ON COMPATIBLE ORDERING OF LATTICES
G. CZEDLI - A. P. HUHN -~ L. SZABO

This paper is motivated by the following theorem of

.Ivo G. Rosenberg [3]: For a finite lattice L = (L;A,V)

and a set {fy: vy € T} of finitary operations over [ the
algebra (L;{A,V}U{fy: vy € T}) is functionally complete
iff it is simple, for any compatible bounded partial or-
dering o of (L;A,V) and for any non-trivial compatible
binary central relation & of (Z;A,V) there exist vy,

§ € T such that f does not preserve p and f& does not
preserve 6. In view of this theorem it is interesting to
ask how compatible bounded orderings and compatible cen-
tral relations of a finite lattice can be characterized.
Here we deal with orderings; binary central relations
will be considered in a separate paper. Two different
methods will be developed to handle the qguestion. The
first method in Sections 1 and 2 generalizes to a de-
scription of all compatible bounded orderings, or equi-
valently, all compatible lattice orderings of a (not
necessary finite) lattice, while the second method in
Section 3 is suitable to describe arbitrary (not only
bounded) compatible orderings of a finite lattice. In-
teresting related questions occur in the theory of graph
isomorphisms of lattices developed mainly by J. Jakubik

and M. Kolibiar. (For a survey see Kolibiar [2] and its
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bibliography.) Our results generalize some of their the-
orems.
The authors are indebted to Professor Béla Cséakany

for suggesting this investigation,

1. BOUNDED ORDERINGS OF LATTICES

An element d of a lattice [ is called neutral if for
any z, y € L {d,x,y} generates a distributive sublattice.
Let N(Z) denote the set of complemented neutral elements
of L. The set of compatible bounded partial orderings of
I will be denoted by R(L).

THEOREM 1. Let L = (L;A,V) be an arbitrary lattice.

Then R(L) consists of lattice orderings, the map
x: R(L) » N(L), x(=) = the least element by =,
18 bijective, and <ts inverse map <s

os N(L)

+

R(L),

po(d) {(x,y)ELz: zAd 2z yAd and xVvd < yvd}.

In partteular, R(L) = @ <ff L Zs not bounded. For

d € N(L) the supremum and infimum of {x,y} by p(d) are
(d'"Vx)A(d'Vy)A(zVy) and (dVz)IN(dVy)IAN(xVy), respectively,
where d' is the (unique) complement of d in (L;A,V).

For —= € R(L) with least element 0 and greatest element
1 we have 6A; = 0 and 6v? = 1.

"REMARK 1. It is known (cf. Grétzer [1, Theorem III.
4.1]1) that for any d € N(L), L = (dlx[d), and the map
L » (dlx[d), = - (xAd,xVd) 1is an isomorphism. Therefore
we obtain the following
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COROLLARY 1. For any —~ € R(L) there exists a direct

leLz of L such that the lattice (L,=<)

18 i8omorphic to L?XLz, where L? denotes the dual of L.

decomposition L

113

PROOF OF THEOREM 1. Let L = (L;A,V,S) be a lattice.
First we show the following

CLAIM 1. Let u(z,y,2) denote one of the ternary
functions (xAy)V(zAz)V(yAz) and (xzVy)A(xVz)A(yVz). Let
— belong to R(L) with least element 6 and greatest ele-
ment ?. Then (L,=<) 1is a lattice, 1n which the 1nf1mum
and supremum of {xz,y} (S L) are u(O x,y) and u(1 1Y),
respectively.

PROOF OF CLAIM 1. By the Duality Principle it is
enough to show that u(a,x,y) is the infimum of {x,y} in
(L,~<) . Since the operations A and V are monoton by =,
so is y. Hence u(a,x,y) =< u(x,z,y) = x and u(a,x,y) =
< uly,z,y) = y, showing that u(a,x,y),is a lower bound
in (r,=<) . Suppose z is another lower bound. Then z =
= u(a,z,z) =< u(0,z,y), which completes the proof.

Now if d € [ and (dAz)V(dAy)V(xzAy) = (dVz)A(dVy)A
A(xVy) holds for any x, y €  then d is a neutral element
(cf. Grdtzer [1, Theoreh II. 2.4]). Since the infimum is
unique in (7,—=<) , Claim 1 yields that 6, the least ele-
ment by =< for =< in R(L), is neutral in L = (L;A,V,S).
Let =< belong to R(L) with least element 6 and gratest
element ?. Then, computing by Claim 1 and using the dis-
(0Az)V(OAT)V
V(zAl) = (xA(BV;))V(aA;), for any x € L, This easily im-
plies that (L;A,V,<) is bounded with 1 = 0V1 and 0 =
= aA?, whence 5 is a complemented element. Therefore «
really maps R(L) into N(L). Since any lattice ordering

tributivity law, we have x = u(0,x,7)
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is determined by the infimums, the injectivity of k can
be concluded from Claim 1. It remains to show that p maps
N(L) into R(L) and for any d € N(L) we have «x(p(d)) = d.
The reflexivity and transitivity of p(d) is evident. The
neutrality of d yields that p(d) is antisymmetric. If

. p(d)yi, for ©7 = 1, 2, then (x1Ax2)Ad = (x1Ad)A(x2Ad) >
(y1Ad)A(y2Ad) = (y,Ay,)Ad, while, by making use of the
neutrality of d, (x1Ax2)Vd = (x1vd)A(x2Vd) < (y1Vd)A

Ay, vd) = (y1Ay2)Vd. Therefore p(d) is compatible. It is
evident that d and its complement are the least and
greatest elements by p(d), respectively. Therefore

p(d) € R(L), and x(p(d)) = d. Q.E.D.

2., LATTICE ORDERINGS OF LATTICES

THEOREM 2. Let L = (L;A,V) be a lattice and let =
be a compatible partial ordering of (L;A,V) such that
(L,=<) is also a lattice. Then there exist Llattices Lys
L, and a Zattic; igomorphism Y: L - leLg such that
~< = {(x,y) € L": xwl 2 yv, and xh, < ywz}. (Thus
(L,=<) = L?xLz.) On the other hand, <f v: L = LJXL2 18 a
lattice isomorphism between L and LZXLZ’ then
{(z,y) € L2: Th, 2z Yy and TP, < y¢2} 18 a compatible lat-

tice ordering of L.

PROOF. It is enough to prove the first statement,
because the second one is trivial. Let L = (L;A,V,<) be
a lattice, and let < be a compatible lattice ordering
of it. Let N and U denote the infimum and supremum by

—< , respectively.

STEP 1. Any of the operations A, V, N, U preserves

both < and = .
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By the Duality Principle it is enough to show that
U preserves <. Let the ternary function (xAy)V(zAz)V(yAz)
be denoted by u(z,y,z2). Then p is monotone concerning
both < and < . We claim that xVy = u(z,y,u) whenever

x <y and y < u. Indeed, u(x,y,u) =< WaxVy,zVy,u) =

xVy = w(z,y,2) Y ulx,y,y)=< uwlz,y,u) Y ulx,y,u) =

u(x,y,u). Suppose a. < bi for £ =1, 2, and let u be
defined as a1Ua2Ub1Ub2. Then a1Ua2 = u(a1,a2,u) <

< u(b1,b2,u) ='b1Ub2, which completes the proof of Step 1.

STEP 2. For any # € I H is an interval in (L;A,V,<)
if and only if it is an interval in (I5;N,VU,=< ).

Since, by Step 1, the role of (L;A,V,~) and that of
(L;N,U~) can be interchanged, it suffices to show that
any H = {¢€L: a £ x < b} is an interval in (I;N,VU,~), If
x, y € E then a = aNa < xNy < bNb = b, therefore A is a
sublattice of (L;ﬂ;U;<). If x < 3 < y and x, y € H,

a and b = xVb =< zVb < yV
zVb, Thus 2" € F and H is a

convex sublattice of (L;N,V,=<) . Since the restriction of

then a = xAa < 2zAa < yAa

Vb = b, i.e. a = zha and b

< is a bounded compatible ordering of (H;N,Y,=<), (L;N,
U,=<) is also bounded by Theorem 1. Consequently F is an
interval in (L;N,VY,=<) , which completes Step 2.

Now let T be the set of intervals of L, and let a,r
ba, da, and e, denote the endpoints of o € T such that
a ="{x€L: a, < x < ba} = {x€L: da < x =< ea}' Let us
define two binary relations 6 and ¢ of I as follows: o =
= {(x,y)GLzz there exists o« € T such that z, y € o and
dan = ddAy} and ¢ = {(x,y)ELzz there exists a € T such
that =, y € o and qux = daVy}.

STEP 3. For (x,y) € Lz (x,y) € 0 iff for any B8,
{x,y} € B8 € I implies dBAx = dBAy; and (x,y) € ¢ iff for
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any B, {z,y} € 8 € I implies dSVx = dBVy.

Suppose (z,y) € 0, i.e., x, y € o and dan = duAy
for some o € T, and x, y € 8 € I'. Choose an interval
y € T such that « € y and 8 € y. Then, by Theorem 1 and
Remark 1, the map ¢ = ¢1X¢2 vy > {€L: a < x £ dy}x
x {x€L: dY < x < by}, p(x) = (¢1(x), ¢2(x)) = (dYAx,dYVx)
is an isomorphism; and for u, v € y u £ v is equivalent
to dYAu < d Av and dyvu < d vv, while u < v is equivalent
to dYAu > dYAv and dYVu < dyvv. In what follows in this
proof let ¢ be an arbitrary element of {«,8}. Then
d€ < bE and d€ =< b€ imply dY/\dE = dYAbe, while q;—c a,
and a, < de imply dYVd8 = dyvae' For any u € e we have
dYAu = dYAbEAu = éyAdgAu. Therefore the "if" part of the
following observation evidently holds: (%) For u, v € €
dYAu = dyAv if and only if dEAu = de/\v° On the other
hand, if dYAu = dyAv then d A(dsAu) = dyA(daAv) and,
from d Va <d V(d Au) < d Vd =d Va€ < dYV(dEAv) <

d Vd d Va ’ we have dyv(d AU) = dYV(d Av). Hence

the 1nject1v1ty of ¢ yields (*). Now (*) and d Ax daAy
imply dBAx = dBAy, and the Duality Principle completes
the proof of Step 3.

By Theorem 1, Remark 1, and Step 3 for any a €T
@a and @u (the restrictions of ¢ and ¢ to o) are congru-
ences, ea°®a = o %X a, and Ounéa =, (the equality re-

lation on o). Since & = |J 0,0 ¢ = U @ s and T is )

o€l o€l
directed partially ordered set under the set-theoretic
inclusion, from Step 3 it follows that 6 and ¢ are congru-
ences of [ = (L;A,V,<), 0Ne = w and ©°9 = LxL., There-
fore L z L/oxL/®, For x, y € L, by Theorem 1 and Step 3,
[#]o = [yle and [xz]¢ < [yle iff [x]eq > [y]@a and
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[x]@a < [y]@a for some o« € T iff # < y., Thus by letting

L and L, be equal to L/o and L/%, respectively, the

1

- proof of Theorem 2 is complete.

The section is concluded with the following corol-

‘3lary of Theorems 1 and 2.

COROLLARY 2. If L is a bounded lattice then the set
of its compatible lattice orderings and that of its com-

patible bounded orderings coincide.

3. ON ORDERINGS OF FINITE PRODUCTS OF SUBDIRECTLY
IRREDUCIBLE LATTICES

THEOREM 3. Let L be a lattice and let < be a com-
patible ordering on L. If L is subdirectly irreducible,
then there existe a congruence 0 on L such that either
for every a, b in L we have a < b iff a £ b and a 0 b
or for every a, b in L we have a < b iff b < a and
a 6 b, If L 28 a subdirect product of a finite number of
subdirectly irreducible factors Li’ T =1, 2, veey N,
then there exist compatible orderings = of the lattices
Li such that for each a, b in L we have a ~ b iIff
a, <., bi for all i, where the image of an element x in

. I under the i-th projection is denoted by . Conversely,

 if —~ <8 as described above, then =~ 18 compatible.

We prove the Theorem via the following four lemmata.
By an orientation of a lattice we mean a reflexive, anti-
symmetric, and compatible relation.

LEMMA 1, Let L be subdirectly <irreducible and let

" > be an orientation of L. Then + ie a part of the lat-

" tice order of L or its dual.
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PROOF. We may assume that there exist elements «,
b €L, a #b with a - b. Then, by the compatibility of
~, a = aVa » aVb = bVb = b, that is, either there exist
elements a, b in I with ¢ -+ » and a < b or dually. Con-
sider the case a =+ b, a < b, Let ¢ be the minimal non-
-zero congruence on L. We prove that there exist elements
¢, d in L, such that (e¢,d) generates ¢, ¢ < d, and ¢ + d.
In fact, choose an arbitrary pair (01,d1), e, < d1 gener-
ating ¢. Clearly ec 8,5 d1( thus there is a chain

1

t, < &, voe < x_ with x, = ¢.,, . = ¢ , such that each
1 2 n 1 1 n n

subinterval [xi’xi+1] is weakly projective to [a,b]. Let

[e,d] be any of the subintervals [xi,x We only have

. ]0

7+1

to show that ¢ + d. By the weak projectivity of [e,d] to

[a,b] there exist intervals [y1,z1], [y2,z2], ceos

coss [ym,zm] such that [y1,z1] = [e,d], [ym,zm] = [a,b],

and, for all i'[yé’gi] is transposed to a subinterval

] H .

[yi+1’zi+1] of [yi+1’zi+1]' Now a -~ b, that is, ym - zm.
1 — 1 1 i | - ' s

Hence Yy (yMVym)Azm - (yszm)Azm A [ym_1,zm_1] is

transposed to [ym,zm], thus Yt T Byt whence, by in-

duction, we have ¢ > d. Now let1e, f be arbitrary ele-
ments of L with e - f, We prove that e¢ < f, Assume not.
Then f < eVf, and, according to an earlier observation
eVf -+ f. Thus a modification of the above considerations
yvields that there exists a subinterval [02,d2] of [e,d]

such that e, < d2 and d2 > e On the other hand ¢ = d,

2 2°

whence e, = (GZVc)AdZ > (czvd)/\d2 = dz, contradicting

the antisymmetry of -.

LEMMA 2. Let L be a lattice, let 0 be a éongruence_
on L, and let » be an orientation of L. For elements a,
b € L/o define a >9

such that [cle = a, [dle = Db and ¢ ~ d. Then > i8 an

b if there exist elements ¢, d in L

orientation of L]0,




PROOF. We only have to prove antisymmetry. Let a,
b, ¢, d €L, let a © b, ¢c 06 d, and let g + ¢, d + b, We
have to prove a 6 ¢, but by symmetry, it suffices to
prove a 6 aVe, From what we have said so far, it follows
that a + aVe, dvb > b, and aVe © dVb (see Figure).

= (aVe)A(aVdVvb)

Then, clearly, aVdVb + aVd, furthermore, forming the meet
of aVe and of a by avdvb we obtain that a + (aVe)A(aVvdvb),
Now consider the elements denoted by x, y, z and a on the
Figure. We have a < £, a Sy, xs 3, y<z,a0y,x0z2,
a »x, and z + y. Notice that z < y. Indeed, if z % y,
then the endpoints of the intervals [xAy,x] and [y,xVyl
must be oppositely oriented by », as they are subinter-
vals of the oppositely oriented intervals [a,z] and [y,z],
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respectively, but this is impossible, for [xzAy,x] and
[y,zVy] are transposed. Thus we have ¢ < x < y < z. Now
@ 0 y yields ¢ @ z, and a © x 6 2z ylelds a © 2, From
Figure, z 6 aVe, whence a © aVe as claimed.

LEMMA 3. Let -+ be an orientation of the subdirectly
irreducible lattice L. Then the transitive closure =

of +~ i8 a compatible ordering.

PROOF. We have to prove that, whenever AgrGgrees
...;a_ € L are such that @, > @. > «.. + a_ + a,, then
n 1 2 n

%1 2

we may assume that ay < ay. Applying Lemma 1 again, we

have a, < a, < Gy «e. < a_ < a,, a contradiction.
1 2 3 " 1

LEMMA 4. Let L be a subdirect product of the lat-
tices Ll and L2, and let - be an orientation of L. Let
>2s ¢ =1, 2 denote the relation +

0.
the congruence associated with the érojection to Li'
Finally let =, = be the transitive closures of =, ;>
respectively. Then, for any a, b € L, a < b in L <f

and only <f a; =<, bl and a, <, b2.
Here and from now on, for an element x of a sub-
direct product, < denotes the images of x under the

7-th projection.

PROOF. The non-trivial part of the assertion is
that a; =< b1 and a, <, b2 implies ¢ < b, We may as-
sume that a < b. (Indeed, a, <. bi ensures that there

exist elements .. ,%.5,¢e0.,2 in L. with a. = z., ~>
217742 in . 7 7 21

s L m T aes . X = b,, whence we have a¢. = a . Va. =

T 12 1 7 zni 7 7 1 1

=gz.,Va. +». .. V@. +. «ss >. £. Va. = b.Va., that is
1 71 2 7 1 1

T 7 T Tin.,
72 2

>

=a, T ... = Assume not, say, a, F+ Ay By Lemma 1,

of Lemma 2, with @i




a, =<, aiVbi' and analogously aiVbi = bi' We only have
to show that a, =< aiVbi' 2 =1, 2 implies a =< aVp,
for avb < b follows analogously,'which is the same as

to assume a < b.) According to the hypotheses there

exist elements x11, sz' eees, o™ and y¢1, yiz, ces
ceer ytmi int., 7 =1, 2, with a, = xz1, xt1 -+ y$1,
;1 - sz' th R y12' . ee, PR AN ytmi’ yzmi - bi' We

may assume that all the elements Y and ytJ are in
between a and b in the lattice ordering <, or else we

could replace them by (z*9Ab)Va and (ytJAb)Va, respec-
tively. By the same token, we may assume that x11 <

< y1’1 < xlz < 2 € eee £ xtmi, or else they could be
replaced by xz1, x$1Vy$1, x$1Vy11Vx$2, x$1Vy11Vx12V
Vyzz, ...,x$1Vyt1V aee V xtmiVytmi, respectively. We are
going to prove that, for each k¥ € {0, 1,...,m.},

ytk - x1(k+1), where y10 = g and x1(m1+1)

a < x11 N y11 = .’L'12 - y12 - ... = x1m1 +y1m1 ~< b,

= b. Hence

and, by transitivity, a < b, proving the lemma. Now, to
prove y1k — x1(k+1), let ij(k) - (yzij1k)Ax1(k+1),
J=0,1, .oy mo, and let xzj(k) = (xzij1k)Ax1(k+1),
=12, ..o, my+1, where a = y20 and b = g2tm2t1)
By.the compqtibility of the relation -, we have
22700 » 2, G =1, 2, eeu, my.
completed once the following relations are proved

Thus the proof is

1) 320y = 4%,
2 S20mpH) ) V(R
(3) 229y = 229V, =0, 1, ..., moy.

All these relations can be proved via componentwise
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calculations, let us check, for instance, (3): y%g(k)

24,, 1k 1(k+1 24,, 1k, 1k 1k T(k+1
(y1‘7Vy1 .)/\x1 ) = (3/1JVZ/1 N4 = Yq 1 @S x1( )

= qu, and similarly xf(3+1)(k> = ylk- Furthermore,

27 o . 27 1k, 1(k+1) 1(k+1)
yoy (k) = (g3  Vyy Iz, Zy

= xg(g+1)(k), which was to be proved.

il

205+, 1K
= (z, Vy A

Now we are ready to prove Theorem 3.
We first prove the assertion concerning subdirectly ir-
reducible lattices. Let L be subdirectly irreducible,
let ~ be a compatible ordering on L, and let © be the
equivalence closure of =< . Clearly a © b iff there is a
sequence Lqr Lor eeer xzn of elements in I such that a =
=z, < Z, = Xy < T, > .. < Ty S b. Hence the com-
patibility of @ is immediate. It is also clear that ele-
ments in different 0-classes are incomparable. Now ap-
plying Lemma 1, let, say, =< be a part of the lattice
order of L. We show that, whenever a < b and a © b, then
o < b. In fact a 6 b means that there exist elements
Tqr Tor eeer Zy, in L with a = x =< %, > x3-< .ee
cee < X, = b. We have T, = x2Vx3 = xZVx4, x2Vx4 =
= x. Ve Ve o < xZVx4Vm6, etc., that is, a = % ~ . —

2 74775
- x2Vx4 =< x2Vx4Vx6 = ees =< xZVm4V e szn. Sum-—~
marizing a < xZVx4V e szn. Applying b = %y, 1 WE have
< =
a £b =< xZVx4V e szn. Hence a alhb -:(xZVx4V .o
.o szn)Ab = p, as claimed.
Now consider the case that L is a subdirect product

of finitely many subdirectly irreducible lattices. Let

~< be a compatible ordering on L. Then = 1is an orienta-

tion whose transitive closure is itself. Thus Lemma 4,
which applies for finitely many components, too, provides
a representation of < . To obtain the assertion of The-
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‘orem 3 we only have to show that the relations-<i of
Lemma 4 are compatible order relations. But they are

orientations by Lemma 2, whence they are compatible or-~
derings by Lemma 3.

Finally, if the ordering — is as described in The-
orem 3, then =< is obviously compatible completing the
proof.
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