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HOW TO GENERATE THE INVOLUTION
LATTICE OF QUASIORDERS?

Dedicated to E. Tamds Schmidt on his 60th birthday

I. CHAJDA and G. CZEDLI

Abstract

Given a set A, let Quord(A) denote the set of all quasiorders (i.e., reflexive and
transitive relations) on A. Equipped with meet (intersection), join (transitive hull of
union) and involution (p+— {{z,y): (y, z) € p}), Quord(A) is an involution lattice. When A
is infinite, Quord(A) is considered a complete involution lattice. Let s9 = Ng, the smallest
infinite cardinal, and define x,41 =2"". It is shown that if |A| £ kn for some integer n,
then Quord(A) has a three-element generating set.

Given a set A, let Quord(A) denote the set of all quasiorders (i.e., re-
flexive and transitive relations) on A. Similarly, the set of equivalences on A
will be denoted by Equ(A4). Both Quord(A4) and Equ(A) are algebraic lat-
tices if we define meet and join as intersection and transitive hull of union,
respectively. According to the following table, which was partly produced
by a computer program, Equ(A) and especially Quord(A) have quite many
elements:

[4] 1[2][3[ 4] 5 |67
Equ(A)] |1]2]5 | 15| 52 |203|877
[Quord(A)[[1]4]29]355]6942| 7 | 7

It was proved by Strietz [8] (cf. also Zddori [10]) that the lattice Equ(A),
4 < |A| < 00, has a four-element generating set, but cannot be generated by
three elements.

By an involution lattice we mean a lattice L equipped with an additional
unary operation * such that * is an involutory automorphism of the lattice
reduct. I.e., L={(L;V,A,*) is an involution lattice if (L; V, A) is a lattice and
(zvVy)y=z*Vy*, (zAy)* =z* Ay* and z** =z hold for all z,y € L. If the
lattice reduct of L is a complete lattice, then L is called a complete involution
lattice. The most typical example is Quord(A) where o* for a € Quord(A) is
defined to be {(z,y) € A%: (y,z) € a}. From now on, Quord(A4) will always
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be considered a complete involution lattice. Involution lattices and Quord(A)
have recently been studied in [1], [2], [4], [5] and [6]. The relation between
involution lattices and Quord(A) is similar to but not quite the same as
that between lattices and Equ{A4). E.g., while each lattice can be embedded
in some Equ(A) by Whitman [9), there are involution lattices that can be
embedded in no Quord(A), cf. [4].

Now for any ordinal number v we define a cardinal number «, via in-
duction. Set xg =Ry, the cardinality of Ng ={0,1,2,3,...}. If s, is defined,
then let k,41 =2 . If v is a limit ordinal, then let x, be the sum of all k,,,
p<v. For example, k,, is the sum of all cardinals x5, n € Ng. The goal of
the present paper is to prove the following

THEOREM 1. Let A be a set with 3 <|A| < k,. Then Quord(A), as a
complete involution lattice, has a 3-element generating set. In fact, Quord(A)
can be generated by three partial orders.

Before proving this theorem, some remarks are worth formulating.

If A is finite then Theorem 1 holds for Quord(A) as an involution lattice
in the usual sense (when the operations are the binary join and meet, and
the unary involution).

The proof of Theorem 1 will (more or less) give the right feeling that
there are many countable ordinals v > w such that Quord(A) is 3-generated
for |A] < k,. But proving this stronger statement would require a much
more complicated proof without proving the result for all sets A; therefore
the present paper is restricted to v =w.

If {a,B8,v} generates Quord(A) as a (complete) involution lattice, then
{a,B,7,a*,3*,7*} generates it as a complete lattice. Thus Theorem 1 offers
a six-element generating set for the lattice reduct of Quord(A4)}.

If |A] € {3,4}, then a straightforward computer program shows that
Quord(A) cannot be generated by two elements. This encourages us to
conjecture that Theorem 1 is sharp in the sense that Quord(A) has no two-
element generating set for |A] 2 3.

Besides the mentioned computer program, there is manual proof of the
fact that no {a, 8} S Quord(A) generates Quord(A) for |[A] =3. We can
list all possible {a, 8}, apart from symmetries and duality, and we can as-
sociate a nontrivial unary operation f, gy: A — A with {a, B} such that «
and f are compatible with fi, 3. Then all elements of [{a, 8}], the invo-
lution sublattice generated by a and S, are compatible with fi, 5. Hence
[{e, B}] # Quord(A), for all members of Quord(A) (or Equ(A4)) are simulta-
neously compatible only with trivial (unary) operations (i.e., projections and
constants). The long but easy details of this argument will not be presented
here.

Unfortunately, the above idea, borrowed from Zadori [10], does not seem
to work for {A| 2 4. By Demetrovics and Rényai (7], for |A| >4 there are
o, 3 € Quord(A) such that they are simultaneously compatible only with
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trivial A® — A operations. At present, there is no good description of these
{a, B}. E.g., both a and B can be a three-element chain (cf. [7]), but (as it
is not too hard to check) the choice o= {(1,2), (3, 2}, (3,4), (5,4), (5,6) }UA
and 8 = {(1,3),(1,5),(1,6),(2,6),(4,6)} UA for A={1,2,3,4,5,6} is al-
so possible. (Here and in the sequel A stands for the diagonal relation
{(z,z): = € A}; since this is the smallest element of Quord(4), it will also
be denoted by 0.)

PROOF of Theorem 1. For a relation € A2, let u9° denote the smallest
quasiorder including u, i.e., the transitive hull of pUA. As usual, P(X) will
stand for the set of all subsets of X, and let P*(X)=P(X)\ {0}. First we
deal with the infinite case.

For each nonnegative integer n we will define an n-scheme

S" = (An;eg7ez+la e ;DSLn)aDSLn-i_l)a e ;'anﬂ(n)a’Yn)

via induction on n. (The meaning of its components will be given soon.)
This n-scheme will depend only on n. Further, associated with S, and

Ue P(DSL")), we will define a (unique) n-boz
Bp=Bn(U)=(An; e, ex*’,...;U; DIV, DD, sam, oy ).
In danger of confusion, the more accurate notation

B (U) =(A(U); en(U),ent}(U),... 3 U;
DM W), D), ... 500 (U), BulU), 10 (U))

will be used, even if most of the components do not depend on U. For
m < n, we will also define the sub-m-bozes of B,(U) or S,; and for m =n,
By (U) will be considered the only sub-n-box of itself. After the necessary
definitions and preliminaries we will show that A, is a set with power &,

and {an, Bn,Yn}, no matter which U € P(D,(zn)) is considered, is a generating
set of Quord(A4,).

Now we define the 0-scheme Sy, cf. Figure 1. Let Ag = {ao, bo, co, do, a1, b1,
c1,d1,a2,...}. We define three partial orders on Ay:

a():{(a'ha’j): ngéj}u{(blabj> 0§J§Z}U{(01,Cg>}u
{{eirej): 12957 U{{d;,dj): 0S5 SiFUA,
¥0={(bi,ai4+1): 0S i} U{{di, cit1): 0SiJUA,
O = ({(ao, bo), (bo; co), {co, do), {c3, d3), {cs, bs) }U

{{bi,ai): 153} U{(diyce): 1S3}) "

These quasiorders are represented by horizontal, southwest — northeast,
and (solid) vertical directed edges, respectively. For k > 1, e = ((bo, cor),
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9 ¢ a 4 a4 45 4ag dg a1z 15
I ]
by by by b3 by bs b by 1b1y bys
Co €1 € [G3 ¢ S5 |G 19 ‘12 €15
t A A/
4 4 4, 4 dy d; dg dy dpp dis
Fig. 1

(bok+35 Cok+3), (bok+6, Cokr6)) Will be called an edge triplet. (For k=1, this is
represented by three dotted vertical lines on Figure 1.) Associated with this
e we will use the notation

e=({be ce), (e, o), (Be cc))-

The binary relations

d(e) = {({be, ce), <cizv b’e>’ (C::Ia bg>} and
" (e) = (4(e))*
will have special role. (Sometimes we use the notation p* = {{y,z): (z,y) €
p} even when p is not a quasiorder.) Let {DS—I),D(()O),D(()I),D?), ...} bea
fixed partition on the set of edge triplets of Sy such that all the classes D(()i) are
infinite. Let e, e}, €2, 3, ... be a fixed enumeration of the elements in D™,
We have defined Sy, and clearly |Ag| = [D(()O)l = lDél)I = {D((f)( =...=Ky.
Now let U € P(D(()O)), and define
fo=h(U)=(BOU Y du U &)

eel eeD{)\U

qo

Thus we obtain the 0-box
Bo=Bo(U) = (Ao; 8, €}, ;U; DV, DSV, ... ; a0, Bo, Y0).

Now let us assume that S, B,(U) for U € P(Ds,n)) and their sub-m-boxes
for m < n are already defined. We may assume that A,(U)NA,(V)=40 for

distinct U,V € P(D{V). Let

An+1 = U A" (U) )
UepP(DM)
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Ont+1 = U (),

UveP(D{™)
M= U ), and
UeP(DY)
Dr(:-)}-l = U D,(f)(U), foriz2n+1.
UeP(D{M)
% 4 & 4 a4 4 4g 4o 812 a5
T } r b
by by b, b3 by b5 b by ib1 bys
B, (@) :
¢ € |66 ¢ |G S 112 C1s
) 3 ) b
4 d 4 dy dy d; dg dy dp; dys
4 @ a6, a3 4 a5 dg %9 212 &5
A
by by b, by by bs b by by, ibys
0 €1 € |G ¢ |G 1C9 12 Y
d d d dy dy d; dg dy dpy ds

Fig. 2

(Of course, all these unions are unions of pairwise disjoint sets. For n =0,
the situation is outlined on Figure 2, where the three dotted lines stand
for the edge triplet €, and only one of By(U), U #0, is indicated.) Define
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el =¢eh(0) for i2n+1 and

5(”,0aU)={<be;{(0)’ce (@) {Cen 1) Demqpy)» (€ Zg(uyblég(m)}
for U € P+(D{M). Set

B‘”*”=( U GOu U g(n,o,m)‘”

UepP(D{) UepP+(D™)

This way we have defined

Sn+1—<An+1) entirentd ... foﬁ”,szTiQ), . ;an+l,ﬁ(n+1)a7n+1>-
Clearly, |Any1] = )DSZ:“II)I = ]D,(L'_L‘_-Flz)[ =...=Kpny1. The sub-n-boxes of S, 11

are just the B,(U), U € P(Dﬁ,”)). For m < n, the sub-m-boxes of S,4; are
the sub-m-boxes of its sub-n-boxes. Now let U € P(D(n+1) ), and define

n+1
qo
frn=(8"U U sQU U 5 @)"
ecU D("+1)\U
n+1

Thus we obtain the (n + 1)-box
Bny1=Bpt1(U) =

ntl n+2 {n+1) p(n+2) .
<An+17 n+17 n+1a-- U Dn+1 aDn-}.l gt 7an+17ﬂn+1:7n+1 .

For m £ n, the sub-m-boxes of B,11(U) are the same as that of Sp4;.

In order to show that oy, 8, = 6, (U) and ~y, generate Quord(A4,) (no
matter which U € P(D,(1 )) is considered), we introduce certain binary terms
Iie=fra(@,y,2) (n€No,p,q€ Ayp). While the f), will be involution lattice
terms in the usual sense, for n >0 the f7', will contain the infinitary join
and/or meet operations as well. Instead of developing the exact definition
of “terms” (like in [3, Chapter 2]) prior to their usage, we only note that all
complete involution sublattices are closed with respect to the “term func-
tions” they induce, and we will not make a distinction between two terms if
they induce the same term function on each complete involution lattice. Set
T =TAYAzAZ* Ay* Az*, and notice that f;',(an, Bn,Yn) =0 in Quord(4y,).
(This follows from ay Aoy, = fn A B, = A, =0.) When we define the f,
in the sequel, we implicitly always assume on (n,p,q) that neither fpq DOT
fqp has previously been defined. Further, for p#gq, f7,= (/7). (Remem-
ber, we do not make a distinction between f;', and (f;},)**.) When defining
our terms, we keep in mind that the final purpose is to show

(1) f;al,q(amﬂm')’n):{(paqnqo-
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Then oy, B, and v, will evidently generate Quord(A), for any element u of
Quord(A4) is the join of all {(p, ¢)}?° below u. However, (1) is not appropriate
to be an induction hypothesis; something stronger is necessary. For p,q€ A,
and n <m, let H be the set of all sub-n-boxes of B,,, = B,,(U). These sub-
n-boxes are pairwise disjoint, of course. For h € H, let p, and ¢, denote (the
elements corresponding to) p and ¢ in the h-th copy of A, (i.e., in the base
set of the A-th sub-n-box). Define

0" =( U {nan)}) " € Quord(An).

Note that {(p,q)}qo = (p, q>(”’"‘) in Quord(An) and <p’ q)(")m) = AU
U U {(Pn,qn)}- We will define terms f7', such that
heH

(2) £ (s By ¥m) = (p,@)™™  in Quord(An,)

holds for all 0 £n <m and p,q € A,. Note that (2) implies (1), and therefore
it implies Theorem 1 for [A]| =|A4,| = k.

The verification of (2) will be based on the geometric arrangement of
elements in A,,. These elements are in &,, rows and k¢ =Yg columns. The
subset {ag,a1,a2,...}, {bo,b1,b9,...}, {co,c1,¢2,...}, and {dy,d;,ds,...}
of sub-0-boxes of Sy, are called rows (a-row, b-row, c-row and d-row), while
aj, bj, c; and d; of sub-0-boxes belong to the j-the column. For u € A,, we
introduce the notation col(u) = j to express the fact that v is in the j-th
column. For an edge-triplet e, let col(e) denote {col(be),col(d,),col(d))}. It
is worth mentioning that for 7 € {8, 55, }, P € {Vm, 7} and p,q € Ay,

(3) (p,q) € TV p==>|col(p) — col(q)| < 3.

This explains why the “column distance” of edges in an edge triplet is chosen
to be three in the construction. Some other, more or less self-explaining, ter-
minology induced by the “geometry” of A,, will also be used. For example,
Qi is row preserving and By, is column preserving. If 7 € Quord(4,,) and
X C Ay, has the property that v € X and (u,v) € 7 imply v € X, then X is
said to be closed with respect to 7. E.g., columns are closed with respect to
Bm and rows are closed with respect to af,. If (u,v) € 7 and u # v imply
col(u) # col(v) resp. col(u) < col(v), then 7 is said to be column changing
resp. column increasing. 1If, for some i # j, (u,v) € 7 and u # v imply
col(u) = ¢ and col(v) = j, then we say that 7 changes the column from i
to j. Associated with a 0-box or 0-scheme we may speak of its halves; the
a-row and b-row form the upper half while c-row and d-row constitute the
lower half.
Now define
fgo,bozy/\(:c\/z*) and f° =yA(z"V2z").

COde
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In order to show (2) for f? a0,bo> SUPPOSe u,v € Ay, are distinct elements and

(u,v) € fgo’bo (am, By Ym) = Bm A (e V7). From (u,v) € B, we conclude
col(u) = col(v), whence u and v are in distinct rows. Since (u,v) € am V7L,
u and v belong to the same sub-0-box By, and even to the same half of By.
Since the vy-arrows “go up” (cf. Figure 1), either u is in the a-row and v
is in the b-row or u is in the c-row and v is in the d-row of By. Therefore
col(u) =0, for otherwise the B-arrow would go up between the rows of u
and v. Thus (u,v) € {{ao, bo), (co,do)}. But (co,do) & am V7, for ¢ is a
maximal element with respect to a;, and it is isolated with respect t0 Y- So
(u,v) € {ag, bo) € {ag, b){®™). The inclusion (ay, bo)(o ™ C £ o (@my By Yim)
is evident, hence we have shown that (2) holds for
fgo,do is very similar.

Simple considerations like the above for f fl’o,bo will not be detailed usually.
Moreover, when we define a term f'; in the sequel without further reasoning,
this definition should be understood also as a statement claiming (2) for the
term in question; the proof of this implicit assertion is left to the reader.

Now we assume that fgi,bi and f(g 4; satistying (2) are already defined.
Let

ao,bo' The treatment for

t(l)i,ai+1 =:II/\(f21 b; z),
0 _{ A(Q 4 V), if i=0
i TA(fQ 4 V2), if i>0,
fl?iyai+1 =z (fzﬂ,a,- v fg,-,aiﬂ),
fgi’6i+1 =zA (fcti)i,ci Vfcoi,ci+1)7
fl?iybi+l =z*A (fl?i,ai-f-l vy*),
f‘(i)i,di+1 =z"A (fdoi,Ci.’.l Vy*),
f¢?,+1,b,+1 =y A (ft(z),+1 b f(?,,b,H),
sz+11d1+1 =y A (f0,+1, fd“d,+1)-

For example, the argument proving (2) for f,?i bipy TUDS a8 follows. Sup-
pose u,v € Ay, are distinct elements and (u,v) € fl?i,biﬂ(am’ﬂm”)'m) =ap, A
((b;, ai+1)&™ v B%,). Since o, is row preserving, u and v are in the same row
(and in the same sub-0-box) but in distinct columns. There are distinct ele-
ments wy = u, Wy, ... ,w; =v in Ap, such that (w;_1,w;) € (b;, a;i1) O™ U
for all j. Since B, is column preserving and (b;,a;+;)(®™ changes the
column from i to ¢+ 1, there is a k such that (wg_1,wg) € (b,-,a,-+1)(°’m)
and (w;— 1,w]) € B, for all j #k. Hence (u,wi—1), (wk,v) € B, col(u) =
col{wg—1) =1 and col(v) = col(wg) =4+ 1. Suppose i is not a multiple of 3
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(the other case, when 3 does not divide ¢ + 1, is similar). The intersection
of the ¢-th column with an arbitrary sub-0-box (and the upper half of this
sub-0-box) is closed with respect to %, and (b;,a;4)®™. Hence u, wi_,,
wg and v belong to the upper half of the same sub-0-box By of S,,, and
wg—1 = bi, wg =aiy; in Bg. Therefore (2) for fg’i bist follows easily from
Figure 1.

Now let p # q belong to the same half (upper or lower) of Sy, and consider
the smallest circle in the undirected variant of the graph on Figure 1 which
contains p, q and consists of

(4) vertical and horizontal

edges only, and goes within the same half of Sy that contains p and ¢. Let

{p=ro,m1,72,-.. ,"i=¢q, Ti+1,--- ,Tk—1,Tk =70 =p} be this circle (which is
uniquely determined, the elements are listed anti-clockwise); the elements
T9,T1,-.- ,Tk—1 are pairwise distinct. Define

0 0 0 0 0 0 0
fp,q = (f‘ro,Tl Vfr1,r2 v Te Vf'r,-_l,ri) /\ (frk,rk_l v ka_l,Tk_g v te V fri+1,r,~)'

Now we can set

0 0 0 0 0

fbo,co =yYA (fbo,ba v y* v 63,60) A (fbo,bs Vy* v fCG,Co) and
0 0 0 0

fbs,03 =y A (fba,bo v fbo,CO v f60,03)'

Now suppose that p is in the upper half and ¢ is in the lower half of Sp,
and define

0 0 0 0 0 0 0
fp,q = (fp,bo v fbo,co v fcqu) A (fp,bs v fb3,03 v f03,q)‘

We have defined all the f° terms, and these terms satisfy (2).

Now let us assume that appropriate ternary terms f', (p,q € An) are

already defined (and they satisfy (2)); we start defining the f"*! terms.
First assume that p,q € A;,;1 belong to the same sub-n-box B, (U) of
Sn41 such that col(p) # col(g) and neither col(p) nor col(q) is divisible by 3.

Here U € P(D{™). Let

1
I?;;_ =f;,l’q/\/\(f,7,l’beVnyZ,q)/\ A (f:,bevy*vf(i,q)-
eeU eeDT\U

To show that this term satisfies (2), let m 2 n+1, and consider an m-box Bp,.
By definitions and the validity of (2) for f™-terms we obtain

©®) (o q)(n+1,m) < fl?,;-l(amaﬂmf)’m) < f;},q(am;ﬁm’ Ym) = (P, q>(n,m).
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To show that the first inclusion in (5) is in fact an equality, suppose there is
a pair (u,v) € fi+ (am, Bm,1m) \ (P, ¢)*+bm) Tt follows from (5) that u=
p(V)andv= q(V) in some sub-n-box B, (V') of B,,. Here B, (V') belongs to a

unique sub-(n+1)-box of By, V € P( ,(1")), and p(V), q(V) are the elements
of B,(V) that correspond to p,q € B,(U). From (u,v) ¢ (p,q)*t1™ we
conclude that U # V. Let e be an edge triplet in (U \ V)U (V \U). Since
col(be) is divisible by 3, the elements u, v and b, belong to distinct columns.
Suppose first that e € U \ V; we claim that (u,v) = (p(V),q(V)) does
not belong to f:,be (m, Bms Ym) V Bm V fcri,q(amaﬂm: Ym) = (p, be>(n’m) V B V
(ce,q)™™). Indeed, let us assume the opposite. Then there is a shortest
sequence (of distinct elements) wo = p(V), wi,ws,... ,w; =¢q(V) such that
(wi_1, w;) € (p,be) ™™ U B, U (ce, q)™™ for all i. Since By, is column pre-
serving, (p, be){™™ changes the column (only) from col(p) to col(b,) = col(c,)
and (ce, q)(™™ changes the column from col(c,) to col(q), all the w; belong
to the col(p)-th, col(g)-th and col(ce)-th columns. By the construction, no
fc has an element in these three columns, whence the intersection of these
columns with B, (V) (or even with any sub-0-box) is closed with respect to
Bm. Consequently, all the w; belong to the same sub-n-box, i.e., to B, (V).
Our present information on the columns col(w;) imply that, within B, (V),

p(V)=wp (p, be)(n’m) w1 =be(V) Bm wa=ce(V) (ce, q)(n,m) w3z =q(V)
is the only possibility. But this is a contradiction, for (be(V'),c.(V)) is not
in By, (in fact, it is in 3},) by the construction. For e€ V\U, (u,v) ¢
Fob (@ms Bm, Ym) V By V f2. o(&tm; Bmy Ym) follows similarly. Thus (2) holds
for frit.

Now let us assume that p,q € A,+1, p # g, still belong to the same sub-
n-box Bp(U) of Sp4+1 but the previous additional assumption does not hold
(i.e., col(p) = col(q) or 3| col(p) or 3|col(g)). Choose elements p',p",¢’,q" €
Ap+1 such that p,p',p” are in the same row, q,q¢’,q" are in the same (pos-
sibly another) row, none of col(p'), col(p”), col(q'), col(¢”) is divisible by 3,

[{col(p’), col(p"), col(q'), col(¢”) }| =4 and {col(p'), col(p"), col(¢'), col(¢")} N
{col(p), col(g)} = 0. Note that this choice can be made unique by fixing an ap-

propriate N3 — N§ map and requiring (col(p),col(g))
— (col(p’), col(p"), col(q'), col(¢”)), but the explicit knowledge of this map
is unimportant for us. Now we can define

n+1 — (f;p' vfn+1 qu q) A (fp,p” vfn+1 vV q” q)'

This way we have defined all f”+1 when p and ¢ belong to the same
sub-n-box of Sp4+1. Now let us con31der the sub-n-boxes By (0) and B, (U)
of Spt+1, Ue P+(D£L")). The e} edge triplets in these sub-n-boxes will be
denoted by

62(0):«(’0’60)7(%’06) V)ac(b ) and e (U)=<<bU’CU)s<b’U’CIU>’( I(IJ’CIIIJ»’
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respectively. Let

ntl _ n+l %y, gn+l n+l * +1
fb@,cU—y/\(fb Vy fo’,,,Cu)A(fb@,b’@’vy Vfcn )

oablg /(91CU

To show that this term satisfies (2), suppose that B4 is a sub-(n + 1)-box

of some m-box By, and, for distinct u,v € Ay, (u,v) € fI:;+c1U (¥m, B, Ym) =

B N ({b0, b)) Vv Br v (e, co) I A ((by, b)) v gV
V{cy,cr) ™). Since (u, v) € B, col(u) = col(v) and (u, v) ¢ G,. Hence in
any sequence wp = 4, wWi,...,w; = v in A, such that (w;—;,w;) €
(bg, bly) " FL™ U Br U (¢}, cv) ™1™ for all ¢ not all the (w;_1,w;) belong
to By, Therefore {col(wo),col(wy),... ,col(wt)} = {col(by), col(b})} (which is

the same as {col(cp),col(cy)})- In particular, col(u) = col(v) €
{col(bp), col(by)}. Since col(u) € {col(bg), col(by)} comes similarly, we obtain
col(u) = col(v) = col(by). We can assume on the sequence that

{{wi—1,w:), (wi,w;+1)} € B, holds for no i. Now the only possibility con-
cerning the elements w; is the following:

(n+1,m)

u B, w1 = by (b, b&)("“’m) wq = by By, w3 =cy {cy,cv) wy=cy B, v.

Since col(e?) Ncol(ek) = @ for k > n, the intersection of a sub-(n+ 1)-box with
the col(bg)-th or the col(by)-th column is closed with respect to G;,. Hence
all the w;, including u and v, belong to the same sub-(n + 1)-box. Working
within this sub-(n + 1)-box, from

by B U B v B cU,

u# v and by < ¢y (with respect to the partial order 8,,) we conclude u = by
- +1, : +1
and v=cy. Thus (u,v) € (bg, cy)**1™) proving (2) for f,:;’CU.
We define
3, = A (R VIR, V3T, )-

loyclU (] CU

Suppose now that p € B,(0) and ¢ € B,(U) for U € PH(D™). (The
previous cases, (p,q) = (by,cu) or (p,q) = (by,cy;), are excluded, of course.)
We can define

n+1 __ n+1 n+1 n-+1 n+1 n+1 n+1
P9 ( p,bg vfba,cu VfCU,Q) A (fp,b;, Vfba,c'U vfc’U,q> :

Finally, let p € B,(U1) and ¢ € B, (U,) for distinct Uy, Us € P+(D§1")),
and let by, cg € By (D) be as before. We define

n+l _ n+1 n+1 n+1 n+1
foa = ( piby Vfbo,q ) A (fp,Co vfca,q) :
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We have defined fz’,";l"l satisfying (2) for all p,q € A,41. The induction is
complete. So Theorem 1 is proved for all Quord(4,), i.e., for Quord(A) with
|A| = kn. Now if A is infinite and |A| < Ky, then k, <|A| < k41 for some
n. We may suppose k, < |4| < k41 (note that this case would not occur if
we assumed the generalized continuum hypothesis). Then simply modifying

the construction of A,;; so that we replace P( ,(l")) by a subset [D(D,(zn) ) of
it such that |P( ) ) =]A] and B e P(D,(zn) ) we easily obtain the result for
Quord(4).

Now let us deal with the finite case. If A consists of three elements a, b
and ¢, then Quord(A) is clearly generated by (a,b)9°, (b,c)9° and (c,a)?°. If

|A| = 2k 2 4, then we can restrict ag, Gy and vy to A= {ag,a,... ,ax_1,bo, b1,
... ,br_1}; the terms fJ, for p,q € A still satisfy (1). The odd case, A=
{ao,ai1,... ,ak,b0,b1,... ,bx—1} (k22), is essentially the same, but instead

of (4) we have to say
(4°) vertical, horizontal and {bg_1, by }.

The proof of Theorem 1 is complete.
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