ON COMPATIBLE ORDERING OF LATTICES

G. CZÉDLI - A. P. HUHN - L. SZABÓ

This paper is motivated by the following theorem of Ivo G. Rosenberg [3]: For a finite lattice $L = (L; \land, \lor)$ and a set $\{f_{\gamma}: \gamma \in \Gamma\}$ of finitary operations over L the algebra (L; { \land , V} \cup { f_{γ} : $\gamma \in \Gamma$ }) is functionally complete iff it is simple, for any compatible bounded partial ordering ρ of $(L; \Lambda, V)$ and for any non-trivial compatible binary central relation θ of $(L; \Lambda, V)$ there exist γ , $\delta \in \Gamma$ such that f_{χ} does not preserve ρ and f_{δ} does not preserve θ . In view of this theorem it is interesting to ask how compatible bounded orderings and compatible central relations of a finite lattice can be characterized. Here we deal with orderings; binary central relations will be considered in a separate paper. Two different methods will be developed to handle the question. The first method in Sections 1 and 2 generalizes to a description of all compatible bounded orderings, or equivalently, all compatible lattice orderings of a (not necessary finite) lattice, while the second method in Section 3 is suitable to describe arbitrary (not only bounded) compatible orderings of a finite lattice. Interesting related questions occur in the theory of graph isomorphisms of lattices developed mainly by J. Jakubík and M. Kolibiar. (For a survey see Kolibiar [2] and its

- 87 -

bibliography.) Our results generalize some of their theorems.

The authors are indebted to Professor Béla Csákány for suggesting this investigation.

1. BOUNDED ORDERINGS OF LATTICES

An element d of a lattice L is called neutral if for any $x, y \in L \{d, x, y\}$ generates a distributive sublattice. Let N(L) denote the set of complemented neutral elements of L. The set of compatible bounded partial orderings of L will be denoted by R(L).

THEOREM 1. Let $L = (L; \Lambda, V)$ be an arbitrary lattice. Then R(L) consists of lattice orderings, the map

 $\kappa: R(L) \rightarrow N(L), \kappa(\prec) = the least element by \prec$,

is bijective, and its inverse map is

 $\rho: N(L) \to R(L),$ $\rho(d) = \{(x,y) \in L^2: x \land d \ge y \land d \text{ and } x \lor d \le y \lor d\}.$

In particular, $R(L) = \emptyset$ iff L is not bounded. For $d \in N(L)$ the supremum and infimum of $\{x,y\}$ by $\rho(d)$ are $(d'Vx) \wedge (d'Vy) \wedge (xVy)$ and $(dVx) \wedge (dVy) \wedge (xVy)$, respectively, where d' is the (unique) complement of d in $(L; \wedge, \vee)$. For $\neg \in R(L)$ with least element $\tilde{0}$ and greatest element $\tilde{1}$ we have $\tilde{0} \wedge \tilde{1} = 0$ and $\tilde{0} \vee \tilde{1} = 1$.

REMARK 1. It is known (cf. Grätzer [1, Theorem III. 4.1]) that for any $d \in N(L)$, $L \cong (d] \times [d)$, and the map $L \to (d] \times [d)$, $x \to (x \wedge d, x \vee d)$ is an isomorphism. Therefore we obtain the following COROLLARY 1. For any $\prec \in R(L)$ there exists a direct decomposition $L \cong L_1 \times L_2$ of L such that the lattice (L, \prec) is isomorphic to $L_1^d \times L_2$, where L_1^d denotes the dual of L_1 .

PROOF OF THEOREM 1. Let $L = (L; \land, \lor, \le)$ be a lattice. First we show the following

CLAIM 1. Let $\mu(x,y,z)$ denote one of the ternary functions $(x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$ and $(x \vee y) \wedge (x \vee z) \wedge (y \vee z)$. Let \prec belong to R(L) with least element 0 and greatest element 1. Then (L,\prec) is a lattice, in which the infimum and supremum of $\{x,y\}$ ($\subseteq L$) are $\mu(0,x,y)$ and $\mu(1,x,y)$, respectively.

PROOF OF CLAIM 1. By the Duality Principle it is enough to show that $\mu(0, x, y)$ is the infimum of $\{x, y\}$ in (L, \prec) . Since the operations \land and \lor are monoton by \prec , so is μ . Hence $\mu(0, x, y) \prec \mu(x, x, y) = x$ and $\mu(0, x, y) \prec$ $\prec \mu(y, x, y) = y$, showing that $\mu(0, x, y)$ is a lower bound in (L, \prec) . Suppose z is another lower bound. Then z = $= \mu(0, z, z) \prec \mu(0, x, y)$, which completes the proof.

Now if $d \in L$ and $(d \wedge x) \vee (d \wedge y) \vee (x \wedge y) = (d \vee x) \wedge (d \vee y) \wedge \wedge (x \vee y)$ holds for any $x, y \in L$ then d is a neutral element (cf. Grätzer [1, Theorem II. 2.4]). Since the infimum is unique in (L, \prec) , Claim 1 yields that 0, the least element by \prec for \prec in R(L), is neutral in $L = (L; \wedge, \vee, \leq)$. Let \prec belong to R(L) with least element 0 and gratest element 1. Then, computing by Claim 1 and using the distributivity law, we have $x = \mu(0, x, 1) = (0 \wedge x) \vee (0 \wedge 1) \vee ((x \wedge 1)) = (x \wedge (0 \vee 1)) \vee ((0 \wedge 1))$, for any $x \in L$. This easily implies that $(L; \wedge, \vee, \leq)$ is bounded with $1 = 0 \vee 1$ and $0 = 0 \wedge 1$, whence 0 is a complemented element. Therefore κ really maps R(L) into N(L). Since any lattice ordering is determined by the infimums, the injectivity of κ can be concluded from Claim 1. It remains to show that ρ maps N(L) into R(L) and for any $d \in N(L)$ we have $\kappa(\rho(d)) = d$. The reflexivity and transitivity of $\rho(d)$ is evident. The neutrality of d yields that $\rho(d)$ is antisymmetric. If $x_i \ \rho(d)y_i$, for i = 1, 2, then $(x_1 \wedge x_2) \wedge d = (x_1 \wedge d) \wedge (x_2 \wedge d) \geq$ $(y_1 \wedge d) \wedge (y_2 \wedge d) = (y_1 \wedge y_2) \wedge d$, while, by making use of the neutrality of d, $(x_1 \wedge x_2) \vee d = (x_1 \vee d) \wedge (x_2 \vee d) \wedge$ $\wedge (y_2 \vee d) = (y_1 \wedge y_2) \vee d$. Therefore $\rho(d)$ is compatible. It is evident that d and its complement are the least and greatest elements by $\rho(d)$, respectively. Therefore $\rho(d) \in R(L)$, and $\kappa(\rho(d)) = d$. Q.E.D.

2. LATTICE ORDERINGS OF LATTICES

THEOREM 2. Let $L = (L; \land, \lor)$ be a lattice and let \prec be a compatible partial ordering of $(L; \land, \lor)$ such that (L, \prec) is also a lattice. Then there exist lattices L_1 , L_2 and a lattice isomorphism $\psi: L \rightarrow L_1 \times L_2$ such that $\prec = \{(x,y) \in L^2: x\psi_1 \ge y\psi_1 \text{ and } x\psi_2 \le y\psi_2\}$. (Thus $(L, \prec) \cong L_1^d \times L_2$.) On the other hand, if $\psi: L \rightarrow L_1 \times L_2$ is a lattice isomorphism between L and $L_1 \times L_2$, then $\{(x,y) \in L^2: x\psi_1 \ge y\psi_1 \text{ and } x\psi_2 \le y\psi_2\}$ is a compatible lattice ordering of L.

PROOF. It is enough to prove the first statement, because the second one is trivial. Let $L = (L; \land, \lor, \leq)$ be a lattice, and let \prec be a compatible lattice ordering of it. Let \cap and \cup denote the infimum and supremum by \prec , respectively.

STEP 1. Any of the operations $\wedge,$ V, $\cap,$ U preserves both \leq and \prec .

By the Duality Principle it is enough to show that \cup preserves \leq . Let the ternary function $(x \land y) \lor (x \land z) \lor (y \land z)$ be denoted by $\mu(x, y, z)$. Then μ is monotone concerning both \leq and \prec . We claim that $x \cup y = \mu(x, y, u)$ whenever $x \prec u$ and $y \prec u$. Indeed, $\mu(x, y, u) \prec \mu(x \cup y, x \cup y, u) =$ $= x \cup y = \mu(x, y, x) \cup \mu(x, y, y) \prec \mu(x, y, u) \cup \mu(x, y, u) =$ $= \mu(x, y, u)$. Suppose $a_i \leq b_i$ for i = 1, 2, and let u be defined as $a_1 \cup a_2 \cup b_1 \cup b_2$. Then $a_1 \cup a_2 = \mu(a_1, a_2, u) \leq$ $\leq \mu(b_1, b_2, u) = b_1 \cup b_2$, which completes the proof of Step 1.

STEP 2. For any $H \subseteq L$ H is an interval in $(L; \land, \lor, \le)$ if and only if it is an interval in $(L; \cap, \cup, \prec)$.

Since, by Step 1, the role of $(L; \land, \lor, \prec)$ and that of $(L; \cap, \cup, \prec)$ can be interchanged, it suffices to show that any $H = \{x \in L: a \leq x \leq b\}$ is an interval in $(L; \cap, \cup, \prec)$. If $x, y \in H$ then $a = a \cap a \leq x \cap y \leq b \cap b = b$, therefore H is a sublattice of $(L; \cap, \cup, \prec)$. If $x \prec z \prec y$ and $x, y \in H$, then $a = x \land a \prec z \land a \prec y \land a = a$ and $b = x \lor b \prec z \lor b \prec y \lor$ $\lor b = b$, i.e. $a = z \land a$ and $b = z \lor b$. Thus $z' \in H$ and H is a convex sublattice of $(L; \cap, \cup, \prec)$. Since the restriction of \leq is a bounded compatible ordering of $(H; \cap, \cup, \prec)$, $(L; \cap, \cup, \prec)$ is also bounded by Theorem 1. Consequently H is an interval in $(L; \cap, \cup, \prec)$, which completes Step 2.

Now let Γ be the set of intervals of L, and let a_{α} , b_{α} , d_{α} , and e_{α} denote the endpoints of $\alpha \in \Gamma$ such that $\alpha = \{x \in L: a_{\alpha} \leq x \leq b_{\alpha}\} = \{x \in L: d_{\alpha} \prec x \prec e_{\alpha}\}$. Let us define two binary relations Θ and Φ of L as follows: $\Theta = \{(x,y) \in L^2: \text{ there exists } \alpha \in \Gamma \text{ such that } x, y \in \alpha \text{ and}$ $d_{\alpha} \wedge x = d_{\alpha} \wedge y\}$ and $\Phi = \{(x,y) \in L^2: \text{ there exists } \alpha \in \Gamma \text{ such that } x, y \in \alpha \text{ and } d_{\alpha} \vee x = d_{\alpha} \vee y\}$.

STEP 3. For $(x,y) \in L^2$ $(x,y) \in 0$ iff for any β , $\{x,y\} \subseteq \beta \in \Gamma$ implies $d_\beta \wedge x = d_\beta \wedge y$; and $(x,y) \in \Phi$ iff for

- 91 -

any β , $\{x,y\} \subseteq \beta \in \Gamma$ implies $d_{\beta} \forall x = d_{\beta} \forall y$.

Suppose $(x,y) \in \Theta$, i.e., $x, y \in \alpha$ and $d_{\alpha} \wedge x = d_{\alpha} \wedge y$ for some $\alpha \in \Gamma$, and x, $y \in \beta \in \Gamma$. Choose an interval $\gamma \in \Gamma$ such that $\alpha \subseteq \gamma$ and $\beta \subseteq \gamma.$ Then, by Theorem 1 and Remark 1, the map $\phi = \phi_1 \times \phi_2$: $\gamma \rightarrow \{x \in L: a_\gamma \leq x \leq d_\gamma\} \times \{x \in L: a_\gamma \leq x \leq d_\gamma\}$ $\times \{x \in L: d_{\gamma} \leq x \leq b_{\gamma}\}, \ \phi(x) = (\phi_1(x), \phi_2(x)) = (d_{\gamma} \wedge x, d_{\gamma} \vee x)$ is an isomorphism; and for u, $v \in \gamma$ $u \leq v$ is equivalent to $d_v \wedge u \leq d_v \wedge v$ and $d_v \vee u \leq d_v \vee v$, while $u \prec v$ is equivalent to $d_{\gamma} \wedge u \ge d_{\gamma} \wedge v$ and $d_{\gamma} \vee u \le d_{\gamma} \vee v$. In what follows in this proof let ϵ be an arbitrary element of $\{\alpha_{\, \pmb{\prime}}\,\beta\}$. Then $d_{\epsilon} \leq b_{\epsilon}$ and $d_{\epsilon} \prec b_{\epsilon}$ imply $d_{\gamma} \wedge d_{\epsilon} = d_{\gamma} \wedge b_{\epsilon}$, while $d_{\epsilon} \prec a_{\epsilon}$ and $a_{\varepsilon} \leq d_{\varepsilon}$ imply $d_{\gamma} \vee d_{\varepsilon} = d_{\gamma} \vee a_{\varepsilon}$. For any $u \in \varepsilon$ we have $d_{\gamma} \wedge u = d_{\gamma} \wedge b_{\varepsilon} \wedge u = d_{\gamma} \wedge d_{\varepsilon} \wedge u$. Therefore the "if" part of the following observation evidently holds: (*) For u, $v \in \epsilon$ $d_{\gamma} \wedge u = d_{\gamma} \wedge v$ if and only if $d_{\varepsilon} \wedge u = d_{\varepsilon} \wedge v$. On the other hand, if $d_{\gamma} \wedge u = d_{\gamma} \wedge v$ then $d_{\gamma} \wedge (d_{\varepsilon} \wedge u) = d_{\gamma} \wedge (d_{\varepsilon} \wedge v)$ and, from $d_{\gamma} \vee a_{\varepsilon} \leq d_{\gamma} \vee (d_{\varepsilon} \wedge u) \leq d_{\gamma} \vee d_{\varepsilon} = d_{\gamma} \vee a_{\varepsilon} \leq d_{\gamma} \vee (d_{\varepsilon} \wedge v) \leq d_{\gamma} \vee d_{\varepsilon} = d_{\gamma} \vee a_{\varepsilon}$, we have $d_{\gamma} \vee (d_{\varepsilon} \wedge u) = d_{\gamma} \vee (d_{\varepsilon} \wedge v)$. Hence the injectivity of ϕ yields (*). Now (*) and $d_{\alpha} \wedge x = d_{\alpha} \wedge y$ imply $d_{\beta} \wedge x = d_{\beta} \wedge y$, and the Duality Principle completes the proof of Step 3.

By Theorem 1, Remark 1, and Step 3 for any $\alpha \in \Gamma$ Θ_{α} and Φ_{α} (the restrictions of Θ and Φ to α) are congruences, $\Theta_{\alpha} \circ \Phi_{\alpha} = \alpha \times \alpha$, and $\Theta_{\alpha} \cap \Phi_{\alpha} = \omega_{\alpha}$ (the equality relation on α). Since $\Theta = \bigcup_{\alpha \in \Gamma} \Theta_{\alpha}$, $\Phi = \bigcup_{\alpha \in \Gamma} \Phi_{\alpha}$, and Γ is a $\alpha \in \Gamma$

directed partially ordered set under the set-theoretic inclusion, from Step 3 it follows that 0 and Φ are congruences of $L = (L; \land, \lor, \leq), \ \Theta \cap \Phi = \omega$ and $\Theta \circ \Phi = L \times L$. Therefore $L \cong L/0 \times L/\Phi$. For $x, y \in L$, by Theorem 1 and Step 3, $[x] \Theta \ge [y] \Theta$ and $[x] \Phi \le [y] \Phi$ iff $[x] \Theta_{\alpha} \ge [y] \Theta_{\alpha}$ and

- 92 -

 $[x] \Phi_{\alpha} \leq [y] \Phi_{\alpha}$ for some $\alpha \in \Gamma$ iff $x \prec y$. Thus by letting L_1 and L_2 be equal to L/0 and L/Φ , respectively, the proof of Theorem 2 is complete.

The section is concluded with the following corollary of Theorems 1 and 2.

COROLLARY 2. If L is a bounded lattice then the set of its compatible lattice orderings and that of its compatible bounded orderings coincide.

3. ON ORDERINGS OF FINITE PRODUCTS OF SUBDIRECTLY IRREDUCIBLE LATTICES

THEOREM 3. Let L be a lattice and let \prec be a compatible ordering on L. If L is subdirectly irreducible, then there exists a congruence Θ on L such that either for every a, b in L we have $a \prec b$ iff $a \leq b$ and $a \Theta b$ or for every a, b in L we have $a \prec b$ iff $b \leq a$ and $a \Theta b$. If L is a subdirect product of a finite number of subdirectly irreducible factors L_i , $i = 1, 2, \ldots, n$, then there exist compatible orderings \prec_i of the lattices L_i such that for each a, b in L we have $a \prec b$ iff $a_i \prec_i$, b_i for all i, where the image of an element x in L under the i-th projection is denoted by x_i . Conversely, if \prec is as described above, then \prec is compatible.

We prove the Theorem via the following four lemmata. By an orientation of a lattice we mean a reflexive, antisymmetric, and compatible relation.

LEMMA 1. Let L be subdirectly irreducible and let \rightarrow be an orientation of L. Then \rightarrow is a part of the lattice order of L or its dual.

- 93 -

PROOF. We may assume that there exist elements a_i $b \in L$, $a \neq b$ with $a \neq b$. Then, by the compatibility of \Rightarrow , $a = a \lor a \Rightarrow a \lor b \Rightarrow b \lor b = b$, that is, either there exist elements a, b in L with $a \rightarrow b$ and a < b or dually. Consider the case $a \rightarrow b$, a < b. Let ϕ be the minimal non--zero congruence on L. We prove that there exist elements c, d in L, such that (c,d) generates ϕ , c < d, and $c \rightarrow d$. In fact, choose an arbitrary pair (c_1, d_1) , $c_1 < d_1$ generating ϕ . Clearly $c_1 \circ_{ab} d_1$, thus there is a chain $x_1 < x_2 \dots < x_n$ with $x_1 = c_1, x_n = c_n$, such that each subinterval $[x_i, x_{i+1}]$ is weakly projective to $[a, \dot{b}]$. Let [c,d] be any of the subintervals $[x_i, x_{i+1}]$. We only have to show that $c \rightarrow d$. By the weak projectivity of [c,d] to [a,b] there exist intervals $[y_1,z_1]$, $[y_2,z_2]$, ..., ..., $[y_m, z_m]$ such that $[y_1, z_1] = [c, d]$, $[y_m, z_m] = [a, b]$, and, for all i, $[y_i, z_i]$ is transposed to a subinterval $[y_{i+1}, z_{i+1}]$ of $[y_{i+1}, z_{i+1}]$. Now $a \neq b$, that is, $y_m \neq z_m$. Hence $y_m^i = (y_m^i \lor y_m) \land z_m^i \Rightarrow (y_m^i \lor z_m) \land z_m^i = z_m^i$. $[y_{m-1}, z_{m-1}]$ is transposed to $[y_m, z_m]$, thus $y_{m-1} \rightarrow z_{m-1}$, whence, by induction, we have $c \rightarrow d$. Now let e, f be arbitrary elements of L with $e \rightarrow f$. We prove that $e \leq f$. Assume not. Then $f < e \lor f$, and, according to an earlier observation $e \lor f \Rightarrow f$. Thus a modification of the above considerations yields that there exists a subinterval $[c_2, d_2]$ of [c, d]such that $c_2 < d_2$ and $d_2 \rightarrow c_2$. On the other hand $c \rightarrow d_1$ whence $c_2 = (c_2 \vee c) \wedge d_2 \rightarrow (c_2 \vee d) \wedge d_2 = d_2$, contradicting the antisymmetry of \rightarrow .

LEMMA 2. Let L be a lattice, let Θ be a congruence on L, and let \Rightarrow be an orientation of L. For elements a, $b \in L/\Theta$ define a $\Rightarrow_{\Theta} b$ if there exist elements c, d in L such that $[c]\Theta = a$, $[d]\Theta = b$ and $c \Rightarrow d$. Then \Rightarrow_{Θ} is an orientation of L/Θ . PROOF. We only have to prove antisymmetry. Let a, b, c, $d \in L$, let $a \oplus b$, $c \oplus d$, and let $a \to c$, $d \to b$. We have to prove $a \oplus c$, but by symmetry, it suffices to prove $a \oplus a \lor c$. From what we have said so far, it follows that $a \to a \lor c$, $d \lor b$, and $a \lor c \oplus d \lor b$ (see Figure).

Then, clearly, $a \vee d \vee b \rightarrow a \vee d$, furthermore, forming the meet of $a \vee c$ and of a by $a \vee d \vee b$ we obtain that $a \rightarrow (a \vee c) \wedge (a \vee d \vee b)$. Now consider the elements denoted by x, y, z and a on the Figure. We have $a \leq x$, $a \leq y$, $x \leq z$, $y \leq z$, $a \oplus y$, $x \oplus z$, $a \rightarrow x$, and $z \rightarrow y$. Notice that $x \leq y$. Indeed, if $x \leq y$, then the endpoints of the intervals $[x \wedge y, x]$ and $[y, x \vee y]$ must be oppositely oriented by \rightarrow , as they are subintervals of the oppositely oriented intervals [a, x] and [y, z], respectively, but this is impossible, for $[x \land y, x]$ and $[y, x \lor y]$ are transposed. Thus we have $a \le x \le y \le z$. Now $a \mathrel{\ominus} y$ yields $a \mathrel{\ominus} x$, and $a \mathrel{\ominus} x \mathrel{\ominus} z$ yields $a \mathrel{\ominus} z$. From Figure, $z \mathrel{\ominus} a \lor c$, whence $a \mathrel{\ominus} a \lor c$ as claimed.

LEMMA 3. Let \rightarrow be an orientation of the subdirectly irreducible lattice L. Then the transitive closure \prec of \rightarrow is a compatible ordering.

PROOF. We have to prove that, whenever a_1, a_2, \dots $\dots, a_n \in L$ are such that $a_1 \rightarrow a_2 \rightarrow \dots \rightarrow a_n \rightarrow a_1$, then $a_1 = a_2 = \dots = a_n$. Assume not, say, $a_1 \neq a_2$. By Lemma 1, we may assume that $a_1 < a_2$. Applying Lemma 1 again, we have $a_1 < a_2 \leq a_3 \dots \leq a_n \leq a_1$, a contradiction.

LEMMA 4. Let L be a subdirect product of the lattices L_1 and L_2 , and let \rightarrow be an orientation of L. Let \rightarrow_i , i = 1, 2 denote the relation \rightarrow_{Θ_i} of Lemma 2, with Θ_i the congruence associated with the projection to L_i . Finally let \prec , \prec_i be the transitive closures of \rightarrow , \rightarrow_i , respectively. Then, for any $a, b \in L$, $a \prec b$ in L if and only if $a_1 \prec_1 b_1$ and $a_2 \prec_2 b_2$.

Here and from now on, for an element x of a subdirect product, x_i denotes the images of x under the *i*-th projection.

PROOF. The non-trivial part of the assertion is that $a_1 \prec_1 b_1$ and $a_2 \prec_2 b_2$ implies $a \prec b$. We may assume that $a \leq b$. (Indeed, $a_i \prec_i b_i$ ensures that there exist elements $x_{i1}, x_{i2}, \dots, x_{in_i}$ in L_i with $a_i = x_{i1} \neq x_{i2} \neq_i \dots \neq_i x_{in_i} = b_i$, whence we have $a_i = a_i \lor a_i = x_i \lor a_i = x_i \lor a_i \neq x_i \lor a_i \neq_i \dots \neq_i x_{in_i} \lor a_i = b_i \lor a_i$, that is

- 96 -

 $a_i \prec_i a_i \forall b_i$, and analogously $a_i \forall b_i \prec b_i$. We only have to show that $a_i \prec a_i \forall b_i$, i = 1, 2 implies $a \prec a \forall b$, for $a \lor b \prec b$ follows analogously, which is the same as to assume $a \leq b$.) According to the hypotheses there exist elements x^{i1} , x^{i2} , ..., x^{im_i} and y^{i1} , y^{i2} ,, y^{im_i} in L, i = 1, 2, with $a_i = x_i^{i1}, x^{i1} + y^{i1}$, $y_{i}^{i1} = x_{i}^{i2}, x^{i2} \rightarrow y^{i2}, \dots, x^{im_{i}} \rightarrow y^{im_{i}}, y^{im_{i}} = b_{i}$. We may assume that all the elements x^{ij} and y^{ij} are in between a and b in the lattice ordering \leq , or else we could replace them by $(x^{ij} \wedge b) \vee a$ and $(y^{ij} \wedge b) \vee a$, respectively. By the same token, we may assume that $x^{i1} \leq x^{i1}$ $\leq y^{i1} \leq x^{i2} \leq y^{i2} \leq \ldots \leq x^{im_i}$, or else they could be replaced by x^{i1} , $x^{i1}vy^{i1}$, $x^{i1}vy^{i1}vx^{i2}$, $x^{i1}vy^{i1}vx^{i2}v$ $v_{y}^{i2}, \ldots, x^{i1}v_{y}^{i1}v \ldots v x^{im}iv_{y}^{im}i$, respectively. We are going to prove that, for each $k \in \{0, 1, \dots, m_1\}$, $y^{ik} \prec x^{1(k+1)}$, where $y^{10} = a$ and $x^{1(m_1+1)} = b$. Hence $a \prec x^{11} \neq y^{11} \prec x^{12} \neq y^{12} \prec \dots \prec x^{1m_1} \neq y^{1m_1} \prec b$, and, by transitivity, $a \prec b$, proving the lemma. Now, to prove $y^{1k} \prec x^{1(k+1)}$, let $y^{2j}(k) = (y^{2j} \lor y^{1k}) \land x^{1(k+1)}$, $j = 0, 1, \ldots, m_2$ and let $x^{2j}(k) = (x^{2j} \lor y^{1k}) \land x^{1(k+1)}$, $j = 1, 2, ..., m_2^2 + 1$, where $a = y^{20}$ and $b = x^{2(m_2+1)}$. By the compatibility of the relation \rightarrow , we have $x^{2j}(k) \to y^{2j}(k), \ j = 1, 2, ..., m_2$. Thus the proof is completed once the following relations are proved $20_{(1)}$ 1k

(1)
$$y(k) = y$$
,
(2) $x^{2(m_2+1)}(k) = x^{1(k+1)}$

(3)
$$x^{2j}(k) = x^{2(j+1)}(k), j = 0, 1, \dots, m_2$$
.

All these relations can be proved via componentwise

- 97 -

calculations, let us check, for instance, (3): $y_1^{2j}(k) = (y_1^{2j} \vee y_1^{1k}) \wedge x_1^{1(k+1)} = (y_1^{2j} \vee y_1^{1k}) \wedge y_1^{1k} = y_1^{1k}$, as $x_1^{1(k+1)} = y_1^{1k}$, and similarly $x_1^{2(j+1)}(k) = y_1^{1k}$. Furthermore, $y_2^{2j}(k) = (y_2^{2j} \vee y_2^{1k}) \wedge x_2^{1(k+1)} = (x_2^{2(j+1)} \vee y_2^{1k}) \wedge x_2^{1(k+1)} = x_2^{2(j+1)}(k)$, which was to be proved.

Now we are ready to prove Theorem 3. We first prove the assertion concerning subdirectly irreducible lattices. Let L be subdirectly irreducible, let \prec be a compatible ordering on L, and let 0 be the equivalence closure of \prec . Clearly α 0 b iff there is a sequence x_1, x_2, \dots, x_{2n} of elements in L such that a = $= x_1 \prec x_2 \succ x_3 \prec x_4 \succ \ldots \prec x_{2n} = b$. Hence the compatibility of θ is immediate. It is also clear that elements in different 0-classes are incomparable. Now applying Lemma 1, let, say, \prec be a part of the lattice order of L. We show that, whenever $a \leq b$ and $a \otimes b$, then $a \prec b$. In fact $a \ominus b$ means that there exist elements x_1, x_2, \ldots, x_{2n} in L with $\alpha = x_1 \prec x_2 \succ x_3 \prec \ldots$ $\ldots \prec x_{2n} = b$. We have $x_2 = x_2 \lor x_3 \prec x_2 \lor x_4$, $x_2 \lor x_4 = x_2 \lor x_3 \prec x_2 \lor x_4$ $= x_2 \vee x_4 \vee x_5 \prec x_2 \vee x_4 \vee x_6$, etc., that is, $a = x_1 \prec x_2 \prec x_4 \vee x_6$ $\prec x_2 \vee x_4 \prec x_2 \vee x_4 \vee x_6 \prec \ldots \prec x_2 \vee x_4 \vee \ldots \vee x_{2n}$. Summarizing $a \prec x_2 \forall x_4 \forall \dots \forall x_{2n}$. Applying $b = x_{2n}$, we have $a \le b \le x_2 \forall x_4 \forall \dots \forall x_{2n}$. Hence $a = a \land b \prec (x_2 \forall x_4 \lor \dots$... $\forall x_{2n} \rangle \wedge b = b$, as claimed.

Now consider the case that L is a subdirect product of finitely many subdirectly irreducible lattices. Let \prec be a compatible ordering on L. Then \prec is an orientation whose transitive closure is itself. Thus Lemma 4, which applies for finitely many components, too, provides a representation of \prec . To obtain the assertion of Theorem 3 we only have to show that the relations \prec_i of Lemma 4 are compatible order relations. But they are orientations by Lemma 2, whence they are compatible orderings by Lemma 3.

Finally, if the ordering \prec is as described in Theorem 3, then \prec is obviously compatible completing the proof.

REFERENCES

- [1] G. Grätzer, General lattice theory, Akademie-Verlag. Berlin, 1978.
- [2] M. Kolibiar, The lattice of convex sublattices of a lattice, Contributions to General Algebra, Proc. Klagenfurt Conference, 1978.
- [3] I. G. Rosenberg, Functionally complete algebras in congruence distributive varieties, preprint of the University of Montreal.

Gábor Czédli, András P. Huhn and László Szabó JATE Bolyai Institute Szeged, Aradi vértanuk tere l H-6720 Hungary