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On the lattice of congruence varieties of locally
equational classes

G. CZEDLI

1. Introduction

For a class  of algebras, let Con(£") denote the lattice variety generated by
the class of congruence lattices of all members of J#. A lattice variety % will be called
an l-congruence variety if %=Con (X") for some locally equational class 4 of al-
gebras. In particular, every congruence variety is an /-congruence variety. Our aim
is to show that /-congruence varieties form a complete lattice, which is a join-sub-
semilattice of the lattice of all lattice varieties (while meet is not preserved). We
also show that the minimal modular congruence varieties described by FREESE [1]
and the minimal modular /-congruence varieties are the same.

The notion of locally equational class has been introduced by Hu [2]. For
the definition, let F be a subset of an algebra 4 of type t and let t,, t, be n-ary
t-terms. The identity #,=¢, is said to be valid in F if for all (g, a;, ..., a,)€EF"
we have t(ay, a,, ..., a,)=1(a, as, ..., a,). Suppose X is a class of algebras of
type t and denote by L(4") the class of all algebras 4 of type t having the follow-
ing property: .

for each finite subset G of A there is a finite family {B;: i€I} in X and there

- is for each i€7 a finite subset F;S B, such that every identity valid in F; for

all i€[ is also valid in G.

Now, L is a closure operator on classes of similar algebras. L(o¢) is called the
locally equational class (or, briefly, local variety) generated by J, and Jf is said to
be a local variety if L(X)=X. We often write L(A4) instead of L({4}).

Denote by H, S, P,, D the operators of forming homomorphic images, sub-

algebras, direct products of finite families and directed unions, respectively, and
let us recall
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Theorem 1.1. (Hu [2)) (a) Every variety is a local variety. The converse does
not hold, e.g. all torsion groups form a local variety.

(b) For a class A of similar algebras L(X")=DHSP,('); consequently,

(c) A is locally equational if and only if it is closed under D, H, S, P,.

Our main tool is the following

Theorem 1.2. (PIxLEY [11]) There is an algorithm which, for each lattice identity
A and pair of integers n, k=2, determines a strong Mal’cev condition (i.e., a finite
set of equations of polynomial symbols of unspecified type) U, =U, (1) such
that for an arbitrary algebra A of type 7 the jollowing three conditions are equivalent:

() A is satisfied throughout Con(L(A4));

(ii) for each finite subset F of A and integer n=2 there is an integer
k=k(n, F, ) and a t-realization U}, of U, , such that U;, is valid in F;

(iii) for each finite subset F of A and integer n=2 there is a ko=ko(n, F, 1)
such that for each k=k, there is a v-realization U}, of U, , which is valid in F.

We have supplemented Pixley’s theorem with condition (iii) which is implicit
in the proof in [11] of the theorem. We shall make essential use of

Proposition 1.3. In the above theorem each polynomial of Uy, is idempotent
in F.
This follows easily from the construction of U, , described in [11].

2. Lattice of /-congruence varieties

A lattice variety % is called a congruence variety (JONSsON [8]) if #=Con (X")
for some variety o, and % will be called an l-congruence variety if %=Con(¥")
for some local variety ¥, Let € and C* denote the “sets” consisting of all con-
gruence varieties and all /-congruence varieties of the form Con (L(4)), respectively.
Let € and ©* be partially ordered by inclusion. Qur main result is

Theorem 2.1. € is a complete lattice. The (infinitary) join of arbitrary
I-congruence varieties in € and their join taken in the lattice of all lattice varieties
coincide.

Although there exists a local variety which cannot be generated by a single
algebra (Hu [2]), we have

Theorem 2.2. For any local variety ¥ there is an algebra A (not necessarily
of the same type as V) such that Con(¥)=Con(L(4)). Thus €=C*.
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Proof of Theorems 2.1 and 2.2. First we show the following statement:
(1) For any algebra 4 of type t there exists an algebra B such that Con(L(A4))=
=Con(L(B)) and B has a one-clement subalgebra.
Let bycd, d={Ai:A is a lattice identity satisfied throughout Con(L(4))} and
H={F:F is a finite subset of 4 containing b,}. By Thm. 1.2 choose a k=k(n, F, %)
and a t-realization U, ,(F, 1) of U, (%) for all A¢®, FEH and n=2 such that
U, (F,4) is valid in F. Denote by P(n, F, 1) the set of t-polynomials occuring
in U;,(F, 2) and define an algebra B as follows: B has the same carrier as 4 and
the set of its operations is U{P(n, F, 1): n=2, FEH, A€ ®} (i.e. B is a reduct of A).
Since U, is also valid in F\{b,}, Con(L(4))=Con(L(B)) follows from Thm.
1.2. By Prop. 1.3, {b,} is a subalgebra of B, which completes the proof of (1).
Now we prove that
(2) For an arbitrary set I" of indices and for any algebras A (y€l) there is an
algebra 4’ such that \/ Con (L(4,))=Con(L(4")) in the lattice of all lattice
varieties.
We can assume I'=# (otherwise the statement is trivial) and

— {a,} is a one-clement subalgebra of 4, for each y€r,

— all the algebras 4, (y€I') are of the same similarity type < (otherwise the
set of operations of 4, can be supplemented with projections since for
polynomially equivalent algebras B, and B, over the same carrier,
Con (L(B,))=Con (L(B;)) by Thm. 1.2), and

— for each yc[I', every t-polynomial is equal to some t-operation over 4,.

Denote by 1, the set of i-ary operation symbols in 7 and regard /=1 as a set

of i-ary operation symbols (i=0,1,2,...). Now, t= U 7; and set 7= U 7.

For each y€rI', 4, can be regarded as an algebra 4] of type 7 if we define, for qE v,
the operation ¢ by g=q(y) (q(y)€r, A, and 4] have the same carrier). Evidently,
Con (L(4;))=Con(L(4,)) by Thm. 1.2. Let A' be a weak direct product of the
algebras 4’ defined by

A’={f€yg A;: for all but finitely many yel', f(y)=a,}.

By Thm. 1.1 L(4;)SL(4’), therefore
V Con(L(4)) = V Con(L(4)) S V Con(L(4’) = Con(L(A")).
yer yer yer

In order to prove the converse inclusion by means of Thm. 1.2, suppose a lattice
identity 4 is satisfied throughout each Con (L(Ay)). Fix an arbitrary finite subset
F of A" and n=2. For each ycI' set F,={f(y): f€F}S 4, and choose a non-
empty finite AST such that yeI'\4 implies F,={a}. Since i holds in each
Con (L(4 )) by Thm 1.2 for each yel' there exist k,=2 and for all k=k, a
t-realization U, ,(y) of U, , such that U, ,(y) is valid in F,. We can suppose k,=2
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if yeI'\4, because F, is a subalgebra consisting of a single element. Set
k=max {k,: y€I'}. Then for each yer there exists a realization U, (y) of U, ,
which is valid in F,. Let U], (y) consist of t-operations ¢, ,, 4, ,, ..., 4, , For
i=1,2,...,5 define g7 by g¢,(y)=q,, over A, (ycl). Then the operations
d1> qz» ---» q; yield a 7'-realization of U, , which is valid in F. This completes the
proof of (2).

Now, let ¥ be an arbitrary local variety and let @ consist of all lattice identities
which are not satisfied throughout Con (¥7). For each A€ ® we can choose 4,€¥"
such that A is not satisfied in the congruence lattice of 4,. Since L(4,)S7¥" and
A is not satisfied throughout Con(L(4,)), it can be easily seen that Con (¥’)=
=11\/q> Con(L(A4,)). Hence Thm. 2.2 follows from (2). Since any complete join-

€

semilattice having a O-element is a complete lattice, Thm. 2.1 follows from (2) and
Thm. 2.2. Q.E.D.

3. Minimal modular /-congruence varieties

Let P be the set of all prime numbers and set Py=PU {0}. For pc P, denote
by Q, the prime field of characteristic p and by ¥/, the variety of all vector spaces
over Q,. The following theorem was announced by FREESE [1]:

Theorem 3.1. For any modular but not distributive congruence variety U there
is @ p€ Py such that Con(¥,)S%. Consequently, congruence varieties do not form
a sublattice in the lattice of all lattice varieties.

Christian Herrmann has also proved the above theorem. We shall slightly
modify his (unpublished) proof to obtain the following

Theorem 3.2. For any modular but not distributive Il-congruence variety U
there is a p€P, such that Con(¥,)S%. Consequently, l-congruence varieties do
not form a sublattice in the lattice of all lattice varieties.

The proof is based on the following theorem (which is presented here in a
weakened form):

Theorem 3.3. (HuBN [4]) For an arbitrary modular lattice M and n=3 the
Jollowing two conditions are equivalent:
(i) M is not n-distributive, i.e., the n-distributivity law

xA V=V (xA V )
i=0 j=0 i:g

(cf. HUBN [3] and [5)) is not satisfied in M.
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(i) The lattice variety generated by M contains L, ,(Q,) for some p€P, where
L, (Q,) denotes the congruence lattice of the (n+1)-dimensional vector space
over Q,.

For a pair of non-negative integers m, k let us define the divisibility condition
D(m, k) by the formula (3x) (m-x=k-1) where m-x and k-1 mean x+x+...+x
(m times) and 1+1+14...+1 (k times), respectively. We need the following

Proposition 3.4. For any lattice identity A there exist non-negative integers
ny, m, k such that for each p€ P, the following three conditions are equivalent:

() 4 is satisfied throughout Con(¥,),

(i) there exists n=n, such that A is satisfied in L, (Q,),

(iii) the divisibility condition D(m, k) holds in Q,.

Proof. The equivalence of (i) and (iii) is a special case of [6, Thm. 3]. As for
(ii) ~(i), we can argue as follows: Let us construct the identity 1 from 1 by replacing
the operation symbols A and V by N and o (composition of relations), respect-
ively. By congruence permutability, (i) holds iff 1 is satisfied by arbitrary con-
gruences of any algebra in ¥,. Now, WILLE’s theorem [12] (see also PixLey [11,
Thm. 2.2]) involves implicitly that if 1 is satisfied by certain congruences of the
free ¥,-algebra of rank n,, for some n, depending on 7, then 1 is satisfied by arbitrary
congruences of any algebra in ¥,. Finally, the congruence lattice of the free ¥}-
algebra of rank r, is a sublattice of L,(Q,) whence A is satisfied by arbitrary con-
gruences of the free ¥,-algebra of rank n,. Q.E.D.

It follows from a more general result of NATION [10, Thm. 2] that any n-distri-
butive congruence variety is distributive (n=1). Now we need the following
generalization of this fact:

Proposition 3.5. Let n=1 and % be an arbitrary l-congruence variety. If
U is n-distributive, then % is distributive.

Proof. Certain arguments using Mal’cev conditions for congruence varieties
can easily be reformulated for /-congruence varieties. PIXLEY [11] has pointed out
that JONSSON’s criterion for congruence distributivity [7] remains valid for /-con-
gruence varieties. Similarly, MEDERLY’s ctiterion for n-distributivity [9, Theorem 2.1]
also remains valid. Thus the have:

Proposition 3.6. For an arbitrary algebra of type © and n=1 the following
two conditions are equivalent:

(i) Con(L(A)) is n-distributive,

(i) For each finite FZ A there exist k=2 and (n+2)-ary t-polynomials
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Lo, tys .., b, on A such that the identities

to(Xgs X1s ooes Xpst) = Xo»  Be(Xos X15 oovs Xni1) = Xpi1s
1(Xgs X1s cees Xps Xg) = Xo (i=0,1, ..., k),

ti(x9 Xy oois Xy Vs Js “'sy) = ti+1(x’ Xy vees Xy Vs Vs '”’y)
Py [ ———

j+1 j+1
(0si<k, 0sj=n and i=j(modn+1)) are valid in F.

Now, suppose Con(L(A4)) is n-distributive for some n=1. Fix a finite FZ 4.
Then, by Prop. 3.6, there are k=2 and t-polynomials #,, t,, ..., t; satisfying the
required identities in F. Define j(—1)=0 and for i=0, 1, ...,k, j(i)=i(modn+1),
0=j({)=n. Define ternary t-polynomials gy, q;, ..., gy, as follows: g,(x, y, 2)=x
and for i=0,1,...,k

q2i+1(x’ ys Z) = ti(xs Xy cies Xy y’ys eavy .V, Z)
L ——]
Jji—1+1
and
Goi+2(X, ¥, 2) = t;(x, %, ..., X, Y, Y5 .., V5 2).
e, o
Jj@+1

It is easy to check that the polynomials gy, gy, ..., gy, satisfy the equations of"
Prop. 3.6 (ii) in F for (1, 2k +2) instead of (n, k). Hence, by Prop. 3.6, 1-distributiv-
ity — which is the usual distributivity — holds throughout Con (L(A4)). Thus Thm.
2.2 completes the proof.

Proof of Theorem 3.2. Let % be an /-congruence variety as in the theorem.
By Prop. 3.5, % is not distributive for n=1, 2, 3, .... Hence, by Thm. 3.3, for each
n=>2 we can choose p,¢ P, such that L,,+1(Qp")€”11. Set S={p,: n=2}. If the set
{n:n>2 and p,=p,} is infinite for some ¢, then {L,.,(Q,):p,=p,} generates
Con(¥,) by Prop. 3.4 (i, ii). Hence Con(¥,)S%. Suppose {n:n>2 and p,=p}
is finite for all r=2. Then it suffices to show that Con (¥;) is a subvariety of the
variety generated by {L,,,(Q,): n>2}. Suppose A holds in L, ,(Q,) for each
n=>2. For a sufficiently large ¢, A holds throughout Con (‘/fpn) for any n=t by
Prop 3.4 (i, ii). Hence there exists an infinite S'S S\ {0} such that A holds in
Con(¥,) for each p€S’. Then, by Prop. 3.4, the divisibility condition D(m, k)
associated with 4 holds in Q, for each pcS’. Therefore, D(m ,k) holds in Q,
(otherwise m=0 and k=0, so each p€ S’ divides k). Hence, by Prop. 3.4, 1 holds
throughout Con(¥;). Q.E.D.
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Remark. If X is a class of similar algebras closed under S and P, then Con (£")
is an l-congruence variety, namely Con(X")=Con (L(X)).

The author would like to express his thanks to A. P. Huhn for the idea of
introducing l-congruence varieties.
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