Mailbox

How are diamond identities implied in congruence varieties?

GÁBOR CZÉDLI*

For a set Σ of lattice identities and a lattice identity λ , Σ is said to imply λ in congruence varieties, in notation $\Sigma \models_{c} \lambda$, if every congruence variety which satisfies all members of Σ also satisfies λ (cf. Jónsson [11]). In this note we prove three theorems on \models_{c} , including the following compactness result.

THEOREM 3. If $\Sigma \models_c \lambda$ and λ is a diamond identity (to be defined later) then there exists a finite subset Σ' of Σ such that $\Sigma' \models_c \lambda$.

For the special case where λ is the modular or distributive law our theorems have already been proved; cf. [1], [3] and the very deep Day and Freese [4] and Freese, Herrmann and Huhn [6, Cor. 14]. It is the results and/or methods of these papers, [10] and Day and Kiss [5] that makes our approach possible and relatively simple.

For $n \ge 2$, an *n*-diamond in a modular lattice *L* is defined to be an (n+1)-tuple $\tilde{a} = (a_0, a_1, \ldots, a_n) \in L^{n+1}$ satisfying $\sum_{i \ne j}^{0,n} a_i = 1_{\tilde{a}}$ and $a_l \sum_{i \ne k,l}^{0,n} a_i = 0_{\tilde{a}}$ for all j and all $k \ne l$ where $1_{\tilde{a}} = \sum_{i}^{0,n} a_i$ and $0_{\tilde{a}} = \prod_{i}^{0,n} a_i$. This concept is due to András Huhn [9], [8] but occurs under several names in the literature (cf., e.g., Day and Kiss [5]). Let $\lambda : p(x_1, \ldots, x_l) = q(x_1, \ldots, x_l)$ be a lattice identity. We call λ a diamond identity if λ implies modularity and, in addition, there are (n+1)-ary lattice terms $c_1(y_0, y_1, \ldots, y_n), \ldots, c_l(y_0, y_1, \ldots, y_n)$ for some $n \ge 2$ such that for an arbitrary modular lattice *L* if $p(c_1(\tilde{a}), \ldots, c_l(\tilde{a})) = q(c_1(\tilde{a}), \ldots, c_l(\tilde{a}))$ for every n-diamond \tilde{a} in *L* then λ holds in *L*.

The conjunction of the modular law with any of the identities in Herrmann and Huhn [8] or Freese and McKenzie [7, XIII] is an interesting example for diamond identities. For further examples cf. [2].

Presented by R. Freese.

Received August 23, 1989; accepted in final form September 9, 1991.

^{*}Research partially supported by Hungarian National Foundation for Scientific Research grant no. 1813.

For a variety \mathscr{V} let $\operatorname{Con}(\mathscr{V}) = \operatorname{HSP}\{\operatorname{Con} A : A \in \mathscr{V}\}\$ denote the congruence variety of \mathscr{V} . Given a ring R with 1, let $R\operatorname{-Mod}$ stand for the variety of (unitary left) $R\operatorname{-modules}$. For integers $m \geq 0$ and $n \geq 1$ the ring sentence $(\exists r) (m \cdot r = n \cdot 1)$, denoted by D(m, n), is called a divisibility condition. (Here $k \cdot x = x + x + \cdots + x, k$ times.) In [10] an algorithm is described which associates two integers $m_{\lambda} \geq 0$ and $n_{\lambda} \geq 1$ with any given lattice identity λ such that

- (1) for any ring R, λ holds in Con (R-Mod) iff $D(m_{\lambda}, n_{\lambda})$ holds in R
- (cf. [10, Theorems 2 and 3]). For an integer k and a prime p let expt (k, p) denote the largest integer $i \ge 0$ for which $p^i \mid k$; by expt (0, p) we mean that smallest infinite ordinal. By [10, Prop. 1]
 - (2) D(m, n) holds in a ring R iff for any prime p with expt $(m, p) > \exp (n, p) R$ satisfies $D(p^{\exp t(n, p) + 1}, p^{\exp t(n, p)})$ and, in addition, m = 0 implies that the characteristic of R is 0. In case the characteristic of R is k > 0 then D(m, n) holds in R iff $(k, m) \mid n$.

Let $\mathscr{V}(0) = \mathbf{Con}(\mathbf{Q}\text{-}\mathbf{Mod})$, i.e., the lattice variety generated by the rational projective geometries. For k > 0 let $\mathscr{V}(k) = \mathbf{Con}(\mathbf{Z}_k\text{-}\mathbf{Mod})$ where \mathbf{Z}_k is the factor ring of integers modulo k. For technical reasons, in connection with (2), we define K(m, n) as $\{p^{i+1}: p \text{ prime}, i = \exp(n, p) < \exp(m, p)\} \cup \{i: i = 0 = m\}$. Note that $\{i: i = 0 = m\}$ is $\{0\}$ or \varnothing . We have

THEOREM 1. If a diamond identity λ does not hold in a modular congruence variety \mathcal{U} then there is a $k \in K(m_{\lambda}, n_{\lambda})$ such that $\mathcal{V}(k) \subseteq \mathcal{U}$.

THEOREM 2. Let λ be a diamond identity and Σ be a set of lattice identities. Then $\Sigma \models_{c} \lambda$ if and only if

- (i) $\Sigma \models_c modularity$,
- (ii) $\{0\} \cap \{m_{\lambda}\} \subseteq \{m_{\varepsilon} : \varepsilon \in \Sigma\}$, and
- (iii) for any prime p if $\exp((m_{\lambda}, p)) > \exp((n_{\lambda}, p))$ then $\exp((n_{\lambda}, p)) \geq \exp((n_{\epsilon}, p)) < \exp((m_{\epsilon}, p))$ holds for some $\epsilon \in \Sigma$.

If Σ is finite then (i) is decidable (cf. Day and Freese [4] and [3]) and Theorem 2 offers an algorithm to check whether $\Sigma \models_c \lambda$.

Proof of Theorem 1. Let $\mathscr{U} = \operatorname{Con}(\mathscr{V})$ be a modular congruence variety in which λ fails. There is an *n*-diamond \bar{a} in the congruence lattice Con A of some algebra A in \mathscr{V} such that λ fails in the interval $L = [0_{\bar{a}}, 1_{\bar{a}}]$ of Con A. We can assume that $0_{\bar{a}} = 0_{\operatorname{Con} A}$ as otherwise A could be replaced by $A/0_{\bar{a}}$. By Lemma 3.1 in Day and Kiss [5], $1_L = 1_{\bar{a}}$ is an Abelian congruence of A. Therefore Lemma 7.1 and Theorem 7.2 of Day and Kiss [5] yield the existence of a ring S such that

 $L \in \mathbf{Con}(S\operatorname{-Mod}) \subseteq \mathbf{Con}(\mathscr{V}) = \mathscr{U}$. This $\mathbf{Con}(S\operatorname{-Mod})$ fails λ . Now a routine calculation based on (1), (2) and the description of the inclusion relation amongst all $\mathbf{Con}(R\operatorname{-Mod})$ (cf. [10, Theorem 5]) completes the proof of Theorem 1.

Proof of Theorem 2. Assume that $\Sigma \models_{c} \lambda$. Then (i) is obvious. If (ii) or (iii) failed then, by (1) and (2), Σ would hold but λ would fail in $\mathscr{V}(k)$ for some $k \in K(m_{\lambda}, n_{\lambda})$. Conversely, assume that in spite of (i), (ii) and (iii) $\Sigma \not\models_{c} \lambda$. Then Σ holds but λ fails in some modular congruence variety \mathscr{U} . By Theorem 1, there is a $k \in K(m_{\lambda}, n_{\lambda})$ such that λ fails in $\mathscr{V}(k)$. But Σ holds in $\mathscr{V}(k) \subseteq \mathscr{U}$, which is a contradiction by (1) and (2).

Proof of Theorem 3. Assume that $\Sigma \models_c \lambda$. By a deep result of Day and Freese [4, Thm. 6.4] there is a $\kappa \in \Sigma$ such that $\kappa \models_c$ modularity. If $m_{\lambda} = 0$ then, by Theorem 2, there is an $\eta \in \Sigma$ with $m_{\eta} = 0$. This η can serve (iii) for all primes not dividing n_{η} . Hence there is a finite set Σ_1 such that $\eta \in \Sigma_1 \subseteq \Sigma$ and (iii) is fulfilled by Σ_1 . Clearly, $\{\kappa\} \cup \Sigma_1 \models_c \lambda$. If $m_{\lambda} \neq 0$ then (iii) requires the existence of an $\varepsilon = \varepsilon_p$ for finitely many p only. These ε_p constitute a finite set Σ_2 and $\{\kappa\} \cup \Sigma_2 \models_c \lambda$.

REMARK. A lengthier proof shows that our results would remain true if \models_c were understood as implication in $\{\text{Con } A : A \in \mathcal{V}\}$ classes where \mathcal{V} is a class of algebras closed under finite subdirect powers.

REFERENCES

- [1] CZÉDLI, G., A note on the compactness of the consequence relation for congruence varieties, Algebra Universalis 15 (1982), 142-143.
- [2] CZÉDLI, G., Some nontrivial implications in congruence varieties, Acta Sci. Math. (Szeged) 56 (1992), 15-18.
- [3] CZÉDLI, G. and FREESE, R., On congruence distributivity and modularity, Algebra Universalis 17 (1983), 216-219.
- [4] DAY, A. and FREESE, R., A characterization of identities implying congruence modularity I, Canadian J. Math. 32 (1980), 1140-1167.
- [5] DAY, A. and Kiss, E. W., Frames and rings in congruence modular varieties, J. Algebra 109 (1987), 479-507.
- [6] FREESE, R., HERRMANN, C. and HUHN, A. P., On some identities valid in modular congruence varieties, Algebra Universalis 12 (1982), 322-334.
- [7] FREESE, R. and MCKENZIE, R., Commutator theory for congruence modular varieties, London Math. Soc. Lecture Notes Series 125, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sidney, 1987.
- [8] HERRMANN, C. and HUHN, A. P., Zum Begriff der Charakteristik modularer Verbände, Math. Zeitschrift 144 (1975), 188-194.
- [9] HUHN, A. P., Schwach distributive Verbände I, Acta Sci. Math. Szeged 33 (1972), 297-305.
- [10] HUTCHINSON, G. and CZÉDLI, G., A test for identities satisfied in lattices of submodules, Algebra Universalis 8 (1978), 269-309.
- [11] JÓNSSON, B., Congruence varieties, Algebra Universalis 10 (1980), 355-394.

Bolyai Institute Szeged Hungary