadget” S8 = S8(p > q)

in Figure 2, which is due to G. Grätzer, H. Lakser, and E.T. Schmidt [20],
see also G. Grätzer [10, Fig. 9.1] and E.T. Schmidt [29]. It is a rectangular
lattice colored by

(
{p, q};≤

)
where q < p. Since

(
{p, q};≤

)
is the order of

all non-zero join-irreducible elements of the three-element chain {0 < q < p},
ConS8 is (isomorphic to) the three-element lattice. The atom of ConS8 is
indicated by a dotted line. Another example, for an arbitrary finite lattice M ,
is the so-called natural coloring Pri(M ) →

(
Ji(M );≤

)
, p 7→ conM (p).

A finite lattice M has many quasi-colorings. The following lemma gives a
useful way to derive a new quasi-coloring from a given one.

Lemma 2.1. Let M be a finite lattice, and let (Q; ν) and (P ;σ) be qua-
siordered sets. Let γ0 : Pri(M ) → (Q; ν) be a quasi-coloring. Assume that
g : (Q; ν) → (P ;σ) is a surjective homomorphism such that ~Ker g ⊆ ν. Then
g ◦ γ0 : Pri(M ) → (P ;σ), where p 7→ g(γ0(p)), is a quasi-coloring.

Proof. Let γ1 = g ◦ γ0. Evidently, it is surjective. Assume that p, q ∈
Pri(M ) such that γ1(p) ≤σ γ1(q). Then g

(
γ0(p)

)
≤σ g

(
γ0(q)

)
shows that(

γ0(p), γ0(q)
)
∈ ~Ker g ⊆ ν. Since γ0 is a quasi-coloring, this implies con(p) ≤

con(q). Thus γ1 satisfies (C1).
To show (C2), assume that con(p) ≤ con(q). Since γ0 is a quasi-coloring,

we infer that γ0(p) ≤ν γ0(q). This yields that γ1(p) = g
(
γ0(p)

)
≤σ g

(
γ0(q)

)
=

γ1(q) since g is a homomorphism. Thus γ1 satisfies (C2). �
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3. Quasi-colorings versus congruence-preserving extensions

Let M1 be a sublattice of a lattice M2. Following the terminology in-
troduced by G. Grätzer and H. Lakser [16], see G. Grätzer [11, I.3.8] and
G. Grätzer and E. T. Schmidt [23], M2 is a congruence-preserving extension
of M1 (or M1 is a congruence-preserving sublattice of M2), if the restriction
map %

M2
M1 : ConM2 → ConM1 is an isomorphism. Before stating a lemma,

which witnesses that quasi-colorings offer a reasonable way to congruence-
preserving extensions, we have to introduce another kind of extension.

A prime interval ofM1 (sublattice ofM2) need not be a prime interval ofM2.
By Pri(M1)∩Pri(M2) we denote the set of p ∈ Pri(M2) such that 0p, 1p ∈M1.
Assume that γi : Pri(Mi) → (Qi; νi) are quasi-colorings for i = 1, 2. We say
that γ2 extends γ1 if γ2(p) = γ1(p) for all p ∈ Pri(M1) ∩ Pri(M2).

Lemma 3.1. Let M1 be a sublattice of a finite lattice M2. Let the map
γ : Pri(M1) →

(
Ji(ConM1);≤

)
with p 7→ conM1(p) be the natural coloring.

Assume that the restriction of γ to Pri(M1) ∩ Pri(M2) is surjective, and that
γ can be extended to a coloring δ : Pri(M2) →

(
Ji(ConM1);≤

)
. Then M2 is a

congruence-preserving extension of M1.

Proof. Denote Pri(M1)∩Pri(M2) by P, and the restriction of γ to P by γeP.
We know from (2.2) that, for every y ∈ ConM1,

y =
∨{

conM1(p) : p ∈ Pri(M1) and conM1(p) ≤ y
}
. (3.1)

We claim that, for every y ∈ ConM1,

y =
∨{

conM1(p) : p ∈ P and conM1(p) ≤ y
}
. (3.2)

The “≥” inequality is trivial. To show the reverse, let conM1(p) be one of the
joinands in (3.1). That is, p ∈ Pri(M1) and conM1(p) ≤ y. Since conM1(p) =
γ(p) and γeP is surjective, there exists a q ∈ P such that γ(p) = γ(q). Hence,
conM1(p) = γ(p) = γ(q) = conM1(q) shows that conM1(p) equals one of the
joinands in (3.2). This proves (3.2).

Applying (2.8) for (δ,M2,ConM1) instead of (γ,M,D0), we obtain that

α : ConM1 → ConM2,

x 7→
∨{

conM2(p) : p ∈ Pri(M2), δ(p) ≤ x
}

(3.3)

is an isomorphism. We claim that, for x ∈ ConM1,

α(x) =
∨{

conM2(p) : p ∈ P and δ(p) ≤ x
}
. (3.4)

Since Pri(M2) ⊇ P, the “≥” inequality in (3.4) is obvious. To see the reverse,
assume that conM2(p) is a joinand in (3.3). The range of δ is the same as
that of γ, which equals the range of γeP = δeP. Hence, there is a q ∈ P with
δ(q) = δ(p). Since δ is a coloring, (C1) yields that conM2(p) = conM2(q). So,
conM2(p) equals one of the joinands in (3.4). Thus (3.4) holds.

Next, we claim that x = %M2
M1

(
α(x)

)
, for every x ∈ ConM1.
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First we show that x ≤ %
M2
M1

(
α(x)

)
. By (3.2), applied to y := x, it suffices

to show that if p ∈ P and conM1(p) ≤ x, then conM1(p) ≤ %
M2
M1

(
α(x)

)
. Assume

that p ∈ P and conM1(p) ≤ x. Then δ(p) = γ(p) = conM1(p) ≤ x indicates
that conM2(p) is one of the joinands in (3.4). So conM2(p) ≤ α(x). Hence,
α(x) and, therefore, %M2

M1

(
α(x)

)
collapse p, whence conM1(p) ≤ %

M2
M1

(
α(x)

)
.

To show the converse inequality, %M2
M1

(
α(x)

)
≤ x, we apply (3.2) with y :=

%
M2
M1

(
α(x)

)
. That is, we assume that p ∈ P and conM1(p) ≤ %

M2
M1

(
α(x)

)
, and

we have to show that conM1(p) ≤ x. Our assumption yields that %M2
M1

(
α(x)

)

collapses p, and so does α(x). Hence, conM2(p) ≤ α(x). Consequently,
combining (2.1), (2.2), and (3.4), we get a prime interval p′ ∈ P such that
conM2(p) ≤ conM2(p′) and δ(p′) ≤ x. (C2) yields that δ(p) ≤ δ(p′) ≤ x. We
also have conM1(p) = γ(p) = δ(p) since δeP = γeP. Hence, we conclude the
desired conM1(p) ≤ x by transitivity. This proves that %M2

M1

(
α(x)

)
= x.

Finally, we already know that %M2
M1

◦ α = idConM1 . Multiplying both sides
by α−1 we get that %M2

M1
= α−1 is an isomorphism. �

Lemma 3.1 asserts that certain extensions of colorings give rise to congru-
ence-preserving extensions of lattices. The converse statement also holds.

Lemma 3.2. Assume that M ′ is a congruence-preserving sublattice of a finite
lattice M . Let δ′ : Pri(M ′) → (Q; ν) be a quasi-coloring such that its restriction
to Pri(M ′) ∩ Pri(M ) is surjective. Then

(i) δ′ can be extended to a quasi-coloring δ : Pri(M ) → (Q; ν).
(ii) Furthermore, if η : Pri(M ) → Pri(M ′) is surjective map such that, for

all p ∈ Pri(M ), %M

M′

(
conM(p)

)
= conM ′

(
η(p)

)
and η acts identically

on Pri(M ′) ∩ Pri(M ), then δ′ ◦ η : Pri(M ) → (Q; ν) is quasi-coloring
extending δ′.

Proof. Firstly, we show the following easy property of monotone maps. Let T1

and T2 be orders, let f1 : T1 → T2 be an order isomorphism, and let f2 : T2 →
T1 be a monotone map. Assume that x2 ≤ f1

(
f2(x2)

)
and f2

(
f1(x1)

)
≤ x1

hold for all x1 ∈ T1 and x2 ∈ T2. Then

f2 is also an order isomorphism, and f2 = f−1
1 . (3.5)

Indeed, from the first inequality we obtain that f−1
1 (x2) ≤ f2(x2). But x2 is

of the form x2 = f1(x1), whence the second inequality yields that f2(x2) ≤
f−1
1 (x2). Hence, f2 = f−1

1 , proving (3.5).
Let P := Pri(M ′) ∩ Pri(M ). By our assumption, %M

M′ : ConM → ConM ′

is an isomorphism. Obviously, conM : ConM ′ → ConM is a monotone map.
Clearly, x2 ≤ %M

M′

(
conM (x2)

)
and conM

(
%M

M′ (x1)
)
≤ x1 for all x1 ∈ ConM and

x2 ∈ ConM ′. So it follows from (3.5) that conM is the inverse map of %M

M′ .
This implies that

for all p ∈ P, %M

M′

(
conM (p)

)
= conM ′(p) (3.6)

since conM (p) = conM

(
conM ′(p)

)
.
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If p ∈ Pri(M ), then %M

M′ (conM (p)) ∈ Ji(ConM ′) since %M

M′ is an isomor-
phism. Hence, we can choose a q ∈ Pri(M ′) such that %M

M′ (conM (p)) =
conM ′(q). If p ∈ P, then (3.6) allows us to choose q := p. Consequently, we
can fix a surjective map η that satisfies the premise of part (ii). With this η,
we define δ := δ′ ◦ η. Clearly, δ extends δ′. We claim that δ : Pri(M ) → (Q; ν)
is a quasi-coloring. It is surjective, since so is δ′eP. Assume that p, q ∈ Pri(M ).
Then

(
δ(p), δ(q)

)
∈ ν iff

(
δ′(η(p)), δ′(η(q))

)
∈ ν. Since δ′ is a quasi-coloring,

this is equivalent to conM ′(η(p)) ≤ conM ′(η(q)). By the choice of η, this is
the same as %M

M′

(
conM(p)

)
≤ %M

M′

(
conM (q)

)
. Since %M

M′ is an isomorphism, the
last inequality is equivalent to conM (p) ≤ conM (q). Thus

(
δ(p), δ(q)

)
∈ ν iff

conM (p) ≤ conM (q), proving that δ is a quasi-coloring. �

4. Slim semimodular lattices

A slim lattice is a finite lattice M such that the order Ji(M ) contains no
three-element antichain. Equivalently, see R.P. Dilworth [6], G. Grätzer and
E. Knapp [13], or G. Czédli and E.T. Schmidt [5], a finite lattice M is slim iff
Ji(M ) is the union of two chains. By G. Czédli and E. T. Schmidt [4, Lemma
6], slim lattices are planar. The study of planar lattices started in D. Kelly
and I. Rival [26]. Many properties of these lattices we visually accept are
rigorously proved in [26]. When we speak of a planar lattice, always a fixed
planar diagram is assumed. If this diagram divides the plane into covering
squares (i.e., cover-preserving four-element Boolean sublattices), then, follow-
ing G. Grätzer and E. Knapp [13], we speak of a 4-cell lattice. For example,
M3 (the diamond) and all finite chains are 4-cell lattices but the five-element
non-modular lattice is not. The cells of a 4-cell lattice are called 4-cells. No-
tice that 4-cells are always covering squares but not conversely; indeed, M3 has
three covering squares but (with respect to a fixed diagram) only two 4-cells.
Let us emphasize that a 4-cell lattice is planar by definition. If S is a 4-cell of
a lattice, then its largest element, least element, left (weak) corner (element)
and right (weak) corner will be denoted by 1S , 0S , wL

S and wR

S , respectively.
The same notation applies if S is a covering square of a not necessarily planar
finite lattice; then we have a choice which one of its atoms is denoted by wL

S.

Lemma 4.1 (G. Grätzer and E. Knapp [13], see also G. Czédli and E. T.
Schmidt [5] for the present form). Let M be finite lattice. Then M is a slim
semimodular lattice iff M is a 4-cell lattice such that no two distinct 4-cells of
M have the same bottom.

For example, none of the semimodular lattices M and M∗ in Figure 3 are
slim, but each of them would be slim if we deleted the black-filled element.

Lemma 4.2 (G. Grätzer and E. Knapp [13, Lemmas 4 and 5]). Let M be a
planar lattice. Then M is semimodular iff it is a 4-cell lattice and 0A = 0B

implies 1A = 1B , for any two 4-cells A and B of M .
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Figure 3. Adding a fork and adding an e-fork

Next, consider a planar semimodular lattice M . A 4-cell S of M will be
called a slim 4-cell, if the principal ideal ↓1S = {x ∈ M : x ≤ 1S} is a slim
(and necessarily semimodular) lattice. Assume that S is a slim 4-cell of M .
For an example, see the grey-filled 4-cell of M in Figure 3. Replace this 4-cell
by a copy of S7. Then, starting at S and going to the southwest (in the original
lattice) from 4-cell (understood in M ) to adjacent 4-cells as long as possible,
divide these 4-cell into two 4-cells by a northeast-southwest new edge. (Since
no two distinct 4-cells of ↓1S have the same bottom, the next 4-cell is always
to the southwest from the previous cell.) In the next stage, do the same sort
of steps to the southeast direction. This way we get an extension of M to a
new lattice M∗, see Figure 3. The order F = M∗ −M of the new elements
is called a fork ; see the grey-filled elements in Figure 3. Notice that F is the
disjoint union of its top element, 1F , its left chain, Fleft, and its right chain,
Fright. Notice that for each x ∈ F , there is a unique (upper) cover x+ of x in
M = M∗ − F . Similarly, for all y ∈ F − {1F}, the unique lower cover of y
outside F will be denoted by y−. Note that the map F → M with x 7→ x+

is an order-embedding. We say that M∗ is obtained from M by adding a fork
(at the 4-cell S). In view of Lemmas 4.1 and 4.2, the following statement is
obvious; see G. Czédli and E. T. Schmidt [5] for the particular case when M

is a slim semimodular lattice.

Lemma 4.3. Let S be a slim 4-cell of a planar semimodular lattice M , and
let u be an element of M such that ↓u is slim. Then M∗, defined above, is
semimodular. Moreover, ↓u = {x ∈M∗ : x ≤ u} is a slim semimodular lattice.

Concerning M∗, we will need the following two lemmas.

Lemma 4.4. Assume that p, q ∈ Pri(M∗), p
up→→M∗ q, 0q ∈ F and 1q /∈ F .

Then 0p ∈ F and 1p /∈ F .

Proof. Observe that q is of the form q = [x, x+] where x ∈ F . Let p = [a, b].
Since a ≺ b, it follows easily that p and q are transposed intervals. Hence,
x+ = b∨x and a = b∧x holds in M∗. We can assume that p 6= q. Then b ‖ x.
Fix a maximal chain C in ↑1F . Then C ∪ Fleft, which is a maximal chain of
M∗, divides M∗ into two parts, a left side and a right side. The intersection
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of this two sides is C ∪ Fleft. Similarly, C ∪ Fright also divides M∗ into two
sides. Combining these sides, M∗ is divided into three parts: the left side of
C ∪Fleft, the right side of C ∪Fright and, finally, ↓1F . Note that F is a subset
of the boundary of ↓1F .

Since F is an order-filter in ↓1F , x ∈ F , and x+ = x∨ b /∈ F , it follows that
b = 1p /∈ ↓1F . So, modulo left-right symmetry, we can assume that b is on the
left of C ∪Fleft. Moreover, b /∈ C ∪Fleft since b ‖ x. Hence, b is strictly on the
left side of C ∪ Fleft.

Assume by way of contradiction that a = 0p /∈ F . Then a = b ∧ x ∈ ↓x ⊆
↓1F implies that a is strictly on the right side of C ∪Fleft. Therefore D. Kelly
and I. Rival [26, Lemma 1.2] yields an element z ∈ C∪Fleft such that a < z < b.
However, this contradicts that a ≺ b. �

Lemma 4.5. Consider the retraction map

ψ : M∗ →M, where x 7→

{
x, if x ∈M ;

x+, if x ∈ F .

Then ψ is a lattice homomorphism.

Proof. An easy result (see [1, Thm. IV.20] and compare with (2.4)) from the
folklore of lattice theory says that an equivalence ααα is a congruence iff

(i) the ααα-blocks are convex sublattices, and
(ii) for any pair (p, q) of transposed intervals, if ααα collapses p, then it col-

lapses q.

First we show that ααα := Ker(ψ) is a lattice congruence. The ααα-blocks are
the prime intervals [x, x+], for x ∈ F , and the singletons {y}, for y ∈ M .
Hence, (i) holds. Assume that p, q ∈ Pri(M∗) are transposed prime intervals
and p

up→→M∗ q. If q is collapsed by ααα, then so is p by Lemma 4.4. Assume
that p = [x, x+] is collapsed by ααα. Then x ∈ F . If 0q /∈ F , then x ≤ 0q implies
that x+ ≤ 0q, and 1q = x+ ∨ 0q = 0q is a contradiction. Hence, 0q ∈ F .
Since x+ /∈ ↓1F ⊇ F and x+ ≤ 1q, we get that 1q /∈ F and 1q = 0+

q . Hence,
q is collapsed by ααα. Thus (ii) holds and Ker(ψ) = ααα is a congruence. Since
the Ker(ψ)-blocks intersect M in singletons, we conclude easily that ψ is a
homomorphism. �

5. Elementary extensions

The statements of this section are intuitively clear. Nevertheless, their
proofs need some work.

Assume that S is a slim 4-cell of a planar semimodular lattice M . Let
γ : Pri(M ) → (Q; β) be a quasi-coloring. Let a and b be the colors of the
northwest edge and the northeast edge of S, respectively. Then we say that
the 4-cell S is colored by (a, b). On the set Q∗ := Q ∪ {c}, where c /∈ Q, let
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β∗ = quoQ∗

(
β ∪ {(c, a), (c, b)}

)
. Note that here the “elementary quasiorder-

ing” mentioned at the end of Section 1 is quoQ∗

(
(c, a), (c, b)

)
. Note also that if

β happens to be an ordering, not just a quasiordering, then β∗ is an ordering
as well. Let M∗ denote the lattice we obtain by adding a fork F to M at our
(a, b)-colored 4-cell, S, see Figure 3. Define a map γ∗ as follows:

γ∗ : Pri(M∗) → (Q∗; β∗), where

p 7→





c, if p = [x, x+] with x ∈ F ;

a, if p = [x−, x] with x ∈ Fright;

b, if p = [x−, x] with x ∈ Fleft;

γ([x+, y+]), if p = [x, y] with x, y ∈ F ;

γ(p), if 0p, 1p ∈M .

Note that γ∗ extends γ.

Lemma 5.1 (Fork Lemma). Assume that M , M∗, γ and γ∗ are given as
above. Then γ∗ : Pri(M∗) → (Q∗; β∗) is a quasi-coloring.

Proof of Lemma 5.1. It is fairly evident by the construction that γ∗ satisfies
(C1). To show that (C2) also holds, let us assume that p1, p2 ∈ Pri(M∗) such
that conM∗(p1) ≥ conM∗(p2). We want to show that γ∗(p1) ≥β∗ γ∗(p2). We
have to deal with two cases.

Case 1. We assume that
{
γ∗(p1), γ∗(p2)

}
⊆ Q. By (2.3), p1 ⇒⇒M∗ p2. Hence,

there are intervals ri = [xi, yi] ∈ Int(M∗) that form a sequence

p1 = r0 �M∗ r1 �M∗ · · · �M∗ rk = p2. (5.1)

Observe that the retraction homomorphism ψ provided by Lemma 4.5 sends
(5.1) to a congruence-perspectivity sequence

ψ(p1) = ψ(r0) �M ψ(r1) �M · · · �M ψ(rk) = ψ(p2)

in M . Indeed, since all prime intervals collapsed by Ker(ψ) are c-colored and
c /∈ Q, ψ(p) and ψ(q) remain prime intervals, and therefore all the ψ(ri) are
intervals (rather than singletons). By (2.3) again, the new sequence gives that
conM

(
ψ(p1)

)
≥ conM

(
ψ(p2)

)
. Since γ is a quasi-coloring, we conclude that

γ
(
ψ(p1)

)
≥β γ

(
ψ(p2)

)
. By β ⊆ β∗, this entails that γ

(
ψ(p1)

)
≥β∗ γ

(
ψ(p2)

)
.

The assumption γ∗(pi) /∈ Q and the definition of γ∗ imply that γ
(
ψ(pi)

)
=

γ∗(pi), for i = 1, 2. Hence, γ∗(p1) ≥β∗ γ∗(p2), as intended.

Case 2. We assume that {γ∗(p1), γ∗(p2)} is not a subset of Q. We want
to show that γ∗(p1) ≥β∗ γ∗(p2). This is obvious if γ∗(p1) = c = γ∗(p2).
The case γ∗(p1) = c 6= γ∗(p2) would contradict that conM∗(p1) ≥ conM∗(p2)
since conM∗(p1) = Ker(ψ) from Lemma 4.5 would be an atom in ConM∗.
Therefore, we assume that γ∗(p1) = d ∈ Q and γ∗(p2) = c. It suffices to find an
s ∈ Pri(M∗) such that conM∗(p1) ≥ conM∗(s) and γ∗(s) ∈ {a, b}. Indeed, then
the previous case will clearly imply that γ∗(p1) ≥β∗ γ∗(s) ∈ {a, b}, yielding
that γ∗(p1) ≥β∗ c = γ∗(p2).
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If p1 /∈ Pri(M ), then there exists a p′1 ∈ Pri(M ) such that γ∗(p1) = γ∗(p′1).
Then γ∗(p1) ≤β∗ γ∗(p′1), γ∗(p1) ≥β∗ γ∗(p′1), and (C1) yield that conM∗(p1) =
conM∗ (p′1). Therefore, we can assume that p1 ∈ Pri(M ).

By the assumption conM∗ (p1) ≥ conM∗ (p2), there is a sequence (5.1) such
that γ∗(p1) = d and γ∗(p2) = c. It is sufficient to find an ri that has a
prime subinterval s such that γ∗(s) ∈ {a, b}. Indeed, then we would get
conM∗ (p1) ≥ conM∗(ri) ≥ conM∗(s), which would do the job.

To harmonize with Figure 3, we say that the intervals of M are white. The
intervals of the order F are grey. The rest of the intervals, such as [x, x+]
for x ∈ F , are bicolored. (This terminology has nothing to do with the quasi-
colorings γ and γ∗.) We know that p1 is white and p2 is bicolored. Let ri be
the first interval in the sequence (5.1) that is not white.

Let us assume that ri is grey. We can assume that yi is not the top of F , since
otherwise, with respect to γ∗, an a-colored or b-colored prime subinterval would
be clearly at our disposal. Let j be the largest number such that i ≤ j ≤ k and
ri, ri+1, . . . , rj are all grey. Obviously, rj is a subinterval of ri. Hence, [x+

j , y
+
j ]

is a subinterval of [x+
i , y

+
i ]. Therefore,

[xσ1
i , yσ1

i ] ⇒⇒M [xσ2
j , y

σ2
j ] (5.2)

for any choice of the “signs” σ1, σ2 ∈ {+,−}. Since yj 6= 1F , it follows
easily that rj+1 is white. Hence, (5.2) clearly allows us to replace the “grey
segment” ri �M∗ ri+1 �M∗ · · · �M∗ rj of (5.1) by a white part. For example,
if ri−1 �M∗ ri is an ri−1

up→→M∗ ri, then we replace ri by [x+
i , y

+
i ]. If, say,

rj �M∗ rj+1 is an rj
up→→M∗ rj+1, then we replace rj by [x−j , y

−
j ]. After these

two replacements, (5.2) allows us to get rid of the grey segment in question.
We can do the same for all grey segments of (5.1).

Based on these considerations, we can assume that no grey interval occurs
in (5.1). Therefore ri is bicolored. Let us assume that yi ∈ F ; that is, we
assume that ri is a [white, grey] interval. If it is not the top of F , then [y−i , yi]
is an a- or b-colored subinterval of ri and we are ready. If yi is the top of F ,
then it has exactly two lower covers, whence ri still contains an a- or b-colored
subinterval, and we are ready again. The subscript i plays no special role.
Hence, it suffices to show that there is an ` ∈ {0, . . . , k} such that

r` has a [white, grey] subinterval. (5.3)

Using (5.3), we assume that ri is a [grey, white] interval, that is, yi /∈ F and
xi ∈ F . Then ri−1 �M∗ ri is an up congruence-perspectivity, since otherwise
xi−1, yi ∈M would imply that xi ∈M . Let z0 = yi−1 ∧ xi. If z0 is grey, then
[xi−1, z0] is a [white, grey] subinterval of ri−1, and we are ready by (5.3). So,
we assume that z0 is white.

Next, take a maximal chain z0 ≺ z1 ≺ · · · ≺ zm = yi−1 in [z0, yi−1]. Let
z′` := z` ∨ xi for ` = 0, . . . ,m. By semimodularity, xi = z′0 � z′1 � · · · �
z′m = yi. Since z′0 = xi is grey and z′m = yi is white, there is a subscript
s ∈ {1, . . . ,m} such that z′s−1 is grey, z′s is white and z′s−1 ≺ z′s. Since
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zs ∨ z′s−1 = zs ∨ z′s−1 ∨ xi = zs ∨ xi ∨ z′s−1 = z′s ∨ z′s−1 = z′s, we see that
[zs−1, zs]

up→→M∗ [z′s−1, z
′
s]. We infer from Lemma 4.4 that zs−1 is grey and zs

is white. Consequently, [xi−1, zs−1] is a [white, grey] subinterval of ri−1, and
we are ready by (5.3). �

The next construction is well-known and quite easy. Let S be a 4-cell of
a planar lattice M . (Semimodularity is not assumed here.) Replace this 4-
cell by a copy of M3, often called diamond, the five-element nondistributive
modular lattice. This means that we insert a new element, which is called the
eye, see G. Grätzer and E. Knapp [13]. We say that the new lattice M} is
obtained fromM by adding an eye to the 4-cell S. For example, this is the way
how S8 is obtained from S7, see Figure 2. This example indicates that this
construction destroys slimness. However, by G. Grätzer and E. Knapp [13,
Lemma 2],

M is semimodular iff M} is semimodular. (5.4)

Assume that γ : Pri(M ) → (Q; ν) is a quasi-coloring of a planar lattice M .
Let S be a 4-cell of M colored by (a, b). Define τ = quoQ

(
ν∪{(a, b), (b, a)}

)
∈

QuoQ. Note that this time the “elementary quasiordering” mentioned at
the end of Section 1 is quoQ

(
{(a, b), (b, a)}

)
. We add an eye to the covering

square S; the lattice we obtain is denoted by M}. We extend γ to a map

γ} : Pri(M}) → (Q; τ ), where p 7→

{
γ(p), if p ∈ Pri(M );

a, otherwise.

Note that Pri(M ) ⊆ Pri(M}) and γ} is an extension of γ.

Lemma 5.2 (Eye Lemma). For a planar lattice M , the map γ} is a quasi-
coloring.

Proof. If s ∈ Pri(M})−Pri(M ), then there is a s′ ∈ Pri(M ) such that γ}(s′) =
γ}(s), s′ is transposed to s and, therefore, conM}(s′) = conM}(s). Thus to
verify (C1) and (C2) for γ}, is suffices to deal with prime intervals of M .

In order to show that γ} satisfies (C1), assume that p, q ∈ Pri(M ) such
that

(
γ}(p), γ}(q)

)
∈ τ . We have to show that conM} (p) ≤ conM}(q).

By transitivity, we can assume that
(
γ}(p), γ}(q)

)
=

(
γ(p), γ(q)

)
∈ ν ∪

{(a, b), (b, a)}. If
(
γ(p), γ(q)

)
∈ ν, then the fact that γ is a quasi-coloring

yields that conM (p) ≤ conM (q). Then q ⇒⇒M p implies that q ⇒⇒M} p,
whence conM} (p) ≤ conM} (q). If

(
γ(p), γ(q)

)
∈ {(a, b), (b, a)}, then since γ is

a quasi-coloring, both p and q are congruence-equivalent to appropriate edges
of the just inserted diamond. Consequently, conM}(p) ≤ conM} (q) follows
again. Thus γ} satisfies (C1).

Next, to show that γ} satisfies (C2), assume that p, q ∈ Pri(M ) such that
conM} (p) ≥ conM}(q). Using (2.3), we obtain that there are ri = [xi, yi] ∈
Pri(M}), i = 0, . . . , k, such that

p = r0 �M} r1 �M} · · · �M} rk = q. (5.5)
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Obviously, xi < yi, for i = 0, . . . , k. Let e denote the unique element of
M} −M , the “eye” inserted into S. Intervals whose bottom or top is e will
be called e-critical. Let ri be the first e-critical interval. (The case when (5.5)
contains no e-critical intervals will be considered later.) Let j ∈ {i, . . . , k} be
the largest subscript such that ri, . . . , rj are e-critical. Clearly,

p ⇒⇒M ri−1. (5.6)

By duality, we can assume that ri−1
up→→ ri. Since e is a doubly irreducible

element, it cannot be yi. Hence, xi = e, yi = yi−1 ∨ e and xi−1 ≤ e.
Since e /∈ {xi−1, yi}, we see that xi−1 ≤ 0S and 1S ≤ yi. Extend the chain
{xi−1, 0S, e, 1S, yi} to a maximal chain C of M}. This chain cuts M} into
a left side and a right side, see D. Kelly and I. Rival [26, Lemma 1.2]. The
intersection of these sides is C. Suppose yi−1 ‖ e. Then we choose the corner
wi of S opposite to yi−1. That is, if yi−1 is on the left of C, then let wi = wR

S ,
and let wi = wL

S if yi−1 is on the right of C. It is easy to see (based on
D. Kelly and I. Rival [26, Lemma 1.2]) that yi = yi−1∨e = yi−1∨wR

S . That is,
ri−1

up→→M [wi, yi]. Next, assume that yi−1 is comparable with e. Then we can
choose wi ∈ {wL

S, w
R

S} arbitrarily. Since yi−1 = yi, and xi−1 ≤ 0S , we have
ri−1

up→→M [wi, yi] again.
By the definition of j, all the congruence-perspectivities (if there are any)

between ri and rj are down congruence-perspectivities. Hence, yj ≤ yi and
xj = e. Let wj = wi, and observe that ri−1 ⇒⇒M [wj, yj]. This and (5.6)
imply that

p ⇒⇒M [wj, yj]. (5.7)

Assume that rj �M} rj+1 is an up congruence-perspectivity. Then the
meet-irreducibility of e yields that yj ∧ xj+1 ≥ 1S . Hence, [wj, yj]

up→→M rj+1,
which together with (5.7) yields that p ⇒⇒M rj+1. Let us replace the initial
segment of (5.5) preceding rj+1 by a sequence witnessing p ⇒⇒M rj+1 in M .
So, in case of rj

up→→M} rj+1, we can reduce the number of e-critical intervals
in (5.5).

Next, assume that rj
dn→→M} rj+1. Let us take a maximal chain that extends

the chain {xj+1, 0S , e, 1S, yj}, and fix a w′
j ∈ {wL

S , w
R

S} such that yj+1 and
w′

j are on opposite sides of this maximal chain. Keeping e ∧ yj+1 = xj+1

in mind and using D. Kelly and I. Rival [26, Lemma 1.2] again, we derive that
w′

j ∧ yj+1 = xj+1. Then [w′
j, yj ]

dn→→M rj+1. If w′
j = wj, then (5.7) implies

p ⇒⇒M rj+1 again, and we reduce the number of e-critical intervals in (5.5) by
improving the initial segment of (5.5) the same way as previously.

We are left with the most complex case when w′
j 6= wj. Then we consider

the sequence
[w′

j, yj ] �M} rj+1 �M} · · · �M} rk = q. (5.8)

This sequence has fewer e-critical intervals than the original (5.5).
For I, J ∈ Int(M}), let us say that the interval I (γ},M )-majorizes the

interval J if we can fix a maximal chain C(I) in I ∩M and a maximal chain
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C(J) in J ∩M such that for each r ∈ Pri
(
C(J)

)
there exists an r′ ∈ Pri

(
C(I)

)

with γ}(r′) ≥τ γ
}(r).

We claim that [wj, yj ], the second interval in (5.7), (γ},M )-majorizes the
first interval of (5.8), [w′

j, yj]. To see this, let C be a maximal chain in [1S, yj ].
Define C

(
[wj, yj]

)
:= C∪{wj} and C

(
[w′

j, yj]
)

:= C∪{w′
j}. The only difference

between Pri
(
C([w′

j, yj])
)

and Pri
(
C([wj, yj ])

)
is that [wj, 1S] is replaced by

[w′
j, 1S]. The pair of their γ}-colors, (a, b) or (b, a), belongs to τ . Hence,

[wj, yj] (γ},M )-majorizes [w′
j, yj ].

Thus, instead of the original sequence (5.5), now we have a congruence-
projectivity in M , (5.7), and a new sequence, (5.8), such that the last member
of (5.7) (γ},M )-majorizes the first member of the new sequence, and the
new sequence has fewer e-critical intervals than the original one. Iterating the
above procedure to the new sequence, finally we receive a finite number t ∈ N0

of congruence-projectivities

p = I′0 ⇒⇒M I1, I
′
1 ⇒⇒M I2, I

′
2 ⇒⇒M I3, . . . , I

′
t ⇒⇒M It+1 = q (5.9)

such that Ii (γ},M )-majorizes I′i for i = 1, . . . , t. Observe that this assump-
tion works (with t = 0) also for the case when (5.5) contains no e-critical
interval. The fixed chains for (γ},M )-majorizations will be denoted by C(Ii)
and C(I′i), respectively.

Next, we define intervals st+1 = q, s′t, st, s
′
t−1, st−1, . . . , s1, s

′
0 such that si ∈

Pri
(
C(Ii)

)
and s′i ∈ Pri

(
C(I′i)

)
for all meaningful subscripts. We know that

st+1 = q. Let 0 ≤ i ≤ t, and suppose that si+1 is already defined. We get
from I′i ⇒⇒M Ii+1 that

∨

r∈Pri(C(I′
i))

conM (r) = conM (I′i) ≥ conM (Ii) ≥ conM (si+1)

holds in ConM . Hence, (2.1) together with (2.2) yield the existence of an
s′i ∈ Pri

(
C(I′i)

)
such that conM (s′i) ≥ conM (si+1). Since γ is a quasi-coloring,

we have that γ(s′i) ≥ν γ(si+1). But γ} extends γ and τ ⊇ ν, so we get that

γ}(s′i) ≥τ γ
}(si+1). (5.10)

Since Ii (γ},M )-majorizes I′i , we can choose an si ∈ Pri
(
C(Ii)

)
such that

γ}(si) ≥τ γ
}(s′i). (5.11)

Finally, s′0 = p since I′0 = p has no other prime subinterval. Taking s′0 = p,
st+1 = q, and (5.10) and (5.11) for all meaningful subscripts into account, the
desired inequality γ}(p) ≥τ γ}(q) follows by transitivity. Thus γ} satisfies
(C2). �

Next, assume that M is a planar semimodular lattice, and S is a slim 4-cell
of M . Add a fork to M at S; we get M∗. Then, in the place of S, a copy of S7

appears. For example, see Figure 3. By adding an eye to the right upper 4-cell
of this S7 we obtain the lattice M♦ := (M∗)}. See Figure 3 for an illustration.
We will say that M♦ is obtained fromM by adding a (right) e-fork at S. (Here
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Figure 4. Adding a strong corner

“e” comes from “eye”.) Note that the original S of M has changed to an S8,
whose left-right (west-east) orientation is relevant.

Assume that γ : Pri(M ) → (Q; δ) is a quasi-coloring ofM and, in addition to
the previous paragraph, S is (a, b)-colored. In QuoQ, let δ♦ = quo

(
δ∪{(b, a)}

)
.

Consider the map

γ♦ : Pri(M♦) → (Q; δ♦), p 7→

{
γ∗(p), if p ∈ Pri(M∗) and γ∗(p) ∈ Q;

b, otherwise,

see Figure 3. Lemmas 5.2 and 5.1 obviously imply the following statement.

Lemma 5.3 (E-fork Lemma). With the above assumptions and notations, γ♦

is a quasi-coloring.

Let M . be an arbitrary lattice of finite length, and let b be a doubly irre-
ducible element of M ., that is, b ∈ Ji(M .)∩Mi(M .). Then M = M . − {b} is
a sublattice of M .. Since b /∈ {0, 1} by definition, it has a unique lower cover a
and a unique upper cover c. Assume that there is a unique element d ∈ M

such that a ≺ d ≺ c in M . Assume also that a ∈ Mi(M ) and c ∈ Ji(M ).
Then b is a quasi-corner of M .. We say that M . is obtained from M by
adding a quasi-corner to the “short chain” a ≺ d ≺ c. Clearly, we can add a
quasi-corner to a short chain a ≺ d ≺ c of M iff a ∈ Mi(M ) and c ∈ Ji(M ).

We are usually interested in the case when b is on the boundary of M ., see
Figure 4. Then a and c are also on the boundary. In this situation, b is called a
strong corner ofM . and we speak of adding a strong corner to a short subchain
a ≺ d ≺ c of the boundary, and we say that the short chain a ≺ d ≺ c admits
a strong corner. The notion of strong corners (but not using the adjective
“strong”) for planar semimodular lattices was introduced in G. Czédli and
E. T. Schmidt [5]. While strong corners are necessarily weak corners and quasi-
corners, the converse is not true. For example, wL

S7
in Figure 2 witnesses that,

even in a rectangular lattice, weak corners are not necessarily strong corners.
The notion of quasi-corners and that of weak corners are independent.
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Lemma 5.4 (Corner Lemma). Assume that M . is obtained from M by adding
a quasi-corner b to a short chain a ≺ d ≺ c. Then

(i) M is a congruence-preserving sublattice of M .;
(ii) if δ : Pri(M ) → (Q; ν) is a quasi-coloring, then its “natural extension”

δ. : Pri(M .) → (Q; ν), where p 7→





δ(p), for p ∈ Pri(M );

δ
(
[d, c]

)
, for p = [a, b];

δ
(
[a, d]

)
], for p = [b, c],

is also a quasi-coloring.

Proof. In order to prove (i), we define

γ. : Pri(M .) →
(
Ji(ConM );≤

)
, p 7→





conM (p), if p ∈ Pri(M ),

conM (d, c), if p = [a, b],

conM (a, d), if p = [b, c].

It suffices to show that γ. is a coloring. Indeed, then Lemma 3.1 together
with Pri(M ) ⊆ Pri(M .) imply the present statement. It is easy to see that γ.

satisfies (C1). To prove that it satisfies (C2), assume that p, q ∈ Pri(M .) such
that conM.(p) ≥ conM.(q). Like in case of (Eye) Lemma 5.2 (see the first
paragraph of its proof), we can assume that p, q ∈ Pri(M ). Using (2.3) we
obtain that there are a k ∈ N0 and ri = [xi, yi] ∈ Pri(M .), i = 0, . . . , k, such
that

p = r0 �M. r1 �M. · · · �M. rk = q. (5.12)

For r ∈ Int(M .), let IntM (r) stand for the collection of all those subintervals
s of r for which 0s, 1s ∈M . We claim that, for i = 0, 1 . . . , k,

conM (p) ≥ conM (r′i) for all r′i ∈ IntM (ri). (5.13)

Since IntM (q) = {q}, (5.13) will imply γ.(p) = conM(p) ≥ conM (rk) =
conM (q) = γ.(q) and, therefore, (C2) for γ. . Hence, it suffices to prove (5.13).

The validity of (5.13) for i = 0 needs no proof. Assume that i < k and (5.13)
holds for 0, . . . , i; we want to show that it holds for i+ 1. We can assume that
ri �M. ri+1 is a parallel perspectivity, since otherwise ri+1 is a subinterval of
ri and (5.13) for i+1 follows evidently from IntM(ri) ⊇ IntM (ri+1). By duality,
we can assume that ri �M. ri+1 is a parallel up-perspectivity ri

up→→M. ri+1.
That is,

yi ‖ xi+1, yi+1 = yi ∨ xi+1 and xi ≤ xi+1. (5.14)

There are four cases to consider.

Case 1. We assume that {xi, yi} ⊆ M and {xi+1, yi+1} ⊆ M . Then we have
conM (p) ≥ conM (ri) by the induction hypothesis, conM (ri) ≥ conM (ri+1)
since ri

up→→M ri+1, and we conclude conM (p) ≥ conM (ri+1) by transitivity.
Thus the inequality conM(p) ≥ conM (r′i+1) for all r′i+1 ∈ IntM (ri+1) is clear.
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Case 2. We assume that {xi, yi} ⊆ M but {xi+1, yi+1} 6⊆ M . Since b is join-
irreducible in M ., (5.14) gives that b 6= yi+1. Hence, b = xi+1. If r′i+1 ∈
IntM (ri+1), then r′i+1 ∈ IntM

(
[c, yi+1]

)
since c is the only upper cover of b in

M .. By (5.14) we have ri
up→→M [c, yi+1]. Hence, conM(p) ≥ conM

(
[c, yi+1]

)
≥

conM (r′i+1) follows easily like in the previous case.

Case 3. We assume that {xi, yi} 6⊆ M and {xi+1, yi+1} 6⊆ M . Since ri �M.

ri+1 is a parallel congruence-perspectivity, b ∈ {xi, yi} simultaneously with
b ∈ {xi+1, yi+1} is impossible. So this case cannot occur.

Case 4. We assume that {xi, yi} 6⊆ M but {xi+1, yi+1} ⊆ M . If b = xi, then
c ≤ yi ∧ xi+1 follows from (5.14) and b ∈ Mi(M .). Hence, [c, yi]

up→→M ri+1,
and conM (p) ≥ conM (r′i+1) follows easily like in the previous cases. So, we
can assume that yi = b. Let t := xi+1 ∨ a. Since a ∈ Mi(M ) and xi+1 6≤ a by
(5.14), t > a. This and yi+1 = b ∨ xi+1 = c ∨ xi+1 imply that

t = xi+1 ∨ a = xi+1 ∨ d and yi+1 = t ∨ c. (5.15)

Let j be the smallest subscript such that yj = b. Then 1 ≤ j ≤ i + 1
since yi+1 = b. Since yj−1 6= b and b ∈ Ji(M .), rj−1 �M. rj cannot be
an up congruence-perspectivity. So rj−1

dn→→M. rj . Assume first that this
is a comparable congruence-perspectivity. Then rj is a subinterval of rj−1,
whence a, c ∈ rj−1. So [d, c] ∈ IntM (rj−1) and the induction hypothesis
yields that conM(p) ≥ conM (d, c). Secondly, assume that rj−1

dn→→M. rj is
a parallel congruence-perspectivity. Then yj−1 > b gives that yj−1 ≥ c.
On the other hand, xj−1 6≥ b yields that xj−1 6≥ c, whence xj−1 ∧ c < c

together with c ∈ Mi(M ) implies xj−1 ∧ c ≤ d. Therefore, we have that
rj−1

dn→→M [xj−1∧c, c]
up→→M [d, c]. Since conM (p) ≥ conM (rj−1) by the induction

hypothesis, conM (p) ≥ conM (d, c) follows again. So, conM (p) ≥ conM (d, c) in
both cases. This implies by [d, c] up→→M [t, t ∨ c] = [t, yi+1] that conM(p) ≥
conM (t, yi+1).

Next, [xi, a] ∈ IntM(ri), and conM (p) ≥ conM (xi, a) by the induction hy-
pothesis. Since [xi, a]

up→→M [xi+1, t] by (5.15), we obtain that conM (p) ≥
conM (xi+1, t). Thus conM (p) ≥ conM (xi+1, t)∨conM (t, yi+1) = conM(ri+1) ≥
conM (r′i+1). This completes Case 4, the induction for (5.13), and the proof of
part (i).

Finally, after letting η
(
[a, b]

)
:= [d, c] and η

(
[b, c]

)
:= [a, d], we conclude

part (ii) from part (i) and Lemma 3.2. �

Lemma 5.5 (Zero Lemma). Let M be a finite lattice. Let us assume that
γ : Pri(M ) → (Q; ν) is a quasi-coloring. Let M◦ be the lattice that we get
from M by adding a new least element. With e /∈ Q, we define Q◦ = Q ∪ {e}
and ν◦ = quoQ◦ (ν) ∈ QuoQ◦. Then

γ◦ : Pri(M◦) → Q◦, where p 7→

{
γ(p), if p ∈ Pri(M );

e, if p = [0M◦ , 0M ],
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is a quasi-coloring.

Clearly, e is incomparable with all elements of Q. Hence, if γ is a coloring,
then so is γ◦. We notice (but will not use) the following consequence of the
above lemma: ConM◦ is (isomorphic to) the direct product of ConM and the
two-element chain.

Proof of Lemma 5.5. Since conM◦ (0M◦ , 0M) collapses no old edge, and for any
old edge p ∈ Pri(M ), conM◦ (p) does not collapse the new edge [0M◦, 0M ], the
lemma follows trivially. �

6. The structure of rectangular lattices

Assume that M1 andM2 are lattices, and that S := M1∩M2 is a filter ofM1

and an ideal of M2. Then we can form the classical gluing M := M1 ∪S M2 of
M1 and M2 over S, see G. Grätzer [10, I.2.4], G. Grätzer [9, Exercise I.4.20],
or G. Grätzer [11, IV.2.1], for example. We know that M1 is an ideal and M2

is a filter of M , and M = M1 ∪M2. The following lemma is easy.

Lemma 6.1. Gluing preserves semimodularity.

Having no reference at hand, we give a proof.

Proof. With the previous notation, it is well-known that for x ∈ M1 and
y ∈ M2,

x ≤ y iff there is a z ∈ S with x ≤ z ≤ y. (6.1)

Assume that a, b, c ∈ M with a ≺ b; we have to show that a ∨ c � b ∨ c. We
get from (6.1) that {a, b} ⊆ M1 or {a, b} ⊆ M2.

Assume first that {a, b} ⊆ M2. Assume that c /∈ M2 since otherwise the
semimodularity of M2 does the job. Then (6.1) yields a d ∈ S such that c ≤
d ≤ a∨c. Hence, the semimodularity ofM2 implies a∨c = a∨d � b∨d = b∨c.

Secondly, assume that {a, b} ⊆ M1. Assume c /∈ M1 since otherwise the
semimodularity of M1 does the job. Then (6.1) yields a d ∈ S such that
a ≤ d ≤ a ∨ c. The semimodularity of M1 yields that d = a ∨ d � b ∨ d. Then
the semimodularity of M2 gives the desired a∨c = d∨c � b∨d∨c = b∨a∨c =
b ∨ c. �

By G. Grätzer and E. Knapp [14, Lemma 4], the principal filters and the
principal ideals that the weak corners of a rectangular lattice generate are
chains; these chains will be called the northwest boundary (chain), the north-
east boundary (chain), etc. For example, the northwest boundary of S8 is a
two-element chain while the southeast boundary is a three-element chain, see
Figure 2. The following lemma offers an easy way to recognize rectangular
lattices. For another characterization see Lemma 6.4 to follow.

Lemma 6.2 (G. Grätzer and E. Knapp [14, Lemma 6]). A planar semimodular
lattice with exactly on left weak corner and exactly one right weak corner is
rectangular iff 1 is join-reducible and 0 is meet-reducible.
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By Lemma 4.1, all 4-cells of a slim lattice are slim.

Lemma 6.3. Let M be a slim rectangular lattice. Assume that M∗ is obtained
from M by adding a fork to a 4-cell. Then M∗ is a slim rectangular lattice.

Proof. We know from Lemma 4.3 that M∗ is a slim semimodular lattice.
Clearly, M is a {0, 1}-sublattice of M∗. Let F = M∗ − M denote the
fork in question. Then the boundary of M∗ is the union of the boundary
of M and {0Fleft , 0Fright}. Since 0Fleft and 0Fright are meet-reducible, the weak
corners of M∗ and M are the same. Therefore, the statement follows from
Lemma 6.2. �

The distinguished role of rectangularity is partly explained by the following
two lemmas.

Lemma 6.4. Let M be planar semimodular lattice.

(i) M is a rectangular lattice iff we cannot add a strong corner to it.
(ii) We can get a rectangular lattice M ′ from M by adding strong corners,

one by one, in a finite number of steps.

Proof. We fix a planar diagram of M (in the Euclidean plane). Omit all the
eyes (middle elements of cover-preserving diamonds) from M . That is, we
perform a (total) slimming in the sense of G. Grätzer and E. Knapp [13].
This way we obtain M ′, which is a slim semimodular lattice by (5.4) and
Lemmas 4.1 and 4.2.

Since M ′ is derived fromM by omitting “inner” elements (the eyes of cover-
preserving diamonds), the boundary of M ′ is the same as the boundary of M .
Let x /∈ {0, 1} be an element of this common boundary. Observe that if we
add an eye to a planar lattice, then the join-irreducible elements remain join-
irreducible, and the join-reducible elements remain join-reducible. This fact
and its dual yield that, for any x on the common boundary,

x ∈ Ji(M ) iff x ∈ Ji(M ′), and x ∈ Mi(M ) iff x ∈ Mi(M ′). (6.2)

Therefore, if a ≺ d ≺ c is a short chain on the common boundary, then

a ≺ d ≺ c in M admits a corner iff a ≺ d ≺ c in M ′ admits a corner. (6.3)

On the other hand, M ′ is a {0, 1}-sublattice of M . Hence, it follows easily
from (6.2) and Lemma 6.2 that

M is rectangular iff M ′ is rectangular. (6.4)

Combining (6.3) and (6.4), we conclude that it is sufficient to prove the lemma
for slim semimodular lattices. So from now on in the proof, let M be a slim
semimodular lattice.

Firstly, we assume that M is rectangular. Assume by way of contradiction
that a short subchain a ≺ d ≺ c of the boundary of M admits a strong corner.
Let, say, d be on the left boundary. Then so are a and c, the only lower cover
and the only upper cover of d, since the left boundary is a maximal chain. As
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usual, the left weak corner of M is denoted by wL

M . Recall from G. Grätzer
and E. Knapp [14, Lemmas 3 and 4] that

↑wL

M and ↓wL

M are subchains of the left boundary, (6.5)

↑wL

M − {1} ⊆ Mi(M ) and ↓wL

M − {0} ⊆ Ji(M ). (6.6)

Therefore, since wL

F is the only doubly irreducible element on the left boundary
and a ∈ Mi(M ), a /∈ ↓wL

M − {0, wL

M}. Hence, a = 0 or a ≥ wL

M . But
0 = wL

M ∧wR

M is meet-reducible, which excludes a = 0. Hence, a ≥ wL

M . The
dual argument yields c ≤ wL

M . So we get c ≤ wL

M ≤ a, which contradicts
a < c. Thus, if M is rectangular, then we cannot add a strong corner to it.

Conversely, assume that M is not rectangular. Combining G. Czédli and
E. T. Schmidt [5, Thm. 12] with Lemma 6.3, we conclude that M can be
obtained from an appropriate slim rectangular lattice M ′ by removing strong
corners, one by one. In other words, starting from M and adding strong
corners, one by one, we can get a slim rectangular lattice. This proves part
(ii). Since M is a slim semimodular non-rectangular lattice, it follows that at
least one strong corner can be added to it. This proves part (i). �

Lemma 6.5. Let M1 be a planar semimodular lattice with a filter F , and
assume that F is a rectangular lattice. Then M1 is a congruence-preserving
sublattice of an appropriate rectangular lattice M2 such that F is a filter of M2

and Pri(M1) ⊆ Pri(M2).

Proof. We infer from Lemma 6.4 that by adding strong corners to M1, one
by one, we can get a rectangular lattice M2. Obviously, Pri(M1) ⊆ Pri(M2).
(Corner) Lemma 5.4 yields that M1 is a congruence-preserving sublattice of
M2. So, all we have to show is that F remains a filter by adding just one
strong corner.

Let F = ↑u inM1. Assume by way of contradiction that we can add a strong
corner b to a short subchain a ≺ d ≺ c of the boundary of M1 such that, in the
enlarged lattice, b ∈ ↑u. Then u ≤ a ≺ d ≺ c. Since the intersection of F
with the boundary of M1 is clearly a subset of the boundary of F = ↑u, we
obtain that we can add a strong corner to the rectangular lattice F . But this
contradicts Lemma 6.4 since F is a rectangular lattice. Hence, F = ↑u in M2,
so F remains a filter. �

7. Congruence-preserving rectangular filters

Given a subset S of a lattice M , S is said to be a congruence-determining
subset, if each congruence of M is determined by its restriction to S. If S
is a sublattice, not just a subset, then we speak of a congruence-determining
sublattice, see G. Grätzer [11, III.1.6]. Clearly, a sublattice S is congruence-
determining iff %M

S
: ConM → ConS is injective. For example,

Lemma 7.1 (G. Grätzer and J. B. Nation [21]). Every maximal chain of a
finite length semimodular lattice is a congruence-determining sublattice.
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Figure 5. The construction of M• for Lemma 7.2

By a chain ideal, we mean an ideal that is a chain.

Lemma 7.2. Each rectangular lattice M is a congruence-preserving filter of
an appropriate rectangular lattice M• such that the southwest boundary of M•

is a congruence-determining chain ideal.

Proof. Let M be a rectangular lattice. We claim that

↓wL

M ∪ ↓wR

M is a congruence-determining subset of M . (7.1)

Here ↓wL

M and ↓wR

M are the southwest boundary chain and the southeast
boundary chain by (6.5). Let G denote the (total) slimming of M in the sense
of G. Grätzer and E. Knapp [13]. That is, we obtainG fromM by deleting eyes
(the middle elements of cover-preserving M3 sublattices) as long as possible.
Since deleting an eye results in a congruence-determining (but not necessar-
ily congruence-preserving) sublattice, we conclude that G is a congruence-
determining sublattice of M . Furthermore, ↓wL

G = ↓wL

M , and ↓wR

G = ↓wR

M .
Hence, to prove (7.1), it suffices to prove that

↓wL

G ∪ ↓wR

G is a congruence-determining subset of G; (7.2)

the progress is that G, as opposed to M , is a slim rectangular lattice. We
know from (6.5) and Lemma 7.1 that the left boundary chain is ↑wL

G ∪ ↓wL

G,
and it is a congruence-determining sublattice of G. Hence, it suffices to show
that for each p ∈ Pri(↑wL

G ∪ ↓wL

G) there is a q ∈ Pri(↓wL

G ∪ ↓wR

G) such that
p ⇐⇔⇒ q. For p ∈ Pri(↓wL

G), we can let q := p.
So assume that p belongs to the northwest boundary chain, that is, p ∈

Pri(↑wL

G). By G. Czédli and E. T. Schmidt [4, Lemma 12], there is a sequence
of prime intervals r0 = p, r1, . . . , rk such that ri−1 ∪ ri is a covering square
(that is, a 4-cell) for i = 1, . . . , k, and rk belongs to ∈ Pri(↑wR

G ∪ ↓wR

G), the
right boundary chain. It follows that ri−1 �G ri for i = 1, . . . , k. Let q := rk.
Since 0p ∈ ↑wL

G, 0r0 = 0p ∈ Mi(G) by (6.6). Hence, r0 �G r1 actually is
r0

dn→→G r1. Hence, it follows from [4, Lemma 12] that all the ri−1 �G ri are
down congruence-perspectivities. In particular, rk−1

dn→→G rk = q, whence 0q

is meet-reducible. Hence, the left-right dual of (6.6) implies that 0q /∈ ↑wR

G.
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Consequently, q ∈ Pri(↓wR

G), as requested. This proves (7.2) and, therefore,
(7.1).

Utilizing (7.1), we are now close to constructing M•, see Figure 5. Let
wR

M = x0 � x1 � · · · � xn = 0M be the southeast boundary chain of M .
Take its direct square, T . Apply the gluing to T and M along the southeast
boundary chain of M . This way we get M ′, see Figure 5. Lemma 6.2 yields
easily that M ′ is a rectangular lattice.

Let us denote the order
(
Ji(Con(M ));≤

)
by (Q; ν). Consider the nat-

ural coloring γ : Pri(M ) → (Q; ν), defined by p 7→ conM (p). Let Q′ =
Q ∪ {bn, . . . , b1} where the set {bn, . . . , b1} is disjoint from Q. Let ν′ =
quoQ′(ν) ∈ QuoQ′. Note that, modulo ν′, every bi is incomparable with
all elements of Q. Clearly, M ′ is obtained from M by adding a new 0 (n
times) and then adding a strong corner n2 times. Hence, it follows easily
from (Zero) Lemma 5.5 and (Corner) Lemma 5.4 that γ extends to a coloring
γ′ : Pri(M ′) → (Q′; ν′).

In the next step, add an eye to each diagonal square of T , see Figure 5.
This way we get M•. It is rectangular, since so is M ′. Hence, the southwest
boundary of M• is a chain ideal by (6.5). Let

ν• := quoQ′

(
ν′∪

⋃

1≤i≤n

{(ai, bi), (bi, ai)}
)

= quoQ′

(
ν∪

⋃

1≤i≤n

{(ai, bi), (bi, ai)}
)
.

A repeated use of (Eye) Lemma 5.2 yields a quasi-coloring γ• : Pri(M•) →
(Q; ν•) that extends γ′. Note that γ• also extends γ. Next, a straightforward
application of Lemma 2.1 gives a coloring δ : Pri(M•) → (Q; ν) such that δ
is an extension of γ. Since Pri(M ) ∩ Pri(M•) = Pri(M ), we conclude from
Lemma 3.1 that M• is a congruence-preserving extension of M .

Finally, the construction of M• together with (6.5) and (6.6) makes it clear
that the southwest boundary chain of M• is the union of the chain inter-
vals [0M , w

L

M ] and [0M• , 0M ]. These intervals are understood in M•. Ob-
serve that [0M , w

L

M ] is ↓wL

M in M . Observe also that, due to the eyes added
to T , each prime interval of ↓wR

M is congruence-equivalent to a prime inter-
val of [0M•, 0M ]. These facts, together with (7.1) and the fact that M is a
congruence-determining (since congruence-preserving) sublattice ofM•, imply
that the southwest boundary chain of M• is a congruence-determining subset
of M•. �

8. The Main Lemma

Given two quasiordered sets, (A1; ν1) and (A2; ν2), we say that (A2; ν2) is an
extension of (A1; ν1) if A1 ⊆ A2 and ν1 ⊆ ν2. (Note that ν1 may be a proper
subset of the restriction of ν2 to A1.) The key construction of the paper is
provided by the following lemma.

Lemma 8.1 (Main Lemma). Let L be a rectangular lattice. Let γ : Pri(L) →
(Q; ν) be a quasi-coloring. Assume that (R; ζ) is a quasiordered set that is an
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Figure 6. The “one-eyed ladder” of length n + 1

extension of the quasiordered set (Q; ν). Then there exist a rectangular lattice
K and a quasi-coloring δ : Pri(K) → (R; ζ) such that L is a filter of K and δ
extends γ.

Note that in this situation, Pri(L) ⊆ Pri(K) since L is a filter. Hence, the
restriction δePri(L) equals γ. Before proving Lemma 8.1, we illustrate its power
with the following proof.

Second proof of Lemma 1.4. Let (R; ζ) stand for
(
Ji(D);≤

)
. Denoting the

equality relation by ω, let (Q; ν) be
(
Ji(D);ωJi(D)

)
. Denote |Ji(D)| by n.

Define L, which is a “one-eyed ladder” of length n + 1, by Figure 6. It is
trivial (and follows easily from Lemmas 5.2 and 5.4) that Ji(ConL) is an n-
element antichain. Hence, it can be colored by (Q; ν). Applying Lemma 8.1,
we get a rectangular lattice colored by the order (R; ζ), and ConK ∼= D follows
from (2.7). �

Proof of Lemma 8.1. First we assume that the southwest boundary chain of L,
denoted by C, is a congruence-determining sublattice. By (6.5), C is an ideal
of L. Its top element will be denoted by 1C. Let {a1, . . . , an} be the γ-colors
of the prime intervals s1, . . . , sn of C, listing them downwards, see (a part of)
Figure 7. (Since only the southwest boundary of L is relevant, the interior of L
is not drawn.) Note the ai are not necessarily distinct, and {a1, . . . , an} ⊂ Q

(proper subset) is possible. Let {c1, . . . , cm} := Q− {a1, . . . , an}; possibly an
empty set with m = 0. We claim that

(∀i ∈ {1, . . . ,m}) (∃j ∈ {1, . . . , n})
(
(ci, aj) ∈ ν and (aj, ci) ∈ ν

)
. (8.1)

Let i ∈ {1, . . . ,m}. Since γ is surjective by definition, there exists a p ∈ Pri(L)
with γ(p) = ci. Since C is congruence-determining, each congruence of L is the
join of some conL(sj). Applying this fact to the join-irreducible conL(p), we get
a j ∈ {1, . . . , n} such that conL(p) = conL(sj). That is, conL(p) ≤ conL(sj)
and conL(sj) = conL(p). Since γ(p) = ci and γ(sj) = aj, so (C2) implies (8.1).
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Figure 7. Examples for K0 and K3

Let {an+1, . . . , ak} := R − Q; if it is an empty set then k = n. Let C0 be
a chain of length n − k with prime intervals sn+1, . . . , sk, enumerating them
downwards.

Let L′ be the Hall-Dilworth gluing of C0 and L over the singleton {0L} =
{1C0}. Let C′ = C∪C0; it is a chain ideal of L′ with prime intervals s1, . . . , sk.
Define ν′ = quoR(ν) ∈ QuoR. Note that ν ⊆ ζ implies that ν′ ⊆ ζ. Extend
the map γ from Pri(L) to Pri(L′) as follows:

γ′ : Pri(L′) → (R; ν′), where p 7→

{
γ(p), if p ∈ Pri(L);

ai, if p = si ∈ Pri(C0).

Since L′ is obtained from L by adding a new zero, one by one, k−n times, we
infer from (Zero) Lemma 5.5 that γ′ is a quasi-coloring.

Next, let S = R ∪ {b1, . . . , bk} where the bi are distinct new elements out-
side R. That is, our sets are as follows:

Q = {a1, . . . , an, c1, . . . , cm},
R = {a1, . . . , an, . . . , ak, c1, . . . , cm},
S = {a1, . . . , an, . . . , ak, c1, . . . , cm, b1, . . . , bk}.

Take the direct square T of C′. It is a rectangular lattice. We identify the
northeast boundary of T with C′. So C′ becomes a filter of T . The prime
intervals of the northwest boundary of T will be denoted by r1, . . . , rk (enu-
merating them downwards). Let K0 be the gluing of T and L′ over C′, see
Figure 7. Note that ↓1C in K0 is T .



Vol. 00, XX Homomorphisms as restrictions of congruences 27

Let ξ0 := quoS(ν) = quoS(ν′) ∈ QuoS. Extend γ′ as follows:

β0 : Pri(K0) → (S; ξ0), where p 7→





γ′(p), if p ∈ Pri(L′),

ai, if p ∈ Pri(T ) and p ⇐⇔⇒T si,

bi, if p ∈ Pri(T ) and p ⇐⇔⇒T ri.

See Figure 7, where the colors are given only for some of the prime intervals.
Instead of gluing T to L′, we can get K0 also in the following way. First,
by adding new zeros k times, we add the southeast boundary of T . Then we
add a left strong corner k2 times. Thus, using (Zero) Lemma 5.5 k times and
(Corner) Lemma 5.4 k2 times, we infer that β0 is a quasi-coloring.

Next, we linearly order {1, . . . , k} × {1, . . . , k}: (1, 1) l (2, 1) l (1, 2) l
(3, 1) l (2, 2) l (1, 3) l (4, 1) l · · ·l (k, k). That is, (i1, j1) l (i2, j2) iff either
i1 + j1 < i2 + j2, or i1 + j1 = i2 + j2 and j1 < j2. Let

ζ ∩ {a1, . . . , ak}2 be listed as {(ai1 , aj1), . . . , (ait, ajt)} (8.2)

such that (i1, j1) l (i2, j2) l · · ·l (it, jt).
Now we are ready to define rectangular lattices Kf , quasiorderings ξf and

quasi-colorings βf : Pri(Kf ) → (S; ξf ) for f = 0, 1, . . ., t by induction as fol-
lows. The case f = 0 is already done. We will obtain Kf from Kf−1 by
adding an e-fork. The eyes of the previously added e-forks will play a special
role. Notice that only T will change but L′ will not, and L and L′ will remain
filters. Furthermore, ↓1C will remain a rectangular lattice. Note also that βf

will be an extension of βf−1, and Kf will be an extension of Kf−1.
Let 0 < f ≤ t, and assume that the desired objects are already defined

for f − 1. Utilizing the quasi-coloring βf−1, we select a (bjf , aif )-colored slim
4-cell E in Kf−1 as follows. For f = 1, jf = 3, and if = 2, see it in Figure 7.
For f = 4, jf = 2, and if = 2, see the dark grey 4-cell of K3 in Figure 7.
(Note that because of space considerations, K3 in the figure originates from
another K0, not from the previous one.)

The exact definition of E is the following. Remove the eyes of the previously
added e-forks. (There are f − 1 eyes.) Then, starting from sif and proceeding
to the southwest, there is a northeast-southwest row of adjacent 4-cells inKf−1

that reaches the southwest boundary. (See the light grey cells in Figure 7.)
Similarly, starting from rjf and going to the southeast there is a northwest-
southeast row of adjacent 4-cells. (See the medium grey cells in Figure 7.)
The intersection of these two rows determines a unique 4-cell E. At present,
↓1C is slim; this follows easily from Lemma 4.3. Now we put back the f − 1
eyes we omitted. Thanks to the l arrangement, none of these eyes is in ↓1E .
Hence, it follows from Lemma 4.1 that E is a slim 4-cell of Kf−1.

We obtain Kf from Kf−1 by adding a right e-fork at E. We let ξf =
quoS

(
ξf−1∪{(aif , bjf )}

)
. Extend βf−1 to βf according to (E-fork) Lemma 5.3,

that is, let βf = β♦
f−1. Then βf : Pri(Kf ) → (S; ξf ) is a quasi-coloring.
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After t steps, we arrive at a lattice Kt and a quasi-coloring βt : Pri(Kt) →
(S; ξt), where

ξt = quo
(
ν′ ∪ {(ai, bj) : (ai, aj) ∈ ζ}

)
.

We claim that, for i = 1, . . . , k and f = 0, . . . , t and with respect to βf ,

there is a (bi, ai)-colored 4-cell in Kf . (8.3)

This is obvious for f = 0. To see that Kf inherits the validity of (8.3) from
Kf−1, let F be a (bi, ai) colored 4-cell of Kf−1, with respect to βf−1. If F
is also a 4-cell of Kf , then it is a (bi, ai) colored 4-cell of Kf with respect to
βf since βf extends βf−1. Otherwise F in Kf is divided into two or four new
4-cells. Then there is a unique 4-cell F ′ of these two or four new cells such
that 0F ′ = 0F , and F ′ is (bi, ai) colored with respect to βf . This shows (8.3).

Notice that the 4-cell provided by (8.3) is not slim in general. This explains
that instead of using Lemma 5.3 together with its left-right dual, we are going
to resort to Lemma 5.2.

It follows from (8.3) that we can fix an (ai, bi)-colored 4-cell Fi in Kt, for
i = 1, . . . , k. Then we add an eye to Fi one by one, for i = 1, . . . , k. This way
we get K ′. Observe that L remains a filter in K ′. The successive use of (Eye)
Lemma 5.2 yields a quasi-coloring δo : Pri(K ′) → (S;χ) where

χ = quoS

(
ν′ ∪ {(ai, bj) : (ai, aj) ∈ ζ}︸ ︷︷ ︸

generates ξt

∪
1≤i≤k⋃

{(ai, bi), (bi, ai)}
︸ ︷︷ ︸

generates µ

)
. (8.4)

Note that δo is still an extension of γ. Let µ = quoS

(⋃k
i=1{(ai, bi), (bi, ai)}

)
.

It is an equivalence relation on S. We claim that

χ = quoS(ζ ∪ µ). (8.5)

To prove the “⊇” inclusion, let (x, y) ∈ ζ. By (8.1) and ν ⊆ ν′, there are
i, j ∈ {1, . . . , k} such that

(x, ai), (ai, x), (y, aj), (aj, y) ∈ ν′. (8.6)

Transitivity, ν′ ⊆ ζ and (8.6) yield that (ai, aj) ∈ ζ. Hence, (ai, bj) ∈ χ. So
using transitivity, (bj, aj) ∈ χ, and (8.6) together with ν′ ⊆ χ, we obtain that
(x, y) ∈ χ. This together with χ ⊇ µ proves that χ ⊇ quoS(ζ∪µ). To prove the
reverse inclusion of (8.5), observe that if (ai, aj) ∈ ζ, then (ai, bj) ∈ quoS(ζ∪µ)
by transitivity. Hence, each pair occurring in (8.4) belongs to quoS(ζ∪µ). This
fact, together with ν′ ⊆ ζ, yields that χ ⊆ quoS(ζ ∪ µ), proving (8.5).

Next, motivated by a more general result of G. Czédli and A. Lenkehegyi [3,
Thms. 1.3 and 1.6], we define a surjective map

α : (S;χ) → (R; ζ), where x 7→

{
x, if x ∈ R,

ai, if x = bi.

Note that the equivalence kernel of α is µ. We claim that

for all x, y ∈ S, (x, y) ∈ χ iff
(
α(x), α(y)

)
∈ ζ. (8.7)
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As the first step in proving (8.7), observe that
(
z, α(z)

)
∈ µ = µ−1, for all

z ∈ S. Assume that
(
α(x), α(y)

)
∈ ζ. Then

(
x, α(x)

)
,
(
α(y), y

)
∈ µ ⊆ χ,

ζ ⊆ χ, and the transitivity of χ imply (x, y) ∈ χ.
Conversely, assume that (x, y) ∈ χ. We can assume that x 6= y. By (8.5),

there is a sequence z0 = x, z1, . . . , zh = y in S such that (zi−1, zi) ∈ ζ ∪ µ

for i = 1, . . . , h. If (zi−1, zi) ∈ ζ, then zi−1, z ∈ R and
(
α(zi−1), α(zi)

)
=

(zi−1, zi) belongs to ζ. Otherwise (zi−1, zi) ∈ µ and α(zi−1) = α(zi) yield that(
α(zi−1), α(zi)

)
∈ ζ. Hence,

(
α(x), α(y)

)
=

(
α(z0), α(zh)

)
∈ ζ by transitivity.

This proves (8.7).
In the next step, we define δ′ := α ◦ δo. Since δo extends γ and α acts

identically in Q ⊆ R, the map δ′ extends γ. From (8.7) and the fact that
δo is a quasi-coloring we conclude in a straightforward way that the map
δ′ : Pri(K ′) → (R, ζ), defined by p 7→ α(δo(p)), is a quasi-coloring.

Next, Lemma 6.5 gives us a rectangular lattice K such that L is a filter
of K, K is a congruence-preserving extension of K ′, and Pri(K ′) ⊆ Pri(K).
Using Lemma 3.2, we can extend δ′ to a quasi-coloring δ : Pri(K) → (R, ζ).
Clearly, δ extends γ.

Finally, we drop the initial assumption that the southwest boundary of L
is a congruence-determining sublattice. Then we start the proof by invok-
ing Lemma 7.2, to get a rectangular lattice L∗ such that L is a congruence-
preserving filter of L∗ and the southwest boundary of L∗ is congruence-deter-
mining. Furthermore, Pri(L) ⊆ Pri(L∗) since L is a filter of L∗. By Lemma 3.2,
we can extend γ to a quasi-coloring γ∗ : Pri(L∗) → (Q; ν). We already know
that γ∗ extends to an appropriate δ : Pri(K) → (R; ζ). Clearly, δ extends γ
and L is a filter of K. �

9. A left adjoint at work

In this section, D and E are finite distributive lattices, and ϕ : D → E is a
{0, 1}-lattice homomorphism. For e ∈ E, we let

Ae := {x : x ∈ D and e ≤ ϕ(x)} = ϕ−1(↑e).

Since 1D ∈ Ae, Ae is never empty. We define

η : E → D, where x 7→
∧
Ae. (9.1)

Although the following lemma follows from the (Freyd) Adjoint Functor The-
orem, see S. Mac Lane [27, p. 117] or P.A. Grillet [24, XVI.7.3], its proof for
our particular case is quite short. So, for the reader’s convenience, we will
present a proof.

Lemma 9.1. η is a left adjoint of ϕ. That is, for all e ∈ E and d ∈ D,
η(e) ≤ d iff e ≤ ϕ(d). For each e ∈ E, η(e) is the smallest element of Ae.
Furthermore, η is monotone, that is, if e1 ≤ e2 ∈ E, then η(e1) ≤ η(e2).
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Proof. If x, y ∈ Ae, then e ≤ ϕ(x) ∧ ϕ(y) = ϕ(x ∧ y) yields that x ∧ y ∈ Ae.
Hence, Ae is meet-closed, and η(e) =

∧
Ae is indeed its smallest element.

Assume that e ≤ ϕ(d). Then d ∈ Ae. But η(e) is the smallest element of Ae,
whence η(e) ≤ d. Conversely, assume that η(e) ≤ d. Then

e ≤
∧{

ϕ(x) : x ∈ D and e ≤ ϕ(x)
}
≤ ϕ

(∧{
x : x ∈ D and e ≤ ϕ(x)

})

= ϕ
(∧

Ae

)
= ϕ

(
η(e)

)
≤ ϕ(d).

Hence, η is a left adjoint of ϕ. Assume that e1 ≤ e2 ∈ E. Then Ae1 ⊇
Ae2 , so we get that η(e1) =

∧
Ae1 ≤

∧
Ae2 = η(e2). This shows that η is

monotone. �

Lemma 9.2. η(Ji(E)) ⊆ Ji(D).

Proof. Assume that e ∈ Ji(E). We have to show that d := η(e) ∈ Ji(D).
If d = 0, then η(e) ≤ 0 together with Lemma 9.1 implies e ≤ ϕ(0) = 0,
contradicting e ∈ Ji(E). Hence, d 6= 0. Next, assume that d1, d2 ∈ D such
that d = d1 ∨ d2. Since η(e) ≤ η(e) = d, Lemma 9.1 yields that e ≤ ϕ(d) =
ϕ(d1 ∨ d2) = ϕ(d1) ∨ ϕ(d2). Hence, e ≤ ϕ(di) for some i ∈ {1, 2} by (2.1).
So di ∈ Ae. Therefore, d = η(e) ≤ di by Lemma 9.1, and we obtain that
d = di. Thus, η(e) = d ∈ Ji(D). �

To avoid confusion, the ordering of Ji(E) will often be denoted by ≤Ji(E)

or ~$Ji(E). Similarly, ≤Ji(D) or ~$Ji(D) will denote the ordering of Ji(D). The
graph of η, that is, the relation

{
(x, η(x)) : x ∈ E

}
, is denoted by η̇. Then

η̇−1 =
{
(η(x), x) : x ∈ E

}
. We can assume, without loss of generality, that

Ji(D) and Ji(E) are disjoint.
We define a quasiordered set (R; ζ) as follows:

R = Ji(D) ∪ Ji(E), ζ = quoR(η̇ ∪ η̇−1 ∪ ~$Ji(D) ∪ ~$Ji(E)). (9.2)

Clearly, (R; ζ) is an extension of (Ji(E),≤) = (Ji(E), ~$Ji(E)).
We will need the following property of (R; ζ). Remember the Ji(E) and

Ji(D) are always assumed to be disjoint.

Lemma 9.3. Assume that e ∈ Ji(E) and d ∈ Ji(D). Then (e, d) ∈ ζ iff there
exists an e′ ∈ Ji(E) such that e ≤Ji(E) e

′ and η(e′) ≤Ji(D) d.

Proof. Since (e′, η(e′)) ∈ η̇ ⊆ ζ, ~$Ji(E) ⊆ ζ, and ~$Ji(D) ⊆ ζ, the “if” part
trivially follows by transitivity.

To prove the converse direction, assume that (e, d) ∈ ζ. By the definition
or ζ, there are an n ∈ N0 and, for i = 0, . . . , n, elements xi, yi ∈ Ji(E) and
zi, ti ∈ Ji(D) such that

x0 = e, tn = d,

xi ≤Ji(E) yi, η(yi) = zi, and zi ≤Ji(D) ti for i = 0, . . . , n, and

η(xj+1) = tj for j = 0, . . . , n− 1.
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By Lemma 9.1, η is monotone. Hence, ti = η(xi+1) ≤Ji(D) η(yi+1) = zi+1

for i = 0, . . . , n − 1. Let e′ = y0. Then e = x0 ≤Ji(E) y0 = e′. Since
η(e′) = z0 ≤Ji(D) t0 ≤Ji(D) z1 ≤Ji(D) t1 ≤Ji(D) z2 ≤Ji(D) · · · ≤Ji(D) tn = d,
transitivity yields that η(e′) ≤Ji(D) d. �

For the terminology of the next statement, see the paragraph ending with
(2.5).

Lemma 9.4. The retraction map

g : (R; ζ) → (Ji(D);≤Ji(D)), where x 7→

{
x, if x ∈ Ji(D);

η(x), if x ∈ Ji(E),

is a homomorphism, and ~Ker g ⊆ ζ.

Proof. By Lemma 9.2, g(R) ⊆ Ji(D). To show that g is a homomorphism,
assume that (x, y) ∈ ζ. Then there are n ∈ N0 and z0, z1, . . . , zn ∈ R such that
z0 = x, zn = y, and (zi, zi+1) ∈ η̇ ∪ η̇−1 ∪ ~$Ji(D) ∪ ~$Ji(E) for i = 0, . . . , n− 1.
It suffices to show that g(zi) ≤Ji(D) g(zi+1) for all these i since then the
desired inequality g(x) ≤Ji(D) g(y) follows by transitivity. If (zi, zi+1) ∈ η̇ ∪
η̇−1, then g(zi) = g(zi+1) gives that g(zi) ≤Ji(D) g(zi+1). If (zi, zi+1) ∈
~$Ji(D), then g(zi) = zi ≤Ji(D) zi+1 = g(zi+1). If (zi, zi+1) ∈ ~$Ji(E), then
g(zi) = η(zi) ≤Ji(D) η(zi+1) = g(zi+1) since η is monotone. Thus g is a
homomorphism.

Next, assume that (x, y) ∈ ~Ker g, that is, g(x) ≤Ji(D) g(y). If x, y ∈ Ji(D),
then (x, y) =

(
g(x), g(y)

)
∈ ~$Ji(D) ⊆ ζ. If x, y ∈ Ji(E), then

(
x, g(x)

)
=(

x, η(x)
)
∈ η̇ ⊆ ζ,

(
g(x), g(y)

)
∈ ~$Ji(D) ⊆ ζ,

(
g(y), y

)
=

(
η(y), y

)
∈ η̇−1 ⊆ ζ,

and transitivity imply (x, y) ∈ ζ. If x ∈ Ji(E) and y ∈ Ji(D), then
(
x, g(x)

)
=(

x, η(x)
)
∈ η̇ ⊆ ζ and

(
g(x), y

)
=

(
g(x), g(y)

)
∈ ~$Ji(D) ⊆ ζ yield that (x, y) ∈

ζ. Finally, if x ∈ Ji(D) and y ∈ Ji(E), then
(
x, g(y)

)
=

(
g(x), g(y)

)
∈ ~$Ji(D) ⊆

ζ and
(
g(y), y

)
=

(
η(y), y

)
∈ η̇−1 ⊆ ζ entail that (x, y) ∈ ζ. Thus ~Ker g ⊆

ζ. �

Now, we are in the position to put the pieces together.

Proof of Theorem 1.3. Let E = ConL, and consider η and (R; ζ) defined
in this section, see (9.1) and (9.2). Let us consider the natural coloring
γ : Pri(L) →

(
Ji(E);≤Ji(E)

)
, defined by p 7→ conL(p). Since (R; ζ) is an exten-

sion of
(
Ji(E);≤Ji(E)

)
, Lemma 8.1 yields a rectangular lattice K and a quasi-

coloring δ : Pri(K) → (R; ζ) such that L is a filter of K and γ is the restriction
of δ to Pri(L). Consider the homomorphism g : (R; ζ) →

(
Ji(D);≤Ji(D)

)
pro-

vided by Lemma 9.4. Let δ′ := g◦δ. Since ~Ker g ⊆ ζ by Lemma 9.4, Lemma 2.1
yields that δ′ : Pri(K) →

(
Ji(D);≤Ji(D)

)
, defined by p 7→ g

(
δ(p)

)
is a quasi-

coloring. In fact, it is a coloring since its range is an order. Hence, we conclude
from (2.8) that

α : D → ConK, where d 7→
∨{

conK(p) : p ∈ Pri(K) and δ′(p) ≤ d
}
, (9.3)
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is an isomorphism. In order to show that ϕ = %K
L ◦ α, it suffices to show that

ϕ(d) = %K
L

(
α(d)

)
holds for every d ∈ Ji(D). To prove this equation, we fix a

d ∈ Ji(D). We claim that

%K

L

(
α(d)

)
=

∨{
conL(q) : q ∈ A1

}
, (9.4)

where A1 =
{
q ∈ Pri(L) : conK(q) ≤ α(d)

}
. Indeed, a prime interval q ∈

Pri(L) is collapsed by %K
L

(
α(d)

)
iff (0q, 1q) ∈ α(d) iff conK(q) ≤ α(d) iff

q ∈ A1. Since each congruence of L is determined by the prime intervals it
collapses, (9.4) follows. We also claim that

ϕ(d) =
∨{

conL(q) : q ∈ A2

}
, (9.5)

where A2 :=
{
q ∈ Pri(L) : γ(q) ≤E ϕ(d)

}
. Indeed, the γ(q) = conL(q) are the

join-irreducible elements of E = ConL, whence we get (9.5).
By virtue of (9.4) and (9.5), it suffices to show that A1 = A2. Let q ∈

Pri(L).
Assume that q ∈ A1. Then (2.1) together with (9.3) yield that conK(q) ≤

conK(p) for some p ∈ Pri(K) such that δ′(p) ≤ d. But conK(q) ≤ conK(p)
is equivalent to δ′(q) ≤ δ′(p) since δ′ is a coloring. Consequently, δ′(q) ≤
d. Taking δ′(q) = g

(
δ(q)

)
= g

(
γ(q)

)
= η

(
γ(q)

)
into account, we get that

η
(
γ(q)

)
≤ d. Since η is a left adjoint of ϕ by Lemma 9.1, we conclude that

γ(q) ≤ ϕ(d), that is, q ∈ A2. Thus A1 ⊆ A2.
To show the reverse inclusion, assume that q ∈ A2. Then, using Lemma 9.1

again, we get that η
(
γ(q)

)
≤ d. But η

(
γ(q)

)
= g

(
γ(q)

)
= g

(
δ(q)

)
= δ′(q),

whence we get that δ′(q) ≤ d. Hence, conK(q) is one of the joinands in (9.3),
which implies conK(q) ≤ α(d). Thus q ∈ A1, and A2 ⊆ A1. �
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Gábor Czédli

University of Szeged, Bolyai Institute, Szeged, Aradi vértanúk tere 1, HUNGARY 6720
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