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Abstract. For a positive integer n, let SCL(n) = {|Con(L)| : L is an n-

element lattice} stand for the set of Sizes of the Congruence Lattices of n-
element lattices. The k-th Largest Number of Congruences of n-element

lattices, denoted by lnc(n, k), is the k-th largest member of SCL(n). Let

(n1, . . . , n6) := (1, 4, 5, 6, 6, 7), and let nk := k for k ≥ 7. In 1997, R. Freese
proved that for n ≥ n1 = 1, lnc(n, 1) = 2n−1. For n ≥ n2, the present author

gave lnc(n, 2). For k = 3, 4, 5 and n ≥ nk, C. Mureşan and J. Kulin determined

lnc(n, k) in their 2020 paper. For k ≤ 5 and n ≥ nk, the above-mentioned
authors described the n-element lattices witnessing lnc(n, k), too.

For all positive integers k and n ≥ nk, this paper determines lnc(n, k)
and presents the lattices that witness it. It turns out that, for each fixed

k, the quotient lcd(k) := lnc(n, k)/lnc(n, 1) does not depend on n ≥ nk.

Furthermore, lcd(k) converges to 1/8 as k tends to infinity.

1. Introduction and stating the results

If a finite lattice or a semilattice L has many congruences, then the number
|Con(L)| of the congruences of L together with the number |L| of the elements of L
gives some insight into the structure of L; this is exemplified by Czédli [3], [5], and
[6], and by Mureşan and Kulin [13]. There are analogous results for lattices with
many sublattices, too; we mention only Ahmed and Horváth [1] and Czédli [4].

Our goal is to prove a new result, Theorem 2, on finite lattices with many
congruences. We fix the following notation. For n ∈ N+ := {1, 2, 3, . . . }, let Lat(n)
denote the set of n-element lattices. (We say “set” rather than “class”, since we
do not differentiate between isomorphic lattices.) For L ∈ Lat(n), Con(L) and
|Con(L)| stand for the congruence lattice of L and the number of congruences of
L, respectively. We use the notation SCL(n) := {|Con(L)| : L ∈ Lat(n)} for the
set of Sizes of Congruence Lattices of n-element lattices, where the capitalization
explains the acronym SCL. For k ∈ N+, the kth largest member of SCL(n) is the
kth Largest Number of Congruences of n-element lattices; we denote it be lnc(n, k).
For k ∈ N+ and L ∈ Lat(n), we call the quotient |Con(L)|/2n−1 the Congruence
Density of L, and we denote it by

cd(L); so cd(L) := |Con(L)|/2|L|−1. (1.1)
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This terminology is motivated by the fact that the denominator is 2n−1 = lnc(n, 1)
by Freese [8]. The kth largest member of {cd(L) : L ∈ Lat(n)} is the kth Largest
Congruence Density of n-element lattices; it will be denoted by lcdn(k). Clearly,
for an n-element finite lattice L,

if |L| = n, then |Con(L)| = 2n−1 · cd(L). (1.2)

Hence, the study of lnc(n, k) and that of lcdn(k) are equivalent. However, we will
mostly work only with the latter, since it has nice properties established by many
forthcoming lemmas. To facilitate faster comparisons among the fractions lcdn(k),
we will scale up most of them to have denominators equal to 64. Define

n1 := 1, n2 := 4, n3 := 5, n4 := 6, n5 := 6, n6 := 7, andnk := k, for k ≥ 7. (1.3)

For k = 1, k = 2, and k ∈ {3, 4, 5}, Freese [8], Czédli [3], and Mureşan and Kulin
[13], respectively, determined lnc(n, k) and the lattices witnessing it, provided that
n ≥ nk. Equivalently by (1.2), they determined lcdn(k) and their witnesses for
k ≤ 5 and n ≥ nk; see Theorem 1 later for details. Before presenting a new result,
Theorem 2, we continue introducing some notations and terminology.

Every lattice in this paper is assumed to be finite. (However, sometimes we
repeat this convention.) The n-element chain will be denoted by Cn. For a lattice
L and u ∈ L, u is join-irreducible if it covers exactly one element, and it is join-
reducible if it has at least two lower covers. Meet-irreducible and meet-reducible
elements are defined dually. Let Ji(L), Mi(L), Jr(L), and Mr(L) stand for the
set of join-irreducible elements, that of meet-irreducible elements, that of join-
reducible elements, and that of meet-reducible elements of L, respectively. Note
that |Ji(L)|+ |Jr(L)| = |L|− 1 = |Mi(L)|+ |Mr(L)|. An element u ∈ L is said to be
a narrows if it is comparable with every other element of L; the set of all narrows
of L will be denoted by Nar(L). A subset U of L is convex if for every u1, u2 ∈ U
and x ∈ L, u1 ≤ x ≤ u2 implies that x ∈ U . The maximal subsets of Nar(L) that
are convex subsets of L are called the narrow chain components of L.

To form the glued sum L1 u L2 of finite lattices L1 and L2, we first put the
(diagram) of L2 atop L1, and then identify 1L1 (the top element of L1) with 0L2

(the bottom element of L2). For example, H5,3 in Figure 5 is B4 u B4; here and
later, B4 denotes the 4-element Boolean lattice (see Figure 1). We can write

L1 u L2 u · · · u Lt or
∑̇

1≤i≤t
Li

without parentheses since forming glued sums is an associative operation. Clearly,
0L1

, 1Lt
, and 1Li−1

= 0Li
for i ∈ {2, . . . , t} are in Nar(L1 u · · · u Lt).

Conversely, assume that L is a finite lattice but not a chain. Then there are
uniquely determined narrows 0L = u0 < u1 < · · · < ut = 1L such that for each
i ∈ {1, . . . , t}, either the interval [ui−1, ui] is a narrow chain component of L or this
interval has at least four elements and [ui−1, ui]∩Nar(L) = {ui−1, ui}. In this case,
L decomposes to the glued sum of the just-mentioned intervals as follows:

L = [u0, u1] u [u1, u2] u · · · u [ut−1, ut], (1.4)

which we call the canonical glued sum decomposition of L. We call the glued sum
of the non-chain summands in (1.4) the core of L; we denote it by Cor(L). In other
words, denoting the set of at least four-element intervals of L by Intv4(L),

Cor(L) =
∑̇

I is maximal in Intv4(L) such that I∩Nar(L)={0I ,1I}
I. (1.5)



THE LARGEST AND SUBSEQUENT NUMBERS OF LATTICE CONGRUENCES 3

For a finite chain C = Ck, let Cor(C) be the singleton lattice C1. If L is not a
chain, then its core is an at least four-element lattice. As L = B4 u C2 u B4

exemplifies, Cor(L) need not be a sublattice of L. To justify the notation used in
(1.5), let us agree that Cor(L) is defined only up to the order of its summands. For
example, B4 u N5 and N5 u C7 u B4 have the same cores; here and later, N5 is the
five-element non-modular lattice (see Figure 1). For our purposes,

cores describe some sets of finite lattices very conveniently. (1.6)

We can illustrate this by rewriting {Ci u B4 u Cm u B4 u Cn−k−i−4 : i,m ∈
N+ and k + i ≤ n − 5}, taken from Mureşan and Kulin [13], into {L : Cor(L) =
B4 u B4}. The forthcoming Lemma 3 offers another motivation to use Cor(L).

For n ≥ 4, let Circ(n) be the set of lattices whose covering graphs are n-element
circles. That is,

Circ(n) := {L ∈ Lat(n) : the covering graph of L is a circle}. (1.7)

For example, Circ(4) = {B4}, Circ(5) = {N5}, and |Circ(6)| = 2.
Next, using (1.2), (1.6), and the notations, conventions, and concepts introduced

so far, we recall the previously known related results in the following form.

Theorem 1 (Proved in [8], [3], and [13]).
(A) (Freese [8]) For n ∈ N+, lcdn(1) = 64/64 = 1. Furthermore, for a finite

lattice L, cd(L) = 1 if and only if L is a chain.
(B) (Czédli [3]) Let 4 ≤ n ∈ N+. Then lcdn(2) = 32/64 = 1/2 and, furthermore,

for L ∈ Lat(n), cd(L) = lcdn(2) if and only if Cor(L) = B4.
(C) (Mureşan and Kulin [13]) Let 5 ≤ n ∈ N+. Then lcdn(3) = 20/64 = 5/16

and, furthermore, for L ∈ Lat(n), cd(L) = lcdn(3) if and only if Cor(L) = N5.
(D) (Mureşan and Kulin [13]) Let 6 ≤ n ∈ N+. Then lcdn(4) = 16/64 = 1/4

and, furthermore, for L ∈ Lat(n), cd(L) = lcdn(4) if and only if Cor(L) = C2 ×C3

or Cor(L) = B4 u B4.
(E) (Mureşan and Kulin [13]) Let 6 ≤ n ∈ N+. Then lcdn(5) = 14/64 = 7/32

and, furthermore, for L ∈ Lat(n), cd(L) = lcdn(5) if and only if Cor(L) ∈ Circ(6).

There are two ways to obtain a Hall–Dilworth gluing1 L of a finite lattice K and
B4. First, if |K ∩ B4| = 1, then L is the glued sum K u B4 or B4 u K. Second,
if |K ∩ B4| = 2, then L is called an edge gluing of K and B4 (or B4 and K). For
example, C3 × C2 is an edge-gluing of two copies of B4, and H5,7 in Figure 6 is
an edge-gluing of N5 and B4. We emphasize: A Hall–Dilworth gluing of B4 and
another lattice K is either a glued sum or an edge-gluing, since we do not allow
trivial gluings where one of B4 and K is a sublattice of the other one. Moreover, the
term “a Hall–Dilworth gluing of K and B4” (with an indefinite article) will express
that K an B4 can be taken in either arrangement: “K and B4” or “B4 and K”.

At this stage, based on the notations and concepts introduced in (1.1), (1.3),
(1.5), (1.6), and (1.7), we are in the position to state the (sole) result of the paper.

Theorem 2 (Main Theorem). As in (1.3), let n6 := 7 and, for 7 ≤ k ∈ N+, let
nk := k.

(i)Assume that n6 ≤ n ∈ N+. Then lcdn(6) = 11/64 and, furthermore, for
L ∈ Lat(n), cd(L) = lcdn(6) if and only if Cor(L) ∈ Circ(7).

1See, e.g., Grätzer [9, Lemma 298], where “Hall–Dilworth” is dropped.
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(ii)Assume that n7 ≤ n ∈ N+. Then lcdn(7) = 10/64 = 5/32 and, furthermore,
for L ∈ Lat(n), cd(L) = lcdn(7) if and only if Cor(L) is a Hall–Dilworth gluing of
N5 and B4 (that is, if Cor(L) is N5 u B4, B4 u N5, or an edge-gluing of N5 and B4

in either arrangement).
(iii)Assume that 8 ≤ k ∈ N+ and nk ≤ n ∈ N+. Then

lcdn(k) =
8 + 3/2k−7

64
=

1

8
+

3

2k−1

and, furthermore, for L ∈ Lat(n), cd(L) = lcdn(k) if and only if Cor(L) ∈ Circ(k).

In part (ii) above, Cor(L) = N5 u B4 can occur only when n ≥ 8 = n7 + 1. The
following corollary follows immediately from Theorem 2 and (1.2).

Corollary 1.
(i)Assume that 7 ≤ n ∈ N+. Then lnc(n, 6) = 11 · 2n−7 and, furthermore, for

L ∈ Lat(n), |Con(L)| = lnc(n, 6) if and only if Cor(L) ∈ Circ(7).
(ii)Assume that 7 ≤ n ∈ N+. Then lnc(n, 7) = 10 · 2n−7 = 5 · 2n−6 and,

furthermore, for L ∈ Lat(n), |Con(L)| = lnc(n, 7) if and only if Cor(L) is a Hall–
Dilworth gluing of N5 and B4 (in either arrangement).

(iii)Assume that 8 ≤ k ≤ n ∈ N+. Then lnc(n, k) = (8 + 3/2k−7) · 2n−7 and,
furthermore, for L ∈ Lat(n), |Con(L)| = lnc(n, k) if and only if Cor(L) ∈ Circ(k).

The remainder of the paper proves Theorem 2 and, as a byproduct, presents a
new proof of Theorem 1.

2. Facts about lattice congruences

For a poset (= partially ordered set) P and u ∈ P , the principal ideal {x ∈ P :
x ≤ u} and the principal filter {x ∈ P : x ≥ u} will be denoted by idl(u) and
fil(u), respectively. A subset X of P is an order ideal of P if for every u ∈ X,
idl(u) ⊆ X. The set of order ideals of P will be denoted by Idl(P ). Note that
Idl(P ) =

(
Idl(P );∩,∪

)
is a distributive lattice. For a finite lattice L, Ji(L) is a

subposet of L with respect to the order inherited from L. It is well known that
D ∼= Idl(Ji(D)) for each finite distributive lattice D; see, e.g., Grätzer [9, Theorem
107]. In particular, since the congruence lattice of any lattice is well known to be
distributive, see [9, Theorem 149],

for each finite lattice L, Con(L) ∼= Idl(Ji(Con(L))). (2.1)

Let L be a finite lattice. As the blocks of each Θ ∈ Con(L) are convex sublattices,
Θ is determined by {(a, b) : (a, b) ∈ Θ and a ≤ b}. Thus, when dealing with lattice
congruences, we consider only the comparable pairs they collapse. For such a pair
(a, b), so a ≤ b, con(a, b) will stand for the smallest congruence containing (a, b).
It is well known (see the first sentence in Grätzer [11]) and it is easy to prove that

Ji(Con(L)) = {con(a, b) : a ≺ b}; (2.2)

that is, the join-irreducible congruences and the congruences generated by edges
(of the diagram of L) are the same. (Note the terminological nuance: for a ≺ b,
(a, b) ∈ L2 is an edge, but [a, b] = {a, b} ⊆ L is a prime interval.) The “pentagon
lattice” N5 has five edges. With the notation of the first diagram in Figure 1, (d, i)
and (o, d) are the (upper and lower) long edges, (v2, i) and (o, u2) are the (upper
and lower) short edges, and (u2, v2) is the monolith edge of N5. In B4, there are
two upper edges, (u1, i) and (v2, i) on the right of Figure 1, and two lower edges.
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Figure 1. Visualizing ↗p, ↗b, ↘p, and ↘b

Definition 1. On the set Edge(L) of edges of our finite lattice L, we define the
following eight relations; some of them are visualized in Figure 1, where the bold
edges denote coverings in L. For distinct edges (u1, v1), (u2, v2) ∈ Edge(L), the
following definitions apply:

• (u1, v1)↗p (u2, v2)
def⇐⇒ (u1, v1) is the long lower edge and (u2, v2) is the

monolith edge of an N5 sublattice.

• (u1, v1)↘p (u2, v2)
def⇐⇒ (u1, v1) is the long upper edge and (u2, v2) is the

monolith edge of an N5 sublattice.

• (u1, v1)→p (u2, v2)
def⇐⇒ (u1, v1)↗p (u2, v2) or (u1, v1)↘p (u2, v2).

• (u1, v1)↗b (u2, v2)
def⇐⇒ (u1, v1) is a lower edge and (u2, v2) is the opposite

upper edge of a B4 sublattice.

• (u1, v1) ↘b (u2, v2)
def⇐⇒ (u1, v1) is an upper edge and (u2, v2) is the

opposite lower edge of a B4 sublattice.

• (u1, v1)→b (u2, v2)
def⇐⇒ (u1, v1)↗b (u2, v2) or (u1, v1)↘b (u2, v2).

• (u1, v1)→bp (u2, v2)
def⇐⇒ (u1, v1)→b (u2, v2) or (u1, v1)→p (u2, v2).

• (u1, v1) →∗ (u2, v2)
def⇐⇒

(
(u1, v1), (u2, v2)

)
is in the reflexive-transitive

closure of the relation →bp.

For (a, b), (c, d) ∈ Edge(L), Grätzer [11, Lemma 1.4 and Note 1.2] proved that

con(a, b) ≥ con(c, d) ⇐⇒ (a, b)→∗ (c, d). (2.3)

Let the Strict Order {(x, y) : x, y ∈ L and x < y} be denoted by SO(L). The
relations given in Definition 1 are meaningful even for (u1, v1), (u2, v2) ∈ SO(L).
Clearly, see also Grätzer [11], for any (a, b), (c, d) ∈ SO(L),

(a, b)→∗ (c, d) implies that con(a, b) ≥ con(c, d). (2.4)

Since →b, which is called the perspectivity relation, is a symmetric, (2.4) implies
that for (x1, y1), (x2, y2) ∈ SO(L),

if (x1, y1)→b (x2, y2), then con(x1, y1) = con(x2, y2). (2.5)

Let us emphasize: While →∗ is a reflexive relation on Edge(L), each of ↘b, ↗b,
↘p, ↗p, →p, →b, and →bp is irreflexive. For a ∈ Ji(L), the unique lower cover
of a will be denoted by a∗. Dually, for a ∈ Mi(L), we denote the unique (upper)
cover of a by a∗. Day [7, Page 71] strengthened (2.2) to the following equality:

Ji(Con(L)) = {con(a∗, a) : a ∈ Ji(L)}. (2.6)

Although the “C-relation” in Day [7] (which was called the “D-relation” later)
combines (2.3) and (2.6) to describe Con(L), we stick to (2.3), which is visual and
easier to apply (especially when it is used together with its dual).
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In (2.8), which will be formulated soon, we make only minor additions to Theo-
rem 3.10 from Grätzer [10]. The reader could be interested in how to derive (2.8)
from the widely known (2.1) in a straightforward way, so we present some details.
(In spirit, we follow both Grätzer [10] and Czédli [2, Page 317], though the reader
need not consult these sources.) A quasiorder is a reflexive and transitive relation.
For a quasiorder τ , x ≤τ y will stand for (x, y) ∈ τ , and we define

x ≡τ y
def⇐⇒ (x ≤τ y and y ≤τ x).

For a quasiordered set (A; ν), a (possibly empty) subset X of A is an ideal if for
all x ∈ X and y ∈ A, y ≤ν x implies that y ∈ X. With respect to the subset
inclusion “⊆”, the ideals of (A; ν) form a lattice, which we denote by Idl(A; ν). The
canonical equivalence θ := ν ∩ ν−1 is the same as ≡τ . For u ∈ A, u/θ will stand
for the θ-block {x ∈ A : (x, u) ∈ θ} of u. For a, b ∈ A, let a/θ ≤ν/θ b/θ mean that
a ≤ν b; the choice of a and b in their θ-blocks is irrelevant. Clearly, (A/θ; ν/θ) is a
poset, the so called canonical poset associated with (A; ν), and it is easy to see that
the function

Idl(A; ν)→ Idl(A/θ; ν/θ) defined by X → {u/θ : u ∈ X} (2.7)

is a lattice isomorphism. For a finite lattice L and H ⊆ Edge(L), we say that
H is a congruence-determining subset of Edge(L) if {conL(x, y) : (x, y) ∈ H} =
Ji(Con(L)). For example, {(a∗, a) : a ∈ Ji(L)}, {(a, a∗) : a ∈ Mi(L)} (by (2.2)
and its dual), and Edge(L) itself are such subsets. We define a quasiorder ν(L)

of Edge(L) by letting (x1, y1) ≤ν(L) (x2, y2)
def⇐⇒ conL(x1, y1) ≤ conL(x2, y2).

For a congruence-determining subset H of Edge(L), we denote the quasiordered
set (H;H2 ∩ ν(L)) simply by (H; ν(L)). (So, we make no notational distinction
between ν(L) and its restriction to H.) Clearly, the canonical poset associated with
(H; ν(L)) is isomorphic to the poset Ji(Con(L)). Thus, combining (2.1) with (2.7),
we obtain that for every congruence-determining subset H of Edge(L),

Con(L) ∼= Idl(H; ν(L)). (2.8)

Next, let Γ: a(1), . . . , a(p) be a repetition-free list of the elements of Ji(L). An
x ∈ L is a join-deficit (modulo Γ) if either x ∈ Jr(L), or x is of the form a(i) ∈ Ji(L)
such that there exists a j ∈ {1, 2, . . . , i − 1} with con(a(j)

∗, a
(j)) = con(a(i)

∗, a
(i)).

Meet-deficits (modulo a repetition-free list ∆ of Mi(L)) are defined dually. Since
our only purpose is to count the join-deficits and the meet-deficits of L, the choice
of Γ and ∆ is irrelevant. Hence, “(modulo Γ)” and “(modulo ∆)” will be dropped.

Lemma 1 (Three-Deficits Lemma). If a finite lattice L has at least three join-
deficits or at least three meet-deficits, then cd(L) ≤ 8/64. In particular, if |Jr(L)| ≥
3 or |Mr(L)| ≥ 3, then cd(L) ≤ 8/64.

Proof. Since L and its dual have the same congruence lattice, we can assume L
has at least three join-deficits. Let n := |L|. As 0 /∈ Ji(L), (2.6) yields that
|Ji(Con(L))| ≤ |L| − 1 − 3 = n − 4. Combining this with (2.1), we have that
|Con(L)| ≤ 2n−4. Hence, cd(L) = |Con(L)|/2n−1 ≤ 2−3 = 8/64, as required. �

Lemma 2 (Glued Sum Lemma). For 2 ≤ t ∈ N+ and finite lattices L1, . . . , Lt,
cd(L1 u · · · u Lt) is equal to the product cd(L1) . . . cd(Lt).



THE LARGEST AND SUBSEQUENT NUMBERS OF LATTICE CONGRUENCES 7

Proof. Let L := L1 u L2. As Mureşan and Kulin [13] observed (and as it is easy
to see), Con(L) ∼= Con(L1)× Con(L2) and |L| = |L1|+ |L2| − 1. Thus

cd(L) =
|Con(L)|

2|L|−1
=
|Con(L1)|

2|L1|−1
· |Con(L2)|

2|L2|−1
= cd(L1) · cd(L2).

Thus, the lemma holds for t = 2, and a trivial induction completes the proof. �

Lemma 3 (Core Lemma). For any finite lattice L, cd(L) = cd(Cor(L)).

Proof. The congruence density of any chain is 1. Hence (the Glued Sum) Lemma
2 implies Lemma 3. �

Lemma 4 (Glue-B4 Lemma). If L is a Hall–Dilworth gluing of B4 and a finite
lattice K, then cd(L) = cd(K)/2. In other words, if a finite lattice L is an edge
gluing or a glued sum of a lattice K and B4, then cd(L) = cd(K)/2.

Proof. For L ∈ {K u B4, B4 u K}, (the Glued Sum) Lemma 2 and cd(B4) = 1/2
imply that cd(L) = cd(K)/2. Let L be an edge gluing of K and B4; by duality, we
can assume that K is the lower lattice. Denote the atoms of B4 by a and b so that
a ∈ K but b /∈ K. Define H := Edge(K) ∪ {(0B4

, b)}. It follows from (2.3) and
(2.5) that H is a congruence-determining subset of Edge(L), ν(K) is the restriction
of ν(L) to Edge(K), and for every (x, y) ∈ Edge(K), neither (0B4 , b) ≤ν(L) (x, y)
nor (x, y) ≤ν(L) (0B4

, b). Thus, each X ∈ Idl(H; ν(L)) can be written uniquely in
the form Y ∪ Z, where Y ∈ Idl(Edge(K); ν(K)) and Y ⊆ {(0B4 , b)} can be chosen
independently. Hence, |Idl(H; ν(L))| = 2 · |Idl(Edge(K); ν(K))|, and (2.8) yields
that |Con(L)| = 2 · |Con(K)|. Dividing this equality by 2|L|−1 = 22 · 2|K|−1, we
obtain the required equality cd(L) = cd(K)/2. �

Lemma 5 (Three-Covers Lemma). If a finite lattice L has an element with at least
three covers or at least three lower covers, then cd(L) ≤ 8/64 = 1/8.

Proof. By duality, we can assume that an element o ∈ L has t ≥ 3 covers, a1, . . . ,
at. We will use only a1, a2, a3. By (the Three-Deficits) Lemma 1, we can assume
that |Jr(L) ≤ 2|. Hence, in particular, a1 ∨ a2, a1 ∨ a3, a2 ∨ a3, which belong to
Jr(L), are not pairwise distinct. After rearranging the subscripts if necessary, we
have a1 ∨ a3 = a2 ∨ a3 := i. Depending on a1 ∨ a2, there are two cases to consider.

Case (i). We assume that v := a1∨a2 < i; see Figure 2, where the bold edges denote
coverings, the thin solid edges stand for “<”, and the dotted edges indicate “≤”.
As |Jr(L)| ≤ 2, Jr(L) = {v, i}. In particular, a1, a2, a3 ∈ Ji(L). Since a3 ≤ v would
lead to i ≤ v, we have that a3 � v. Let j ∈ {1, 2}. As aj ∨ a3 ∈ Jr(L) = {v, i} but
aj ∨ a3 = v would contradict that a3 � v, we obtain that aj ∨ a3 = i. Furthermore,
o ≤ a3 ∧ aj < a3 and o ≺ a3 yield that a3 ∧ aj = o. Thus, (o, aj) ↗b (a3, i), for
j ∈ {1, 2}, and (2.5) yields that con(o, a1) = con(a3, i) = con(o, a2). In particular,
con(a1∗, a1) = con(a2∗, a2). Thus, v, i ∈ Jr(L) and a2 are distinct join-deficits, and
(the Three-Deficits) Lemma 1 implies that cd(L) ≤ 8/64, as required.

Case (ii). We assume that a1 ∨ a2 = i; see Figure 2 again. So a1 ∨ a2 = a1 ∨ a3 =
a2 ∨a3 = i. Clearly, a1 ∧a2 = a1 ∧a3 = a2 ∧a3 = i. Hence, for every j, t ∈ {1, 2, 3}
distinct, (o, aj)↗b (at, i). Thus, (2.5) (or the fact that M3 is a simple lattice) leads
to con(o, a1) = con(a3, i) = con(o, a2) = con(a1, i) = con(o, a3), whereby

con(o, a1) = con(o, a2) = con(o, a3). (2.9)
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If |Jr(L) ∩ {a1, a2, a3}| ≥ 2, then Jr(L), which contains also i, has at least three
elements, and the required cd(L) ≤ 8/64 follows from (the Three-Deficits) Lemma
1. If |Jr(L)∩{a1, a2, a3}| = 0, then {a1, a2, a3} ⊆ Ji(L), two members of {a1, a2, a3}
are join-deficits by (2.9), and so is i ∈ Jr(L), whereby (the Three-Deficits) Lemma 1
applies again. Finally, assume that |Jr(L)∩{a1, a2, a3}| = 1. Apart from indexing,
a1 ∈ Jr(L) and {a2, a3} ∈ Ji(L). By (2.9), a3 is a join-deficit, and so are a1, i ∈
Jr(L). So we can apply (the Three-Deficits) Lemma 1, completing the proof of
Lemma 5. �

Figure 2. Illustrating the proofs of Lemmas 5 and 6

Lemma 6 (Antichain Lemma). If a finite lattice L has a three-element antichain,
then cd(L) ≤ 8/64 = 1/8.

Proof. Let n := |L|. By (the Three-Deficits) Lemma 1, we can assume that
|Mr(L)| ≤ 2 and |Jr(L)| ≤ 2. Let {a1, a2, a3} be a three-element antichain in L.
Let o := a1∧a2∧a3 and i := a1∨a2∨a3. Define the sets S∧ := {{j, t} : aj∧at > o}
and S∨ := {{j, t} : aj ∨ at < i}. For {j, t}, {j′, t′} ∈ S∧, if {j, t} 6= {j′, t′}, then
aj ∧ at 6= aj′ ∧ at′ , as otherwise aj ∧ at = (aj ∧ at) ∧ (aj′ ∧ at′) = a1 ∧ a2 ∧ a3 = o
would contradict that {j, t} ∈ S∧. Using this observation, {o} ∪ {aj ∧ at : {j, t} ∈
S∨} ⊆ Mr(L), and |Mr(L)| ≤ 2, we obtain that |S∧| ≤ 1.

Assume that |S∧| = 0 that is, a1 ∧ a2 = a1 ∧ a3 = a2 ∧ a3 = o. For j ∈ {1, 2, 3},
let xj ∈ [o, aj ] such that o ≺ xj . These covers of o are pairwise distinct; indeed, if
we had that xj = xt for j 6= t, then o ≺ xj = xj ∧ xt ≤ aj ∧ at = o would be a
contradiction. Hence, the required inequality cd(L) ≤ 8/64 follows from (the Three
Covers) Lemma 5.

Therefore, we can assume that |S∧| = 1 and, by duality, |S∨| = 1. Apart from
symmetry, there are two cases to deal with: either S∨ = {{1, 2}} and S∧ = {{1, 2}}
or S∨ = {{1, 2}} and S∧ = {{2, 3}}.

Case (A). We assume that S∨ = {{1, 2}} and S∧ = {{1, 2}}. This means that
v := a1 ∨ a2 < i = a1 ∨ a3 = a2 ∨ a3 and u := a1 ∧ a2 > o = a1 ∧ a3 = a2 ∧ a3.
Note that Jr(L) = {v, i} and Mr(L) = {o, u}. Pick x4, x5, x6 ∈ L such that
u ≺ x4 ≤ a1, u ≺ x5 ≤ a2, o ≺ x6 ≤ u, and remember that o ≺ x3 ≤ a3;
see Figure 2. The elements x3, . . . , x6, being outside {v, i}, are in Ji(L). Since
x3 ≤ u would imply x3 ≤ a1 ∧ a2 ∧ a3 = o and u ≤ x3 would imply u ≤ o,
we obtain that x3 ‖ u. Thus, as Jr(L) = {v, i}, we obtain that v ≤ u ∨ x3.
Since o ≺ x3 and o ≤ u ∧ x3 < x3, u ∧ x3 = o. So, (o, x3) ↗b (u, u ∨ x3).
Thus, by the convexity of the con(o, x3)-block of u, (2.4), and (2.5), we obtain that
con(u, x4) ≤ con(u, v) ≤ con(u, u ∨ x3) = con(o, x3) and con(u, x5) ≤ con(o, x3).
Since x6 ≤ a3 would imply x6 ≤ o and a3 ≤ x6 would lead to a3 ≤ a1, we
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obtain that x6 ‖ a3. Combining this with o ≺ x6, v � a3 (as otherwise v ≥ i),
and Jr(L) = {v, i}, we conclude that (o, x6) ↗b (a3, i). Hence, (2.5) yields that
con(a3, i) = con(o, x6). We have seen that v � a3, while v ≤ a3 would lead to
a1 ≤ a3. So, v ‖ a3. Trivially, v ∨ a3 = i. Using that Mr(L) = {u, o}, we
have that {u, o} 3 v ∧ a3 ≤ u. Hence, (a3, i) ↘b (v ∧ a3, v), and (2.5) gives that
con(v ∧ a3, v) = con(a3, i). By the convexity of the con(v ∧ a3, v)-block of v and
v ∧ a3 ≤ u, con(u, x4) ≤ con(v ∧ a3, v) and con(u, x5) ≤ con(v ∧ a3, v). So, by
transitivity, con(u, x4) ≤ con(o, x6) and con(u, x5) ≤ con(o, x6). We have seen that

for j ∈ {4, 5} and t ∈ {3, 6}, con(xj∗, xj) ≤ con(xt∗, xt). (2.10)

On the set H := {(p∗, p) : p ∈ Ji(L)}, define a quasiorder ρ by letting (p∗, p) ≤ρ
(q∗, q) if and only if p = q or there is a pair (j, t) ∈ {4, 5} × {3, 6} such that
p = xj and q = xt. Furthermore, as before, (p∗, p) ≤ν(L) (q∗, q) means that
con(p∗, p) ≤ con(q∗, q). Then we have two quasiordered sets, (H; ρ) and (H; ν(L)).
By (2.10), ν(L) is coarser than ρ. Therefore, Idl(H; ν(L)) ⊆ Idl(H; ρ). Since H is
a congruence-determining subset of Edge(L) by (2.6), we obtain from (2.8) that

|Con(L)| = |Idl(H; ν(L))| ≤ |Idl(H; ρ)|. (2.11)

The quasiordered set (H; ρ) is actually a poset, and its subposet H0 := {(p∗, p) :
p ∈ {x3, x4, x5, x6}} is depicted in Figure 2. Clearly, |Idl(H0; ρ)| = 7. The rule
X 7→ X∩H0 defines a map g : Idl(H; ρ)→ Idl(H0, ρ). Since |H \H0| = |H|−|H0| =
(n − 1 − |Jr(L)|) − 4 = n − 7, each Y ∈ Idl(H0; ρ) has at most 2n−7 preimages.
Hence, |Idl(H, ρ)| ≤ 7 · 2n−7. Combining this with 2.11, we obtain the required

cd(L) = |Con(L)|/2n−1 ≤ (7 · 2n−7)/2n−1 = 7/26 ≤ 8/64.

Case (B). We assume that S∨ = {{1, 2}} and S∧ = {{2, 3}}. This means that
v := a1 ∨ a2 < i = a1 ∨ a3 = a2 ∨ a3 and u := a2 ∧ a3 > o = a1 ∧ a2 = a1 ∧ a3.
Pick an element y ∈ L such that u ≺ y ≤ a2, and remember that o ≺ x1 ≤ a1;
the situation is visualized in Figure 2. As Jr(L) = {v, i}, {x1, y} ⊆ Ji(L). Since
x1 ≤ a3 would lead to x1 ≤ a1 ∧ a3 = o and x1 ≥ a3 would lead to a1 ≥ a3, we
have that x1 ‖ a3. So o ≤ x1 ∧ a3 < x1 and o ≺ x1 give that x1 ∧ a3 = o. On the
other hand, x1 ∨ a3 ∈ Jr(L) = {v, i}. As x1 ∨ a3 = v would lead to a3 ≤ v and so
i = v ∨ a3 = v, we have that x1 ∨ a3 = i. Hence, (o, x1) ↗b (a3, i), whereby (2.5)
yields that con(a3, i) = con(o, x1) = con(x1∗, x1).

Next, y ≤ a3 would lead to y ≤ a2 ∧ a3 = u while y ≥ a3 to a2 ≥ a3, whence
a3 ‖ y. Combining u ≤ a3 ∧ y < y with u ≺ y, we obtain that a3 ∧ y = u. Since
a3 ∨ y = Jr(L) = {v, i} and a3 ≤ a3 ∨ y = v would lead to i ≤ v, we have that
a3 ∨ y = i. Thus, (u, y)↗b (a3, i), whence (2.5) gives that con(a3, i) = con(u, y) =
con(y∗, y). Hence, con(y∗, y) = con(x1∗, x1), whereby y is a join-deficit. So y, v,
and i are three join-deficits, and (the Three-Deficits) Lemma 1 gives the required
inequality cd(L) ≤ 8/64), completing the proof of Lemma 6. �

Lemma 7 (Circle Lemma). If 4 ≤ n ∈ N+ and L ∈ Circ(n), then

cd(L) =
8 + 3/2n−7

64
=

1

8
+

3

2n−1
.

Proof. The set of minimal elements and that of maximal elements of a poset P
will be denoted by Min(P ) and Max(P ), respectively. Let L ∈ Circ(n). Label
its two edges departing from 0L with α and β, and label the remaining of edges
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Figure 3. Illustrating the proofs of Lemmas 7, 8, and 9

that are disjoint from 1L with µ1, . . . , µn−4. These labels stand for the congruences
generated by the corresponding edges. As an illustration, all L ∈ Circ(8) are
drawn on the left of Figure 3. The two α-labeled edges of each of these diagrams
are perspective (i.e., →b), and the same holds for the β-labeled edges. Let J :=
Ji(Con(L)). (2.2) and (2.3) give that Max(J) = {α, β}, Min(J) = {µ1, . . . , µn−4},
J is the disjoint union of Max(J) and Min(J), and ξ < ψ holds for every ξ ∈ Min(J)
and ψ ∈ Max(J). There are 2n−4 members of Idl(J) that are disjoint from Max(J).
If X ∈ Idl(J) is not disjoint from Max(J), then Min(J) ⊆ X; so there are 3 ways to
pick such an X. Therefore, (2.1) leads to cd(L) = |Con(L)|/2n−1 = |Idl(J)|/2n−1 =
(2n−4 + 3)/2n−1 = 1/8 + 3/2n−1, completing the proof of Lemma 7. �

The concept of edge gluing, defined in the paragraph right after Theorem 1,
is meaningful for any two non-singleton finite lattices: if we form a Hall–Dilworth
gluing of L1 and L2 so that we identify a two-element filter of L1 with a two-element
ideal of L2, then we obtain an edge-gluing of L1 and L2.

Lemma 8 (Two-Circles Lemma). Assume that m ≥ 4 and n ≥ 4 are integers,
L1 ∈ Circ(n), L2 ∈ Circ(m), and L is an edge-gluing of L1 and L2. Then the
following two assertions hold.

(1) If m ≥ 5 and n ≥ 5, then cd(L) ≤ 6.5/64 = 13/128.
(2) If either m = 4 and n ≥ 6 or m ≥ 6 and n = 4, then cd(L) ≤ 7/64.

Proof. For part (1), the situation is visualized in the middle of Figure 3. The
distribution of the δ1, . . . , δn−4 between the left boundary and the right boundary
of L1 is unimportant, regardless of how many are on each side. The same holds for
ε1, . . . , εm−4 in case of L2. By (2.2) and (2.3), we obtain J := Ji(Con(L)), see the
figure again. In the computation below, Nα, N¬α,β , etc. will denote |{X ∈ Idl(J) :
α ∈ X}|, |{X ∈ Idl(J) : α /∈ X, β ∈ X}|, etc., respectively. By (1.1) and (2.1), we
can compute as follows.

cd(L) = |Idl(J)| / 2|L|−1

= (N¬α,¬β,¬γ +N¬α,β,¬γ +N¬α,¬β,γ +N¬α,β,γ +Nα) / 2n+m−3

= (2n+m−8 + 2m−4 + 2n−4 + 1 + 4) / 2n+m−3

= (21 + 2−(n−5) + 2−(m−5) + 5 · 2−(n−5)−(m−5)−1) / 26
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≤ (2 + 1 + 1 + 5/2) / 26 = 6.5/64,

as required by part (1). Part (2) is a trivial consequence of (the Glue-B4) Lemma
4 and (the Circle) Lemma 7, completing the proof of Lemma 8. �

3. The final steps of the proof of the theorems

In addition to proving the new result, Theorem 2, no extra effort is required to
provide an entirely new proof of Theorem 1 as well. Thus, we prove both theorems.
We proceed with a lemma.

Lemma 9. For a finite lattice L, the following two conditions are equivalent.

• |Jr(L)| = 2, |Mr(L)| = 2, and L contains no three-element antichain.
• There are 4 ≤ m,n ∈ N+ and lattices L1 ∈ Circ(m) and L2 ∈ Circ(n) such

that Cor(L) is the glued sum or an edge-gluing of L1 and L2.

Proof. As the second condition implies the first trivially, we assume that the first
condition holds. Pick a pair (a, b) of incomparable elements of L. Let u := a ∧ b,
v := a∨ b, and n := |[u, v]|. Furthermore, let C := [u, v]∩ (idl(a)∪ fil(a)) and D :=
[u, v] ∩ (idl(b) ∪ fil(b)). In the rightmost diagram of Figure 3, [u, v] is indicated by
the light-grey color. Note that the diagram is loosely connected to the proof. While
certain features of the diagram align with specific parts of the proof, other features,
such as the presence of three-element antichains, illustrate (indirect) assumptions
that must be excluded. Additionally, the diagram primarily supports the “u < v′”
portion of the proof (i.e., the second half). We claim that

C and D are chains, C ∪D = [u, v], and C ∩D = {u, v}. (3.1)

For the sake of contradiction, assume that there are x, y ∈ C such that x ‖ y. By
duality, we can assume that x, y ∈ fil(a) ∩ [u, v]. Since x ‖ y, we have that x < v
and y < v. If we had that b ≤ x, then v = a∨b ≤ x would be a contradiction, while
x ≤ b would contradict that a ‖ b. Hence, x ‖ b. Similarly, y ‖ b. So, {x, y, b} is a
three-element antichain, which is a contradiction. This proves that C is a chain. By
symmetry, so is D. Next, assume that x ∈ C∩D. As a ‖ b, either x ∈ idl(a)∩ idl(b)
or x ∈ fil(a)∩fil(b). In the first case, u = a∧b ≥ x ∈ [u, v] gives that x = u. Dually,
the second case leads to x = v, and we have shown that C ∩D = {u, v}. Finally,
if we had an element y in [u, v] \ (C ∪D), then {a, b, y} would be a three-element
antichain. Thus, [u, v] = C ∪D, and we obtain the validity of (3.1).

Next, let uC ∈ C and vC ∈ C be the (unique) elements of C such that uC covers
u and vC is covered by v. Similarly, uD ∈ D and vD ∈ D denote the (unique)
elements of D such that u ≺ uD and vD ≺ v. We claim that for each x, y ∈ L,

if x > u then x ≥ uC or x ≥ uD, and if y < v then y ≤ vC or y ≤ vD. (3.2)

To see this, note that x > u implies the existence of an x0 such that u ≺ x0 ≤ x. As
there is no three-element antichain, x0 ∈ {uC , uD}. Thus, (3.2) follows by duality.

We continue by showing that

every x ∈ Jr(L) ∪Mr(L) is comparable with both u and v. (3.3)

To see this, we assume by duality that x ∈ Jr(L). Then x is comparable with v,
as otherwise v, x, and v ∨ x would be three distinct elements of Jr(L). Assume,
aiming for a contradiction, that x ‖ u. Then u ∨ x = v, since Jr(L) = {v, x}. But
then x < v and (3.2) give that x ∈ idl(vC) ∪ idl(vD), whence v = u ∨ x ≤ vC or
v = u ∨ x ≤ vD, which is a contradiction proving (3.3).
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Next, we show that if there exist a′, b′ ∈ L such that

a′, b′ ∈ idl(u) ∪ fil(v) and a′ ‖ b′, then Cor(L) is of the required form. (3.4)

By duality, it suffices to deal with a′, b′ ∈ idl(u). Let u′ := a′ ∧ b′, v′ := a′ ∨ b′, and
m := |[u′, v′]|. Since u′ < v′ ≤ u, v′ ≤ u < v, and |Mr(L)| = |Jr(L)| = 2, we have
that Mr(L) = {u′, u} and Jr(L) = {v′, v}. We know that u′ < v′ ≤ u < v, and we
claim that {u′, v′, u, v} ⊆ Nar(L). If we had an element x such that x ‖ u′, then
x ∧ u′ would belong to Mr(L), contradicting that |Mr(L)| = 2. Hence, there is no
such x, and so u′ ∈ Nar(L). Dually, v ∈ Nar(L). By duality, it suffices to deal with
u alone, out of v′ and u. Seeking a contradiction, suppose that there is an x ∈ L
such that x ‖ u. As we already know that v ∈ Nar(L), we have that x < v, as
v ≤ x would lead to u < x. By (3.2), u ∨ x ≤ vC or u ∨ x ≤ vD, and so u ∨ x 6= v.
As v′ ≤ u < u ∨ x, u ∨ x 6= v′. Thus, u ∨ x, which is clearly join-reducible, cannot
belong to {v′, v} = Jr(L). This contradiction rules out the existence of x ∈ L with
x ‖ u, and we have shown that {u′, v′, u, v} ⊆ Nar(L). Therefore,

L = idl(u′) u [u′, v′] u [v′, u] u [u, v] u fil(v). (3.5)

Each of idl(u), [v′, u], and fil(v) is a chain, since otherwise we would obtain a third
join-reducible element. Since C \ {u, v} is disjoint from both Jr(L) = {v′, v} and
Mr(L) = {u′, u}, the elements of C \ {u, v} are doubly irreducible. As the same
holds for D \ {u, v}, (3.1) yields that [u, v] ∈ Circ(n). Similarly, [u′, v′] ∈ Circ(m).
These facts and (3.5) imply(3.4).

If necessary, we can select new a and b with the same v = a ∨ b as before and
allow u to change accordingly. Therefore, in the remainder of the proof, we assume
that a ≺ v = a ∨ b and b ≺ v. (These covering relations mean that a = vC and
b = vD.) Obviously, (3.1)–(3.4) remain valid. However, the extra assumption allows
us to strengthen (3.1) to

[u, v] ∈ Circ(n) (3.6)

To verify this, it suffices to augment (3.1) with the following property: for any
x ∈ C\{u, v} and y ∈ D\{u, v}, x and y are incomparable. This is straightforward.
Indeed, x ≤ y leads to x = x ∧ y ≤ vC ∧ vD = a ∧ b = u, a contradiction, while
swapping C an D shows that y ≤ x is impossible, either. We have verified (3.6).

We obtain from (3.3) that (the two-element) Jr(L) is a chain. Therefore, we can
assume that, in addition to a ≺ v and b ≺ v, v is the largest element of Jr(L). Let
u′ be the unique element of Mr(L) \ {u}, and pick a′, b′ ∈ L such that u′ = a′ ∧ b′,
u′ ≺ a′, and u′ ≺ b′. Let v′ := a′ ∨ b′ ∈ Jr(L) and, as earlier, m := |[u′, v′]|. In the
interval [u′, v′], we define C ′, D′, v′C′ , and v′D′ in the same way as their non-primed
counterparts are defined in the interval [u, v]. Furthermore, u′C′ = a′ and u′D′ = b′.

By (3.3), u and v′ are comparable. If v′ ≤ u, then a′, b′ < u and (3.4) applies.
Therefore, we can assume that u < v′. As v is the largest element of Jr(L),
we know that v′ ≤ v. By (3.3), u′ and u (which are distinct) are comparable.
Assume, aiming for a contradiction, that u < u′. Then a′, b′ ∈ [u′, v′] ⊆ [u, v] and
u < u′ = a′ ∧ b′ ∈ Mr([u, v]) contradicts (3.6). Hence, u′ < u.

After a series of smaller observations, we will strengthen v′ ≤ v to v′ < v. If we
had that u < a′, then u′ < u < a′ would contradict the covering u′ ≺ a′. Thus,
u 6< a′. Similarly, u 6< b′. Thus, since {u, a′, b′} cannot be a three-element antichain
and a′ ‖ b′, at least one of a′ ≤ u and b′ ≤ u holds. On the other hand, at least
one of them fails, as u < v′ = a′ ∨ b′. Hence, after swapping the roles of a′ and b′ if
necessary, we know that a′ ≤ u but b′ � u, so a′ ≤ u and b′ ‖ u. Since b′ < v′ ≤ v,
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(3.2) implies that b′ ≤ vC = a or b′ ≤ vD = b. So, after swapping the roles of a
and b if necessary, we have that b′ ≤ b. Using the inequalities established in this
paragraph, we obtain that v′ = a′ ∨ b′ ≤ u ∨ b = b < v. Thus, we have shown that
v′ < v, and we have also obtained that v′ ≤ b. Let us summarize; a ‖ v′ below
comes from a = vC , u < v′ ≤ b = vD, and (3.6), while “[u′, v′] ∈ Circ(m)” follows
from (3.6) by duality:

u′ ≺ a′ ≤ u < v′ ≤ b ≺ v, u ‖ b′, a ‖ v′, and [u′, v′] ∈ Circ(m). (3.7)

Next, we claim that
[u′, v] = [u′, v′] ∪ [u, v]. (3.8)

To derive a contradiction, assume that [u′, v] 6= [u′, v′] ∪ [u, v]. As “⊇” in the
place of “ 6=” follows from the inequalities summarized in (3.7), we have an element
x ∈ [u′, v] such that x /∈ [u′, v′] ∪ [u, v]. We know that x ‖ u, since otherwise either
u ≤ x and x would belong to [u, v], or x ≤ u ≤ v′ and x would be in [u′, v′].
Similarly, x ‖ v′, as otherwise we would have that x ∈ [v′, v] ⊆ [u, v] or x ∈ [u′, v′].
As x ‖ v′, x ∨ u 6= v′. But x ∨ u ∈ Jr(L) = {v, v′} since x ‖ u. Hence, x ∨ u = v.
On the other hand, x < v and (3.2) yield that x ≤ vC = a or x ≤ vD = b. Hence
v = u ∨ x ≤ a or v = u ∨ x ≤ b, which is a contradiction implying (3.8).

By (3.8), every element of [u′, v] is in [u, v] or [u′, v′], but this will not be repeated
in the remainder of the proof. Moving forward, we will show that

u ≺ v′. (3.9)

Suppose the contrary, that is, u ⊀ v′; see Figure 3. We know from b = vD and
(3.7) that v′ ∈ D and u < v′. These facts and u ⊀ v′ imply that uD < v′. Using
(3.7) and a′ = u′C′ ∈ C ′, we have that u ∈ C ′ \ {u′}, whereby u < uD < v′ yields
that uD ∈ C ′, and so uD ≤ v′C′ . In particular, as v′ ∈ D \ {v}, uD ∈ D, and
uD ≤ v′C′ < v′, we obtain that v′C′ ∈ D \ {u, v}. Since u ∈ C ′ \ {u′, v′}, the
[u′, v′] ∈ Circ(m) part of (3.7) implies that u ‖ v′D′ and u ∨ v′D′ = v′. Hence, if we
had that uC ≥ v′D′ , then u < u∨v′D′ ≤ uC and u ≺ uC would lead to u∨v′D′ = uC ,
and combining this equality with the previously established u∨ v′D′ = v′, we would
obtain that uC = v′ ∈ D, contradicting (3.6). Therefore, uC � v′D′ . On the other
hand, uC ≤ v′D′ would lead to uC ≤ v′ ≤ b by (3.7), whereby (3.6) would imply that
v = uC ∨ b = b = vD, a contradiction. Thus, uC � v′D′ , and we have obtained that
uC ‖ v′D′ ; this was the first step to show that Y := {uC , v′C′ , v′D′} is a three-element
antichain. By the [u′, v′] ∈ Circ(m) part of (3.7), v′C′ ‖ v′D′ . We have already seen
that v′C′ ∈ D \ {u, v}, whence (3.6) gives that uC ‖ v′C′ . So Y is a three-element
antichain, which is a contradiction that proves (3.9).

Finally, (3.6), the [u′, v′] ∈ Circ(m) part of (3.7), (3.8), and (3.9) imply that
[u′, v] is an edge-gluing of L1 := [u′, v′] ∈ Circ(m) and L2 := [u, v] ∈ Circ(n).
Hence, {v, v′} ⊆ Jr(L), {u, u′} ⊆ Mr(L), |Jr(L)| = 2, and |Mr(L)| = 2 yield that
Cor(L) = [u′, v]. Thus, Cor(L) is of the required form, completing the proof of
Lemma 9. �

Most of the following lemma summarizes what we have already proved. By a
core lattice we mean a finite lattice L that is its own core, that is, L = Cor(L).

Lemma 10. The complete list of core lattices L with cd(L) > 8/64, along with
their sizes and congruence densities, is the following.

(1) The singleton lattice; its congruence density is 64/64, its size is 1.
(2) B4, the only element of Circ(4); cd(B4) = 32/64 and |B4| = 4.
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(3) N5, the only element of Circ(5); cd(N5) = 20/64 and |N5| = 5.
(4) C2 × C3, that is, the edge gluing of two copies of B4; cd(C2 × C3) = 16/64

and |C2 × C3| = 6.
(5) B4 u B4; cd(B4 u B4) = 16/64 and |B4 u B4| = 7.
(6) All L ∈ Circ(6), where cd(L) = 14/64 and |L| = 6.
(7) All L ∈ Circ(7), where cd(L) = 11/64 and |L| = 7.
(8) All edge gluings L of B4 and N5; cd(L) = 10/64 and |L| = 7.
(9) L = B4 u N5 or L = N5 u B4; cd(L) = 10/64 and |L| = 8.

(10) All L ∈ Circ(n) for 8 ≤ n ∈ N+, where cd(L) = (8 + 3/2n−7)/64 and
|L| = n.

Proof. It follows from (the Glued Sum) Lemma 2, (the Glue-B4) Lemma 4, and (the
Circle) Lemma 7 that the congruence densities are correctly given in the lemma.
Clearly, so are the sizes of the lattices that occur. We need to show only that every
core lattice L with cd(L) > 8/64 is in the list supplied by the lemma. So, assume
that L is a core lattice such that cd(L) > 8/64.

By (the Three-Deficits) Lemma 1, we can assume that |Jr(L)|, |Mr(L)| ∈ {0, 1, 2}.
Clearly, |Jr(L)| = 0 if and only if |Mr(L)| = 0 if and only if L is a chain. As the only
core chain, the singleton chain, is in the list, we can assume that |Jr(L)|, |Mr(L)| ∈
{1, 2}.

Assume that |Jr(L)| = 1. Pick two incomparable elements a and b (in notation,
a ‖ b), and denote a∨b and a∧b by v and u, respectively. So v is the only nontrivial
join. If L = {u, a, b, v}, then L = B4 is in the list. Assume that x is an additional
element of L. Consider the following six intervals of L:

[0, u], [v, 1], [u, a], [u, b], [a, v], [b, v]. (3.10)

If we had that x ‖ v, then x∨v would be a second nontrivial join, which is excluded.
If x was incomparable with u, then we would have x ∨ u = v, since v is the only
nontrivial join. But then a ≤ x or b ≤ x would violate x ‖ u, while x ≤ a or
x ≤ b would contradict x ∨ u = v. Therefore, {a, b, x} would form a three-element
antichain, contradicting (the Antichain) Lemma 6. Hence, x is comparable with
both u and v. So x is either in one of the first two intervals listed in (3.10), or
x ∈ [u, v]. Assume that x ∈ [u, v]. As we know from (the Antichain) Lemma 6
that {a, b, x} is not an antichain, x belongs to one of the last four intervals given
in (3.10). We have seen that

each x ∈ L \ {u, a, b, v} is in one of the six intervals given in (3.10). (3.11)

We cannot have two incomparable elements in [a, v], as these two elements and b
would form a three-element antichain, contradicting (the Antichain) Lemma 6. By
symmetry, [b, v] cannot contain two incomparable elements either. Two incompa-
rable elements in the remaining four intervals in (3.10) would give a nontrivial join
distinct from v, which would violate |Jr(L)| = 1. We have obtained that

each of the six intervals given in (3.10) is a chain. (3.12)

Therefore, as L = Cor(L), we obtain that [0, u] and [v, 1] are singletons. This fact,
(3.11), (3.12), and |Ji(L)| = 1 imply that L ∈ Circ(n), and so L is in the list.

We have seen that L is in the list when |Jr(L)| = 1. By duality, L is in the list
when |Mr(L)| = 1. We are left with the case where |Jr(L)| = |Mr(L)| = 2. Then, by
(the Antichain) Lemma 6 and Lemma 9, there are 4 ≤ n1, n2 ∈ N+, L1 ∈ Circ(n1),
and L2 ∈ Circ(n2) such that L is the glued sum or an edge-gluing of L1 and L2.
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First, let L = L1 u L2. We obtain from (the Circle) Lemma 7 that, for ni =
4, 5, 6, . . . , cd(Li) equals 1/2, 5/16, 7/32, . . . , respectively. By (the Glued Sum)
Lemma 2, 8/64 < cd(L) = cd(L1) · cd(L2). But the product of two (not necessarily
distinct) entries of the sequence (1/2, 5/16, 7/32, . . . ) is greater than 8/64 if and
only if two copies of 1/2 are multiplied or we form the product (1/2) · (5/16). Thus,
L is B4 u B4, B4 u N5, or N5 u B4, whereby L is in the list, as required.

Second, assume that L is an edge-gluing of L1 and L2. Since cd(L) > 8/64, (the
Two-Circles) Lemma 8 implies that (n1, n2) ∈ {(4, 4), (4, 5), (5, 4)}. Hence, as (4)
and (8) in Lemma 10 show, L is in the list again. Thus, the proof of Lemma 10 is
complete. �

Based on the work carried out in this paper so far, the following proof is short.

Proof. Lemma 10 implies Theorems 1 and 2 in a trivial way. �

Figure 4. The seven-element lattices H1,1–H3,2

4. The congruence densities of seven-element lattices

By Kyuno [12], there are exactly 53 seven-element lattices (up to isomorphism).
Here, we list all of them in Figures 4–7, and we compute their congruence densities.
Out of these 53 lattices, we have already mentioned H5,3 and H5,7 as examples of
glued sums and edge-gluing constructs, respectively. With these two exceptions,
this section is not needed in the earlier parts of the paper.

To make the completeness of our list easy to verify, the jth lattice in the ith line
of Kyuno’s drawings is denoted by Hi,j . In most cases, cd(Hi,j) is trivially obtained
by (the Glued Sum) Lemma 2, (the Glue-B4) Lemma 4, (the Core) Lemma 3, (the
Circle) Lemma 7, or from an earlier case by duality. In all other cases, we diagram
Ji(Con(Hi,j)) and adopt the following convention: For each Greek letter ξ in Figures
4–7, the edges labeled by ξ1, ξ2, ξ3, . . . generate the same congruence. Moreover,
the equality of the congruence generated by a ξj−1-labeled edge and that generated
by a ξj-labeled edge follows directly from applying (2.5).

Based on the list, Figures 4–7, we obtain lcd7(k) for k ∈ {1, . . . , 14}, and we
also obtain that lcd7(k) does not exist for k > 14. With respect to the common
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Figure 5. The seven-element lattices H3,3–H5,5

Figure 6. The seven-element lattices H5,6–H7,5

denominator 64 = 27−1, the numerators of the lcd7(k) for k ∈ {1, . . . , 14} are given
in the (4.1). Note that these numerators are the sizes |Con(Hi,j)|. Each “i, j” entry
gives one of the witnesses Hi,j of the corresponding congruence density. Based on
(the Core) Lemma 3, one could easily obtain the counterparts of (4.1) for |L| = 5
and |L| = 6 from Figures 4–7. Obtaining analogous tables for |L| = 8, 9, . . . would
be excessively tedious, as the computational complexity rapidly increases with |L|.

k 1 2 3 4 5 6 7 8
64 · lcd7(k) 64 32 20 16 14 11 10 8
Ha witness 1,1 1,2 1,4 3,1 1,6 1,8 4,5 2,4

k (cont’d) 9 10 11 12 13 14 15 16
64 · lcd7(k) 7 6 5 4 3 2 — —
Ha witness 6,2 3,3 6,1 4,3 7,3 8,2 — —

(4.1)
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Figure 7. The seven-element lattices H7,6–H9,3

5. Conclusion

For n ≥ 7, let SCL(n) denote the set of the numbers of congruence relations of
n-element lattices L = (L;∨,∧). For all positive integers k ≥ 6 and n ≥ max{7, k},
we determined the k-th largest element lnc(n, k) of SCL(n). Furthermore, we gave
an explicit structural description of the lattices witnessing lnc(n, k). (Analogous
results for k ≤ 5 were previously known.)

By examining the kth largest number of the congruences within the class of all
n-element lattices, this paper could inspire further research where one or more of the
concepts —“kth”, “congruences”,“all”, and “lattices”— are replaced with alterna-
tive, yet meaningful and fruitful notions. (The first paragraph of the Introduction
already highlighted a few existing examples that align with this direction.)
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