
A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF A

PARTITION LATTICE

GÁBOR CZÉDLI

Dedicated to the memory of my local colleague and co-author Árpád Kurusa

Abstract. Let bxc and dxe denote the lower integer part and the upper integer part of a real number x,
respectively. Our main goal is to construct four partitions of a finite set A with n ≥ 7 elements such that

each of the four partitions has exactly dn/2e blocks and any other partition of A can be obtained from

the given four by forming joins and meets in a finite number of steps. We do the same with dn/2e − 1
instead of dn/2e, too. To situate the paper within lattice theory, recall that the partition lattice Eq(A)

of a set A consists of all partitions (equivalently, of all equivalence relations) of A. For a natural number

n, [n] and Eq(n) will stand for {1, 2, . . . , n} and Eq([n]), respectively. In 1975, Heinrich Strietz proved
that, for any natural number n ≥ 3, Eq(n) has a four-element generating set; half a dozen papers have

been devoted to four-element generating sets of partition lattices since then. We give a simple proof of

his just-mentioned result. We call a generating set X of Eq(n) horizontal if each member of X has the
same height, denoted by h(X), in Eq(n); no such generating sets have been known previously. We prove

that for each natural number n ≥ 4, Eq(n) has two four-element horizontal generating sets X and Y

such that h(Y) = h(X) + 1; for n ≥ 7, h(X) = bn/2c.

1. Notes on the dedication

Árpád Kurusa, 1961–2024, was an excellent geometer. The present paper is dedicated to his memory.
In addition to his high reputation in geometry, his editorial and technical editorial work for several
mathematical journals as well as his textbooks (in Hungarian) were also deeply acknowledged. From 2000
to 2018, he led the Department of Geometry at the Bolyai (Mathematical) Institute of the University
of Szeged. As the title of [3] shows, our collaboration has added a piece to the traditionally strong
interrelation between geometry and lattice theory. At the motivational level, the present paper has some
(but very slight) connection to the just-mentioned joint paper. Indeed, partition lattices form a specific
subclass of geometric lattices, and the term “horizontal” is rooted in a geometric perspective of these
lattices.

2. Introduction and our theorem

Given a set A, the collection of equivalences, that is, the collection of reflexive, symmetric, transitive
relations of A form a lattice Eq(A), the equivalence lattice of A. In this lattice, the meet and the
join are the intersection and the transitive hull of the union, respectively. By the well-known bijective
correspondence between the equivalences of A and the partitions of A, Eq(A) is isomorphic to the partition
lattice of A, which consists of all partitions of A. By the just-mentioned correspondence, we make no
sharp distinction between equivalences and partitions in our terminology and notations. To explain
that we use the notation Eq(A) rather than something like Part(A), note that equivalences are more

1991 Mathematics Subject Classification. 06B99, 06C10.
Key words and phrases. Partition lattice; equivalence lattice; minimum-sized generating set; horizontal generating set,

four-element generating set.
This research was supported by the National Research, Development and Innovation Fund of Hungary, under funding

scheme K 138892. August 21, 2024.

1

2 G. CZÉDLI

appropriate for performing the lattice operations and forming restrictions. For a natural number n, we
let [n] := {1, 2, . . . , n}, and we usually abbreviate Eq([n]) to Eq(n).

Partition lattices play an important role in lattice theory since congruence lattices, which play a central
role in universal algebra, are naturally embedded in partition lattices. In fact, every lattice is embeddable
into a partition lattice by Whitman [10] and each finite lattice into a finite partition lattice by Pudlák and
Tůma [7]; note that these facts can be exploited in some proofs, for example, in [1]. Furthermore, every
partition lattice Eq(A) is known to be a geometric lattice, that is, an atomistic semimodular lattice; see,
e.g., Grätzer [5, Section IV.4] or [6, Section V.3]. Being atomistic means that each element x of Eq(A)
is the join of all atoms below x. Semimodularity is understood as upper semimodularity, that is, for any
x, y, z ∈ Eq(A), x � y implies that x ∨ z � y ∨ z, where � is the “is covered by or equal to” relation.

A subset X of Eq(A) is a generating set of Eq(A) if X extends to no proper subset S of Eq(A) such
that S is closed with respect to joins and meets. In the seventies, Strietz [8] and [9] proved that, for
any natural number n ≥ 3, Eq(n) has a four-element generating set. His result is optimal, since Eq(n)
does not have a three-element generating set provided that n ≥ 4. Since Strietz’s pioneering work was
published in [8] and [9], five additional papers have already been devoted to the four-element generating
sets of equivalence lattices; see [4], the 2nd-, the 3rd-, and the 4th-item in the “References” section of [4],
and Zádori [11].

For n ≥ 3, which is always assumed, each permutation of [n] extends to an automorphism1 of Eq(n),
and such an automorphism sends generating sets to generating sets. We say that two generating sets
of Eq(n) are essentially different if no such automorphism sends one of them to the other one. We
know even from Strietz [8] and [9] that, for n large enough, Eq(n) has several essentially different four-
element generating sets. Many more (essentially different) four-element generating sets have been given
in [4]. However, it is very likely by the computer-assisted section of [4] that only an infinitesimally small
percentage of the four-element generating sets of Eq(n) are known for n large. Exploring more such
generating sets seems to be a reasonable target in its own right, and there is an additional motivation:
Namely, the more small generating sets of Eq(n) are available, the more the cryptographic ideas of [2]
can benefit from equivalence lattices. (If there are and we know many four-element generating sets, then
we can extend them to small generating sets in very many ways.)

Before explaining what sort of new four-element generating sets of Eq(n) we are going to present, note
that even at the very beginning of this type or research in the seventies, Strietz himself paid attention
to some lattice theoretical properties of his four-element generating sets. For n ≥ 4, he showed that a
four-element generating set is either an antichain (that is, a subset with no comparable elements) or it
is of order type 1 + 1 + 2, that is, exactly two out of the four generators are comparable. He managed to
prove that Eq(n) has a four-element generating set of order type 1+1+2 for every integer n ≥ 10. Briefly
saying, Eq(n) is (1 + 1 + 2)-generated for n ≥ 10. With ingenious constructions, Zádori [11] improved
“n ≥ 10” to n ≥ 7, and he gave a visual proof of Strietz’s result that Eq(n) has a four-element generating
set; his proofs are simpler than Strietz’s ones. Zádori [11] left open the problem whether Eq(5) and Eq(6)
are (1 + 1 + 2)-generated. This problem was solved as recently as 2020 in [4], where an affirmative answer
for Eq(6) was given but a computer-assisted negative answer for Eq(5) was provided.

As Eq(n) is a geometric lattice, there is a natural property of a subset, which is more restrictive than
being an antichain. To introduce it, recall that the length of an n-element chain is n − 1. The least
element and the largest element of Eq(n) or Eq(A) will be denoted by ∆ and ∇, respectively. If confusion
threatens, we write ∆n, ∇A, etc.. The height of an element µ ∈ Eq(n) is the length of a maximal chain
in the interval [∆, µ]; we know from the Jordan-Hölder Chain Condition for semimodular lattices, see,
e.g., Grätzer [5, Theorem IV.2.1 on page 226] or [6, Theorem 377], that no matter which maximal chain
is taken. We denote the height of µ by h(µ). A subset X of Eq(n) is horizontal if its elements are of

1It is worth noting that by K. Kearnes: Automorphisms of a finite partition lattice, Version 2023-11-28,
https://math.stackexchange.com/q/4814790, each automorphism of Eq(n) is obtained in this way.

https://math.stackexchange.com/q/4814790

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 3

the same height; in this case, the common height of the elements of X is denoted by h(X). A horizontal
subset of Eq(n) is necessarily an antichain. Clearly, Eq(n) for n ≥ 3 has a horizontal generating set, since
the set of atoms is such. To get a better insight into the four-element generating sets of partition lattices,
it is reasonable to determine those natural numbers n for which Eq(n) has a four-element horizontal
generating set. In fact, we are going to do more by showing that whenever Eq(n) has a four-element
antichain at all, that is, whenever n ≥ 4, then it has two four-element horizontal generating sets of
neighboring heights. To smooth our terminology, let us introduce the notation

HFHGS(n) := {h(X) : X is a four-element horizontal generating set of Eq(n)};
the acronym above comes from the heights of four-element horizontal generating sets. For a real number

r, we denote by brc and dre the lower integer part and the upper integer part of r; for example, b
√

2c = 1

and d
√

2 e = 2. Let N+ denote the set of positive integers.

Theorem 1. For every natural number n ≥ 4, the partition lattice Eq(n) has two four-element horizontal
generating sets X and Y such that h(Y) = h(X) + 1 holds for their heights. Furthermore,

HFHGS(n) ⊇ {bn/2c, bn/2c+ 1} for all integers n ≥ 7 and also for n = 5, and (2.1)

HFHGS(n) ⊆ {k ∈ N+ : b(n− 1)/4c+ 1 ≤ k ≤ n− d 4
√
n e} for all integers n ≥ 4. (2.2)

Based on the following statement, we conjecture that “⊇” in (2.1) is never an equality for n ≥ 7. We
do not know whether limn→∞ |HFHGS(n)| =∞ and HFHGS(n) is always a convex subset of 0. We know
HFHGS(n) only for n ∈ {4, 5, 6, 7, 8}. In the proposition below, each occurrence of the relation symbol
comp
= denotes an equality that we could prove only with the assistance of the brute force of a computer.

Proposition 1. We have the following equalities and inclusions:

HFHGS(4) = {1, 2}, (2.3)

HFHGS(5) = {2, 3}, (2.4)

{2, 3} ⊆ HFHGS(6) ⊆ {2, 3, 4}, in fact, HFHGS(6)
comp
= {2, 3}, (2.5)

{2, 3, 4} ⊆ HFHGS(7) ⊆ {2, 3, 4, 5}, in fact, HFHGS(7)
comp
= {2, 3, 4}, and (2.6)

{3, 4, 5} ⊆ HFHGS(8) ⊆ {2, 3, 4, 5, 6}, in fact, HFHGS(8)
comp
= {3, 4, 5}. (2.7)

Remark 1. (2.3) and (2.5) witness that (2.1) fails for n ∈ {4, 6}. Note also that concrete four-element
horizontal generating sets witnessing (2.1) and (2.3)–(2.7) are defined by Lemma 5 combined with As-
sertion 1, by Lemmas 6, 7 and 8 combined with both (the Key) Lemma 4 and Assertion 1, and in the
rest of the lemmas presented in Section 5. For n large, the just-mentioned four-element horizontal gen-
erating sets are given only inductively; the inductive feature could be eliminated but we do not strive for
non-inductive definitions of these generating sets.

The rest of the paper is devoted to proving Theorem 1 and Proposition 1. Unless explicitly stated
otherwise, we assume that 4 ≤ n ∈ N+ for the remainder of the paper.

3. Some lemmas, the Key Lemma, and a new proof of one of Strietz’s results

For a finite nonempty set A, if {a1,1, . . . , a1,t1}, . . . , {ak,1, . . . , ak,tk} is a repetition-free list of the
blocks of a partition µ ∈ Eq(A), then we denote both µ and the corresponding equivalence by

eq(a1,1, . . . , a1,t1 ; . . . ; ak,1, . . . , ak,tk) or eq(a1,1 . . . a1,t1 ; . . . ; ak,1 . . . ak,tk).

That is, we omit the commas when no confusion threatens but not the block-separating semicolons.
Usually, the elements in a block and the blocks are listed in lexicographic order. For example,

∆4 = eq(1; 2; 3; 4), ∇4 = eq(1234), and ∇11 = eq(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);

4 G. CZÉDLI

for more involved examples, see Lemmas 5–15. For u, v ∈ A, the least equivalence of A collapsing
u and v will be denoted by at(u, v) or, if confusion threatens, by atA(u, v). For example, in Eq(6),
at(2, 5) = eq(1; 25; 3; 4; 6). Note that at(u, v) is an atom of Eq(A) (that is, a cover of ∆), and every atom
of Eq(A) is of this form.

We define the graph G(S) of a sublattice S of Eq(A) by letting A be the vertex set of G(S) and letting
{(a, b) : a 6= b and at(a, b) ∈ S} be the edge set of G(S). (No matter if we consider (a, b) and (b, a) equal
or different.) A Hamiltonian circle of G(S) is a permutation a1, a2, . . . , an of the elements of A such
that at(ai−1, ai) ∈ S for i ∈ [n]− {1} and at(an, a1) ∈ S. Of course, G(S) need not have a Hamiltonian
circle. The following lemma occurs, explicitly or implicitly, in several papers dealing with generating sets
of equivalence lattices; see, for example, Czédli and Oluoch [4, Lemma 2.5]. For the reader’s convenience,
we are going to outline its trivial proof.

Lemma 1 ((Hamiltonian Cycle Lemma)). For a finite set A with at least three elements and a sublattice
S of Eq(A), we have that S = Eq(A) if and only if G(S) has a Hamiltonian circle.

P r o o f. The “only if” part is trivial. To prove the “if” part, let a1, . . . , an be a Hamiltonian circle of
G(S). As each element of the atomistic lattice Eq(A) is the join of some atoms, it suffices to show that
for all i 6= j, i, j ∈ [n], we have that at(ai, aj) ∈ S. This membership follows from

at(ai, aj) =
(

at(ai, ai+1) ∨ at(ai+1, ai+2) ∨ · · · ∨ at(aj−1, aj)
)

∧
(

at(ai, ai−1) ∨ at(ai−1, ai−2) ∨ · · · ∨ at(a2, a1)

∨ at(a1, an) ∨ at(an, an−1) ∨ at(an−1, an−2) ∨ · · · ∨ at(aj+1, aj)
)

and the “commutativity” at(x, y) = at(y, x). �

Let Z4 := ({0, 1, 2, 3},+) denote the cyclic group of order 4; the addition in it is performed modulo
4. To give the lion’s share of the proof of (2.3) and also to present an easy consequence of Lemma 1, we
present the following lemma, in which the addition is understood in Z4.

Lemma 2. Both X := {at(i, i + 1) : i ∈ Z4} and Y := {at(i, i + 1) ∨ at(i + 1, i + 2) : i ∈ Z4} are
four-element horizontal generating sets of Eq(Z4) ∼= Eq(4).

P r o o f. Let S be the sublattice of Eq(Z4) generated by Y . Since

at(i, i+ 1) =
(
at(i, i+ 1) ∨ at(i+ 1, i+ 2)

)
∧
(
at(i− 1, i) ∨ at(i, i+ 1)

)
∈ S for i ∈ Z4, (3.1)

the sequence 0,1,2,3 is a Hamilton cycle in G(S). Hence, Y is a generating set by Lemma 1. Lemma 1
applies to X without (3.1) immediately. The rest of Lemma 2 is trivial. �

Next, we introduce a concept that is crucial in the proof of Theorem 1. By an eligible system we mean
a 7-tuple

A = (A,α, β, γ, δ, u, v)

such that A is a finite set, u and v are distinct elements of A, {α, β, γ, δ} is a four-element generating set
of Eq(A), and

α ∨ δ = ∇, α ∧ δ = ∆, (3.2)

β ∧
(
γ ∨ at(u, v)

)
= ∆, γ ∧

(
β ∨ at(u, v)

)
= ∆, (3.3)

and β ∨ γ ∨ at(u, v) = ∇. (3.4)

To present an example and also for a later reference, we formulate the following statement.

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 5

Lemma 3. With α = eq(123; 4), β = eq(14; 2; 3), γ = eq(1; 2; 34), and δ = eq(1; 24; 3),

A := ([4], α, β, γ, δ, 1, 2) (3.5)

is an eligible system

P r o o f. Let S be the sublattice of Eq(4) generated by {α, β, γ, δ}. Since

at(1, 2) = eq(12; 3; 4) = α ∧ (β ∨ δ) ∈ S, at(2, 3) = α ∧ (γ ∨ δ) ∈ S, at(3, 4) = γ ∈ S,
and at(4, 1) = β ∈ S, the sequence 1, 2, 3, 4 is a Hamiltonian cycle in G(S). Thus, Lemma 1 implies that
{α, β, γ, δ} generates Eq(4). Since (3.2), (3.3), and (3.4) are trivially satisfied, the proof of Lemma 3 is
complete. �

For A ⊆ B and µ ∈ Eq(A), the smallest equivalence of B that includes µ will be denoted by µext
B . The

superscript in the notation comes from “extension”. As a partition, µext
B consists of the blocks of µ and

the singleton blocks {b} for b ∈ B −A.

Lemma 4 ((Key Lemma)). Assume that (A,α, β, γ, δ, u, v) is an eligible system, |A| ≥ 4, w /∈ A, and
B = A ∪ {w}. Let

α′ := βext
B ∨ atB(u,w), β′ := αext

B , γ′ := δext
B ,

δ′ := γext
B ∨ atB(v, w), u′ := u, v′ := w.

(3.6)

Then the extended system
ES(A) := B =

(
B, α′, β′, γ′, δ′, u′, v′

)
(3.7)

is also an eligible system. The heights of the partitions occurring in (3.6)–(3.7) satisfy that

h(α′) = h(β) + 1, h(β′) = h(α), h(γ′) = h(δ), h(δ′) = h(γ) + 1. (3.8)

P r o o f. Assume that A is an eligible system and B = ES(A) is as in (3.7). We will frequently
but mostly implicitly use the obvious fact that the function f : Eq(A) → Eq(B) defined by µ 7→ µext

B

is a lattice embedding and, for any µ ∈ Eq(A), h(f(µ)) = h(µ). Denote by S the sublattice generated
by {α′, β′, γ′, δ′} in Eq(B). For µ ∈ Eq(B), let µ�A denote the restriction of µ to A. That is, as an
equivalence, µ�A = µ ∩ (A×A). E.g.,

(
(∆A)ext

B

)
�A = ∆A. Note the obvious rule:

(ρext
B)�A = ρ and (µ�A)ext

B = µ ∧ (∇A)ext
B for every ρ ∈ Eq(A) and µ ∈ Eq(B). (3.9)

Let us agree that, for x, y ∈ B, at(x, y) is understood as atB(x, y) even when x, y ∈ A. We claim that for
any µ ∈ Eq(A) and for any d ∈ A,(

µext
B ∨ atB(d,w)

)
�A = µ; and, in particular, (3.10)

α′�A = β and δ′�A = γ. (3.11)

The inequality
(
µext
B ∨ atB(d,w)

)
�A ≥ µ is clear. To show the converse inequality, assume that a 6= b and

(a, b) belongs to
(
µext
B ∨ atB(d,w)

)
�A. Then a, b ∈ A and, by the description of the join in equivalence

lattices, there exists a shortest sequence x0 = a, x1, . . . , xt−1, xt = b of elements of B such that, for each
i ∈ [t],

either (xi−1, xi) ∈ µext
B or (xi−1, xi) ∈ {(d,w), (w, d)}. (3.12)

Since this sequence is repetition-free, the first alternative in (3.12) means that (xi−1, xi) ∈ µ. By way
of contradiction, suppose that not all elements of the sequence are in A. Let j be the smallest subscript
such that xj /∈ A. As x0 = a ∈ A and xt = b ∈ A, we have that 0 < j < t. By the choice of
j, xj−1 ∈ A. This rules out that (xj−1, xj) = (w, d). Since xj /∈ A, (xj−1, xj) ∈ µ cannot occur
either. Hence, (xj−1, xj) = (d,w). However, then the only possibility to continue the sequence is that
(xj , xj+1) = (w, d). So d occurs in the sequence at least twice, which contradicts the fact that our sequence
is repetition-free. Therefore, all elements of the sequence are in A, whereby the first alternative of (3.12)

6 G. CZÉDLI

holds for all i. Thus, (xi−1, xi) ∈ µ for i ∈ [t], and we obtain the required membership (a, b) = (x0, xt) ∈ µ
by transitivity. We have shown (3.10). Letting (µ, d) := (β, u) and (µ, d) := (γ, v), (3.10) implies (3.11).

Next, using the first half of (3.2) (and the fact that f is an embedding), we obtain that (∇A)
ext
B =

(α ∨ δ)ext
B = αext

B ∨ δext
B = β′ ∨ γ′ belongs to S. Hence, so does α′ ∧ (∇A)ext

B . By the second half of
(3.9) applied to µ := α′, this equivalence is (α′�A)ext

B , whence (α′�A)ext
B ∈ S. Therefore, applying (3.11),

βext
B ∈ S. As β and γ play a symmetric role, γext

B is also in S. By (3.6), S contains αext
B = β′ and δext

B = γ′.
So f(µ) = µext

B ∈ S for every µ ∈ {α, β, γ, δ}. Since f is an embedding and {α, β, γ, δ} generates Eq(A),
we conclude that f(Eq(A)) ⊆ S. In particular, atB(u, v) = f(atA(u, v)) ∈ S. Based on this containment,
we claim that

atB(u,w) = α′ ∧
(
atB(u, v) ∨ δ′

)
∈ S. (3.13)

As atB(u, v), α′, δ′ ∈ S, it suffices to show the equality in (3.13). The inequality “≤” in place of the
equality is clear by the definition of α′ given in (3.6). To show the converse inequality, assume that a 6= b
and (a, b) belongs to the right-hand side of the equality in (3.13). Let ν := atA(u, v) ∨ γ. Observe that

(a, b) ∈ α′ ∧
(
νext
B ∨ atB(v, w)

)
, (3.14)

since

α′ ∧
(
νext
B ∨ atB(v, w)

)
= α′ ∧

((
atA(u, v) ∨ γ

)ext

B
∨ atB(v, w)

)
= α′ ∧

((
atA(u, v)

)ext

B
∨ γext

B ∨ atB(v, w)
)

(3.15)

= α′ ∧
(
atB(u, v) ∨ γext

B ∨ atB(v, w)
) (3.6)

= α′ ∧
(
atB(u, v) ∨ δ′

)
. (3.16)

As a 6= b and |B − A| = |{w}| = 1, at least one of a and b is in A. By symmetry, we can assume that
a ∈ A. Depending on the position of b, there are two cases.

First, assume that b is also in A. Then (a, b) ∈ α′ and (3.11) give that (a, b) ∈ β. As (a, b) is in the
second meetand in (3.14) and a, b ∈ A, we have that (a, b) ∈

(
νext
B ∨ atB(v, w)

)
�A. Hence, (3.10) applied

to (µ, d) := (ν, v) yields that (a, b) ∈ ν. Thus, (a, b) belongs to β ∧ ν = β ∧
(
atA(u, v) ∨ γ

)
, which is ∆A

by (3.3). Since (a, b) ∈ ∆A contradicts the assumption a 6= b, the first case cannot occur.
Second, assume that b /∈ A. Then (a,w) = (a, b) ∈ α′∧

(
atB(u, v)∨δ′

)
and a ∈ A. By (3.6), (w, u) ∈ α′.

As both (w, v) and (v, u) belong to the second meetand of (3.15), (w, u) belongs to this meetand, too.
These facts, (3.15), and (3.16) give that α′ ∧

(
atB(u, v) ∨ δ′

)
contains (w, u). By transitivity, it contains

(a, u), too. If we had that a 6= u, then (a, u) (with u playing the role of b) would be a contradiction by
the first case. Thus, a = u, that is, (a, b) = (u,w) ∈ atB(u,w), as required. We have shown the validity
of (3.13).

We obtain the following fact analogously; we can derive it also from (3.13) by symmetry, since
(A; δ, γ, β, α, v, u) is also an eligible system:

atB(v, w) = δ′ ∧
(
atB(u, v) ∨ α′

)
∈ S. (3.17)

With n := |A|, list the elements of B as follows: c1 := u, c2, . . . , cn−1, cn := v, cn+1 := w. Since
f(Eq(A)) ⊆ S and c1, . . . , cn ∈ A, we have that atB(ci, ci+1) = f

(
atA(ci, ci+1)

)
∈ S, that is, (ci, ci+1)

is an edge of G(S) for i ∈ [n − 1]. So are (cn, cn+1) = (v, w) and (cn+1, c1) = (w, u) by (3.17) and by
(3.13), respectively. Therefore, our list is a Hamiltonian cycle, and Lemma 1 implies that {α′, β′, γ′, δ′}
is a generating set of Eq(B). This set is four-element since |B| ≥ 4 and so we know from Strietz [8] or
[9] that Eq(B) cannot be generated by less than four elements.

Clearly, u′ = u ∈ A is distinct from v′ = w ∈ B −A. Since

α′ ∨ δ′ (3.6)
= βext

B ∨ atB(u,w) ∨ γext
B ∨ atB(v, w) = βext

B ∨ γext
B ∨ atB(u, v) ∨ atB(v, w)

=
(
β ∨ γ ∨ atA(u, v)

)ext

B
∨ atB(v, w)

(3.4)
= (∇A)ext

B ∨ atB(v, w) = ∇B ,

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 7

B satisfies the first half of (3.2). To show by way of contradiction that B fulfills the second half, suppose
that a 6= b and (a, b) ∈ α′ ∧ δ′. If a, b ∈ A, then (3.11) leads to (a, b) ∈ β ∧ γ = ∆A, contradicting that
a 6= b. So one of a and b is w, and we can assume that a ∈ A and b = w. As (a,w) = (a, b) ∈ α′ and
(w, u) ∈ α′, we have that (a, u) ∈ α′. Hence, (a, u) ∈ β by (3.11). Similarly, (a,w), (w, v) ∈ δ′ and (3.11)
imply that (a, v) ∈ γ. The just-obtained memberships and relations give that

(a, u) ∈ β ∧
(
γ ∨ atA(u, v)

)
and (a, v) ∈ γ ∧

(
β ∨ atA(u, v)

)
.

Combining this with (3.3), we obtain that a = u and a = v, contradicting u 6= v. So we have proved that
B fulfills (3.2).

By symmetry, to show that B satisfies (3.3), it suffices to deal with its first half. For the sake of
contradiction, suppose that β′ ∧

(
γ′ ∨ atB(u′, v′)

)
6= ∆B . Then we can pick a, b ∈ B such that a 6= b and

(a, b) ∈ β′ ∧
(
γ′ ∨ atB(u′, v′)

) (3.6)
= αext

B ∧
(
δext
B ∨ atB(u,w)

)
. (3.18)

The containment (a, b) ∈ αext
B gives that a, b ∈ A. The meet in Eq(B) is the set-theoretic intersection, so

it commutes with the restriction map. Hence, applying the first equality of (3.9) with ρ := α and (3.10)

with (µ, d) := (δ, u) at
∗
=, (3.18) leads to

(a, b) ∈
(
αext
B ∧

(
δext
B ∨ atB(u,w)

))
�A

= αext
B �A ∧

(
δext
B ∨ atB(u,w)

)
�A
∗
= α ∧ δ (3.2)

= ∆A ⊆ ∆B ,

which contradicts the assumption a 6= b and proves that B satisfies (3.3). Since

β′ ∨ γ′ ∨ atB(u′, v′)
(3.6)
= αext

B ∨ δext
B ∨ atB(u,w) = (α ∨ δ)ext

B ∨ atB(u,w)

(3.2)
= (∇A)ext

B ∨ atB(u,w) = ∇B ,

B satisfies (3.4), too. We have proved that B is an eligible system, as required.
For a finite nonempty set H and µ in Eq(H), let NumB(µ) denote the number of blocks of µ. For

example, if µ = eq(14; 25; 3) ∈ Eq(5), then NumB(µ) = 3. The following folkloric fact is trivial:

For any µ ∈ Eq(H), h(µ) + NumB(µ) = |H|. (3.19)

Clearly, (3.6) leads to

NumB(α′) = NumB(β), NumB(β′) = NumB(α) + 1,

NumB(γ′) = NumB(δ) + 1, and NumB(δ′) = NumB(γ).

These equalities and (3.19) imply (3.8), completing the proof of the Key Lemma. �

Now we are in the position to give a new proof of Strietz’s result stating that Eq(n) is four-generated.
For those who prefer theoretical arguments rather than long and tedious computations with concrete
partitions, the proof below is presumably simpler than the earlier ones.

Corollary 1 ((Strietz [8] and [9])). For any natural number n ≥ 3, Eq(n) has a four-element generating
set.

P r o o f. As the case n = 3 is trivial, we assume that n ≥ 4. Let A4 be the eligible system given in
(3.5). For n > 4, define An as ES(An−1). Then, for each n ≥ 4, An is an n-element eligible system by
Lemmas 3 and (the Key) Lemma 4. Thus, by the definition of eligible systems, Eq(n) is four-generated,
completing the proof of Corollary 1. �

8 G. CZÉDLI

4. A tediously provable lemma

The n-th Bell number B(n) is defined to be the number of elements of Eq(n), that is, B(n) := |Eq(n)|.
As n grows, B(n) grows very fast; see https://oeis.org/A000110 of N. J. A. Sloan’s Online Encyclopedia
of Integer Sequences. For example, |Eq(6)| = B(6) = 203, |Eq(8)| = 4 140, |Eq(9)| = 21 147, and
|Eq(20)| = 51 724 158 235 372 ≈ 5.17 · 1013. These large numbers explain our experience that even
when it is feasible to prove that a four-element subset X of Eq(n) generates Eq(n), this task requires
straightforward but tedious computations in general. Each of Lemmas 5–15 belongs to this category by
stating that a subset X of Eq(n) generates Eq(n); some of these lemmas state slightly more, but these
surpluses are trivial to verify. We offer two ways to verify these lemmas.

First, one can read their proofs based on Lemma 1. One of these proofs is given in this section. As the
rest of these proofs are long without containing a single new idea, the proofs of Lemmas 6–15 are given
in Appendix 1

Second, the author has developed three closely related computer programs in Dev-Pascal 1.9.2 under
Windows 10. These programs, which are available at https://tinyurl.com/czg-equ2024p or at the author’s
website2 http://tinyurl.com/g-czedli/, form a mini-package. The main program and its auxiliary program
are also given in Appendices 2 and 3. The third program performs the same tasks as the first one and
also uses the auxiliary program. Despite being slower, it is more cross-platform because it requires less
computer memory. For n ≤ 9, the auxiliary program lists the elements of Eq(n); the other two programs
rely on this list. In what follows, by a program, we mean the main program. The program can “prove”

Lemmas 5–15, and it can also “prove” the
comp
= parts of (2.5)–(2.7). In fact, the program has been

designed to perform the following two tasks.
First, the program can take an n ∈ {4, 5, . . . , 9} and a four-element subset X of Eq(n) as inputs. After

enlarging X by adding the join and the meet of any two of its elements as long as the enlargement is
proper, the program computes the sublattice S generated by X. Then the program displays the size
|S| of S on the screen and tells whether X generates Eq(n). The program can prove Lemma 8, where
n = 9, in about fifteen minutes. For Lemma 14, where n = 8, 25 seconds suffice. Note that for just
one four-element subset X of Eq(n), it is not worthwhile to create and the program does not create the
operation tables of Eq(n). For this (the first) task, there is no difference between the main program and
its slower variant.

Second, for a given n ∈ {4, 5, . . . , 9} and a k ∈ [n − 1] as inputs, the program decides whether Eq(n)
has a four-element horizontal generating set of height k. For (n, k) = (8, 2), this takes about three and a
half minutes, provided the program runs on a desktop computer with AMD Ryzen 7 2700X Eight-Core
Processor and 3.70 GHz with 16 GB memory. For (n, k) = (9, 3), if Eq(9) has no four-element horizontal
generating set of height 3, which we do not know, the program would need about a month; partially
because there is not enough computer memory to store the operation tables of Eq(9) and also because
there are significantly more cases.

The quotation marks around “proved” in a paragraph above indicate that the author believes but
cannot prove that the program itself is error-free. The source code of the program and that of its
auxiliary program are 24 and 8 kilobytes, respectively, totaling 32 kilobytes. Proving exactly that the
program is perfect would probably be harder than verifying all proofs in Appendix 1.

2This standard “tiny” short link redirects us to the real URL https://www.math.u-szeged.hu/˜czedli/ .

https://oeis.org/A000110
https://tinyurl.com/czg-equ2024p
http://tinyurl.com/g-czedli/
https://www.math.u-szeged.hu/~czedli/

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 9

Lemma 5. With

α := eq(123; 4; 5), (4.1)

β := eq(1; 23; 45), (4.2)

γ := eq(13; 25; 4), and (4.3)

δ := eq(15; 2; 34), (4.4)

([5], α, β, γ, δ, 1, 4) is an eligible system and h(α) = h(β) = h(γ) = h(δ) = 2.

P r o o f. Let S denote the sublattice of Eq(5) generated by {α, β, γ, δ}. We will list some members of
S; each of them belongs to S by earlier containments as indicated.

eq(1; 23; 4; 5) = eq(123; 4; 5) ∧ eq(1; 23; 45) ∈ S by (4.1) and (4.2), (4.5)

eq(13; 2; 4; 5) = eq(123; 4; 5) ∧ eq(13; 25; 4) ∈ S by (4.1) and (4.3), (4.6)

eq(1235; 4) = eq(123; 4; 5) ∨ eq(13; 25; 4) ∈ S by (4.1) and (4.3), (4.7)

eq(15; 234) = eq(15; 2; 34) ∨ eq(1; 23; 4; 5) ∈ S by (4.4) and (4.5), (4.8)

eq(1345; 2) = eq(15; 2; 34) ∨ eq(13; 2; 4; 5) ∈ S by (4.4) and (4.6), (4.9)

eq(15; 2; 3; 4) = eq(15; 2; 34) ∧ eq(1235; 4) ∈ S by (4.4) and (4.7), (4.10)

eq(1; 2; 3; 45) = eq(1; 23; 45) ∧ eq(1345; 2) ∈ S by (4.2) and (4.9), (4.11)

eq(13; 245) = eq(13; 25; 4) ∨ eq(1; 2; 3; 45) ∈ S by (4.3) and (4.11), (4.12)

eq(1; 24; 3; 5) = eq(15; 234) ∧ eq(13; 245) ∈ S by (4.8) and (4.12). (4.13)

Let E(S) denote the edge set of the graph G(S); it is defined in the paragraph preceding Lemma 1.
Since (1, 3) ∈ E(S) by (4.6), (3, 2) ∈ E(S) by (4.5), (2, 4) ∈ E(S) by (4.13), (4, 5) ∈ E(S) by (4.11),
and (5, 1) ∈ E(S) by (4.10), the sequence 1, 3, 2, 4, 5 is a Hamiltonian cycle of G(S). Hence, {α, β, γ, δ}
is a generating set of Eq(5) by Lemma 1. Armed with this fact, now it is a trivial task to verify that
([5], α, β, γ, δ, 1, 4) satisfies (3.2), (3.3), and (3.4), whereby it is an eligible system. Thus, (3.19) completes
the proof Lemma 5. �

5. The rest of tediously provable lemmas

We need the following ten lemmas, too. As indicated in the second paragraph of Section 4, their proofs
are given in Appendix 1.

Lemma 6. With

α := eq(134; 256; 7), β := eq(146; 27; 3; 5),

γ := eq(135; 2; 4; 67), and δ := eq(12; 357; 46),

([7], α, β, γ, δ, 2, 3) is an eligible system, h(α) = h(δ) = 4, and h(β) = h(γ) = 3.

Lemma 7. With

α := eq(134; 258; 67), β := eq(14; 2; 36; 578),

γ := eq(17; 25; 348; 6), and δ := eq(12; 378; 456),

([8], α, β, γ, δ, 2, 6) is an eligible system, h(α) = h(δ) = 5, and h(β) = h(γ) = 4.

Lemma 8. With

α := eq(178; 249; 356), β := eq(19; 26; 378; 45),

10 G. CZÉDLI

γ := eq(1; 28; 359; 467), and δ := eq(169; 258; 347),

([9], α, β, γ, δ, 1, 2) is an eligible system, h(α) = h(δ) = 6, and h(β) = h(γ) = 5.

Lemma 9. With

α := eq(134; 25), β := eq(13; 245),

γ := eq(12; 345), and δ := eq(124; 35),

{α, β, γ, δ} generates Eq(5) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 10. With

α := eq(12; 34; 5; 6), β := eq(1; 2; 35; 46),

γ := eq(1; 25; 36; 4), and δ := eq(15; 24; 3; 6),

{α, β, γ, δ} generates Eq(6) and h(α) = h(β) = h(γ) = h(δ) = 2.

Lemma 11. With

α := eq(13; 256; 4), β := eq(156; 2; 34),

γ := eq(12; 35; 46), and δ := eq(13; 246; 5),

{α, β, γ, δ} generates Eq(6) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 12. With

α := eq(1; 24; 35; 6; 7), β := eq(14; 26; 3; 5; 7),

γ := eq(1; 2; 34; 5; 67), and δ := eq(17; 2; 3; 4; 56),

{α, β, γ, δ} generates Eq(7) and h(α) = h(β) = h(γ) = h(δ) = 2.

Lemma 13. With

α := eq(13; 24; 567), β := eq(125; 3; 467)

γ := eq(1357; 26; 4), and δ := eq(126; 35; 47),

{α, β, γ, δ} generates Eq(7) and h(α) = h(β) = h(γ) = h(δ) = 4.

Lemma 14. With

α := eq(18; 2; 35; 4; 67), β := eq(1; 24; 37; 5; 68),

γ := eq(16; 2; 34; 57; 8), and δ := eq(12; 3; 45; 6; 78),

{α, β, γ, δ} generates Eq(8) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 15. With

α := eq(137; 246; 58), β := eq(146; 257; 38),

γ := eq(136; 2; 4578), and δ := eq(1245; 37; 68),

{α, β, γ, δ} generates Eq(8) and h(α) = h(β) = h(γ) = h(δ) = 5.

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 11

6. Proving Theorem 1 and Proposition 1 with our lemmas

Since the proof of Theorem 1 relies on parts of Proposition 1 and the proof of Proposition 1 uses (2.2)
from Theorem 1, we present a combined proof of both the theorem and the proposition.

P r o o f. (Proving Theorem 1 and Proposition 1) First, we deal with (2.2). Assume that {α1, . . . , α4} is
a four-element horizontal generating set of Eq(n) with height k. That is, k = h(αi) for i ∈ [4]. We need
to prove that

b(n− 1)/4c+ 1 ≤ k ≤ n− d 4
√
n e. (6.1)

By semimodularity, see Grätzer [5, Theorem IV.2.2 on page 226], the height of α1 ∨ · · · ∨ α4 is at most
h(α1) + · · ·+h(α4) = 4k. The just-mentioned join is the largest element of the sublattice S generated by
{α1, . . . , α4}. But this sublattice is Eq(n), so this join is ∇n, whereby h(∇n) ≤ 4k. We know from, say,
(3.19) that h(∇n) = n−1. Thus, the previous inequality turns into (n− 1)/4 ≤ k. If (n− 1)/4 < k, then
b(n−1)/4c < k and we obtain the first inequality of (6.1) since k is an integer. Hence, it suffices to exclude
that (n− 1)/4 = k. To obtain a contradiction, suppose that (n− 1)/4 = k, that is, n− 1 = h(∇n) = 4k.
Let i ∈ [4]. As h(αi) = k, we can find k atoms βk(i−1)+1, βk(i−1)+2, . . . , βki in Eq(n) such that αi is the
join of these atoms; the existence of such atoms is clear in Eq(n) and it is true even in any geometric
lattice by Grätzer [5, Theorems IV.2.4 and IV.2.5 on pages 228–229] or [6, Theorems 380 and 381]. As
{α1, . . . , α4} generates Eq(n), α1 ∨ · · · ∨ α4 = ∇n. Hence,

h
(4k∨
j=1

βj
)

= h(α1 ∨ · · · ∨ α4) = h(∇n) = n− 1 = 4k.

Therefore, Grätzer [5, Theorem IV.2.4 on page 228] or [6, Theorem 380] yields that {β1, . . . , β4k} is
an independent set of atoms; this means that {β1, . . . , β4k} generates a Boolean sublattice T of Eq(n).
In particular, T is a distributive. As α1, . . . , α4 are in T , they generate a sublattice of T , which is
distributive, too. This means that Eq(n) is distributive, which contradicts the assumption that n ≥ 4.
Therefore, (n− 1)/4 = k cannot occur and we have proved the first inequality in (6.1).

Clearly, α1 ∧ · · · ∧ α4, which is the smallest element of S, is ∆n. Let b := NumB(αi); by (3.19),
b = n − k does not depend on i ∈ [4]. The largest block C1 of α1 has at least n/b elements. When
we form the meet α1 ∧ α2, then C1 splits into at most b blocks of α1 ∧ α2 and the largest one of these
blocks has at least (n/b)/b elements. So α1 ∧ α2 has a block C2 with at least n/b2 elements. And so on;
finally, ∆n = α1 ∧ · · · ∧α4 has a block with at least n/b4 elements. But ∆n has only one-element blocks,
whereby n/b4 ≤ 1, that is, b ≥ 4

√
n. Thus b ≥ d 4

√
n e, since b ∈ N+. Therefore, as we know from (3.19)

that b = n− k, we obtain that k ≤ n− d 4
√
n e. This completes the proof of (6.1) and that of (2.2).

Next, assume that A = (A,α, β, γ, δ, u, v). With the “extended system operator” introduced in (3.7),
we use the notation (C,α′′, β′′, γ′′, δ′′, u′′, v′′) for ES2(A) := ES(ES(A)). Clearly, (the Key) Lemma 4
implies the following assertion.

Assertion 1. If A = (A,α, β, γ, δ, u, v) is an eligible system and

C = (C,α′′, β′′, γ′′, δ′′, u′′, v′′)

is ES2(A), then C is also an eligible system, h(α′′) = h(α) + 1, h(β′′) = h(β) + 1, h(γ′′) = h(γ) + 1, and
h(δ′′) = h(δ) + 1.

Resuming the proof, let us agree that, for any meaningful x, ALx denotes the eligible system defined
in Lemma x. For example, AL5 is defined in Lemma 5. W call an eligible system horizontal if its four
partitions have the same height; this common height is the height of the system.

By Lemma 5, AL5 is a 5-element horizontal eligible system of height 2. Applying Assertion 1 repeatedly,
we obtain a 7-element horizontal eligible system, a 9-element horizontal eligible system, etc. of heights

12 G. CZÉDLI

3, 4, . . . , respectively. Thus,

for n ≥ 5 odd, Eq(n) has a four-element horizontal generating set of height bn/2c. (6.2)

By Lemma 7 and (the Key) Lemma 4, ES(AL7) is a 9-element horizontal eligible system of height
5. Applying Assertion 1 repeatedly, we obtain an 11-element horizontal eligible system, a 13-element
horizontal eligible system, etc. of heights 6, 7, . . . , respectively. Hence,

for n ≥ 9 odd, Eq(n) has a four-element horizontal generating set of height bn/2c+ 1. (6.3)

By Lemma 6 and (the Key) Lemma 4, ES(AL6) is an 8-element horizontal eligible system of height 4.
Hence, the repeated use of Assertion 1 yields that

for n ≥ 8 even, Eq(n) has a four-element horizontal generating set of height bn/2c. (6.4)

By Lemma 8 and (the Key) Lemma 4, ES(AL8) is a 10-element horizontal eligible system of height 6.
Hence, the repeated use of Assertion 1 yields that

for n ≥ 10 even, Eq(n) has a four-element horizontal generating set of height bn/2c+ 1. (6.5)

We know from Lemma 9 that Eq(5) is generated by a four-element horizontal generating set of height
d5/2e+ 1. By Lemma 13, Eq(7) has four-element horizontal generating set of height a (b7/2c+ 1). For
Eq(8), a four-element horizontal generating set of height (b8/2c + 1) is provided by Lemma 15. These
three facts, (6.2), (6.3), (6.4), and (6.5) imply (2.1).

In what follows, we will implicitly use that Eq(n) has no four-element horizontal subset of height 0 or
n− 1. Since there is no four-element subset of height 0 or 3 in Eq(4), Lemma 2 implies (2.3).

Since {2, 3} ⊆ HFHGS(5) by (2.2), (2.1) implies (2.4).
We obtain from (2.2) and Lemmas 10–11 that {2, 3} ⊆ HFHGS(6) ⊆ {2, 3, 4}. As the already men-

tioned computer program yields that 4 /∈ HFHGS(6) in less than a second3, (2.5) holds.
Lemma 12, (2.1), and (2.2) imply that {2, 3, 4} ⊆ HFHGS(7) ⊆ {2, 3, 4, 5}. In 2 seconds, the program

excludes that 5 ∈ HFHGS(7). Thus, we have shown (2.6).
Lemma 14, (2.1) and (2.2) yield that {3, 4, 5} ⊆ HFHGS(8) ⊆ {2, 3, 4, 5, 6}, as required. The program

excludes 2 and 6 from HFHGS(8) in three and a half minutes and in one minute, respectively. Thus, we
proved the validity of (2.7) and that of Proposition 1.

Finally, the first sentence of Theorem 1 follows from (2.3), (2.4) or (2.1), the first inclusion in (2.5),
and from (2.1). The combined proof of Theorem 1 and Proposition 1 is complete. �

7. Appendix 1: the proofs of the technical lemmas stated in Section 5

P r o o f. (Proof of Lemma 6) It is easy to check that (3.2), (3.3), and (3.4) hold. The equalities for
the heights of α, . . . , δ are trivial. As in the proof of Lemma 5, let S be the sublattice generated by
{α, β, γ, δ}. Then

α = eq(134; 256; 7) ∈ S, (7.1)

β = eq(146; 27; 3; 5) ∈ S, (7.2)

γ = eq(135; 2; 4; 67) ∈ S, (7.3)

δ = eq(12; 357; 46) ∈ S, (7.4)

eq(14; 2; 3; 5; 6; 7) = eq(134; 256; 7) ∧ eq(146; 27; 3; 5) ∈ S by (7.1) and (7.2), (7.5)

eq(13; 2; 4; 5; 6; 7) = eq(134; 256; 7) ∧ eq(135; 2; 4; 67) ∈ S by (7.1) and (7.3), (7.6)

3The auxiliary program creates the auxiliary files containing the lists of partitions of [n] for n ≤ 9 in 4 seconds, but this
has to be done only once. Thus, here and later, even though the program needs these files, the just-mentioned 4 seconds

are not counted. The time for entering n and k are not counted either.

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 13

eq(1; 2; 3; 46; 5; 7) = eq(146; 27; 3; 5) ∧ eq(12; 357; 46) ∈ S by (7.2) and (7.4), (7.7)

eq(1; 2; 35; 4; 6; 7) = eq(12; 357; 46) ∧ eq(135; 2; 4; 67) ∈ S by (7.4) and (7.3), (7.8)

eq(1246; 357) = eq(12; 357; 46) ∨ eq(14; 2; 3; 5; 6; 7) ∈ S by (7.4) and (7.5), (7.9)

eq(12357; 46) = eq(12; 357; 46) ∨ eq(13; 2; 4; 5; 6; 7) ∈ S by (7.4) and (7.6), (7.10)

eq(146; 2; 3; 5; 7) = eq(14; 2; 3; 5; 6; 7) ∨ eq(1; 2; 3; 46; 5; 7) ∈ S by (7.5) and (7.7), (7.11)

eq(14; 26; 3; 5; 7) = eq(134; 256; 7) ∧ eq(1246; 357) ∈ S by (7.1) and (7.9), (7.12)

eq(1; 27; 3; 46; 5) = eq(146; 27; 3; 5) ∧ eq(12357; 46) ∈ S by (7.2) and (7.10), (7.13)

eq(134567; 2) = eq(135; 2; 4; 67) ∨ eq(146; 2; 3; 5; 7) ∈ S by (7.3) and (7.11), (7.14)

eq(12467; 3; 5) = eq(146; 27; 3; 5) ∨ eq(14; 26; 3; 5; 7) ∈ S by (7.2) and (7.12), (7.15)

eq(1; 2; 357; 46) = eq(12; 357; 46) ∧ eq(134567; 2) ∈ S by (7.4) and (7.14), (7.16)

eq(1345; 267) = eq(135; 2; 4; 67) ∨ eq(14; 26; 3; 5; 7) ∈ S by (7.3) and (7.12), (7.17)

eq(1; 2; 3; 4; 5; 67) = eq(135; 2; 4; 67) ∧ eq(12467; 3; 5) ∈ S by (7.3) and (7.15), (7.18)

eq(1; 2357; 46) = eq(1; 27; 3; 46; 5) ∨ eq(1; 2; 357; 46) ∈ S by (7.13) and (7.16), (7.19)

eq(1; 27; 3; 4; 5; 6) = eq(1; 27; 3; 46; 5) ∧ eq(1345; 267) ∈ S by (7.13) and (7.17), (7.20)

eq(1; 25; 3; 4; 6; 7) = eq(134; 256; 7) ∧ eq(1; 2357; 46) ∈ S by (7.1) and (7.19). (7.21)

Hence, the graph G(S) of S contains the following edges: (1, 3) by (7.6), (3, 5) by (7.8), (5, 2) by (7.21),
(2, 7) by (7.20), (7, 6) by (7.18), (6, 4) by (7.7), and (4, 1) by (7.5). So 1, 3, 5, 2, 7, 6, 4 is a Hamiltonian
cycle in G(S). Hence, like in the proof of Lemma 5, a reference to Lemma 1 completes the proof of
Lemma 6. �

P r o o f. (Proof of Lemma 7) The validity of (3.2), (3.3), and (3.4) is trivial. The equalities for
the heights of α, . . . , δ are trivial, too. As in the earlier proofs, S denotes the sublattice generated by
{α, β, γ, δ}. The following partitions belong to S:

α = eq(134; 258; 67), (7.22)

β = eq(14; 2; 36; 578), (7.23)

γ = eq(17; 25; 348; 6), (7.24)

δ = eq(12; 378; 456), (7.25)

eq(14; 2; 3; 58; 6; 7) = eq(134; 258; 67) ∧ eq(14; 2; 36; 578) by (7.22) and (7.23), (7.26)

eq(1; 25; 34; 6; 7; 8) = eq(134; 258; 67) ∧ eq(17; 25; 348; 6) by (7.22) and (7.24), (7.27)

eq(1; 2; 3; 4; 5; 6; 78) = eq(14; 2; 36; 578) ∧ eq(12; 378; 456) by (7.23) and (7.25), (7.28)

eq(1; 2; 38; 4; 5; 6; 7) = eq(12; 378; 456) ∧ eq(17; 25; 348; 6) by (7.25) and (7.24), (7.29)

eq(134; 25678) = eq(134; 258; 67) ∨ eq(1; 2; 3; 4; 5; 6; 78) by (7.22) and (7.28), (7.30)

eq(123458; 67) = eq(134; 258; 67) ∨ eq(1; 2; 38; 4; 5; 6; 7) by (7.22) and (7.29), (7.31)

eq(1346; 2578) = eq(14; 2; 36; 578) ∨ eq(1; 25; 34; 6; 7; 8) by (7.23) and (7.27), (7.32)

eq(14; 2; 35678) = eq(14; 2; 36; 578) ∨ eq(1; 2; 38; 4; 5; 6; 7) by (7.23) and (7.29), (7.33)

eq(13478; 25; 6) = eq(17; 25; 348; 6) ∨ eq(1; 2; 3; 4; 5; 6; 78) by (7.24) and (7.28), (7.34)

eq(14; 2; 358; 6; 7) = eq(14; 2; 3; 58; 6; 7) ∨ eq(1; 2; 38; 4; 5; 6; 7) by (7.26) and (7.29), (7.35)

eq(1; 25; 348; 6; 7) = eq(1; 25; 34; 6; 7; 8) ∨ eq(1; 2; 38; 4; 5; 6; 7) by (7.27) and (7.29), (7.36)

eq(14; 2; 3; 58; 67) = eq(134; 258; 67) ∧ eq(14; 2; 35678) by (7.22) and (7.33), (7.37)

14 G. CZÉDLI

eq(134; 25; 6; 7; 8) = eq(134; 258; 67) ∧ eq(13478; 25; 6) by (7.22) and (7.34), (7.38)

eq(14; 2; 3; 5; 6; 78) = eq(14; 2; 36; 578) ∧ eq(13478; 25; 6) by (7.23) and (7.34), (7.39)

eq(1; 2; 3; 4; 56; 78) = eq(12; 378; 456) ∧ eq(134; 25678) by (7.25) and (7.30), (7.40)

eq(12; 38; 45; 6; 7) = eq(12; 378; 456) ∧ eq(123458; 67) by (7.25) and (7.31), (7.41)

eq(1; 2; 3; 46; 5; 78) = eq(12; 378; 456) ∧ eq(1346; 2578) by (7.25) and (7.32), (7.42)

eq(14; 2; 3; 5; 6; 7; 8) = eq(14; 2; 3; 58; 6; 7) ∧ eq(13478; 25; 6) by (7.26) and (7.34), (7.43)

eq(12456; 378) = eq(12; 378; 456) ∨ eq(14; 2; 3; 5; 6; 78) by (7.25) and (7.39), (7.44)

eq(1; 256; 34; 78) = eq(1; 25; 34; 6; 7; 8) ∨ eq(1; 2; 3; 4; 56; 78) by (7.27) and (7.40), (7.45)

eq(1; 25; 34678) = eq(1; 25; 348; 6; 7) ∨ eq(1; 2; 3; 46; 5; 78) by (7.36) and (7.42), (7.46)

eq(145678; 2; 3) = eq(14; 2; 3; 58; 67) ∨ eq(1; 2; 3; 46; 5; 78) by (7.37) and (7.42), (7.47)

eq(1; 2; 3; 456; 78) = eq(1; 2; 3; 4; 56; 78) ∨ eq(1; 2; 3; 46; 5; 78) by (7.40) and (7.42), (7.48)

eq(17; 2; 3; 48; 5; 6) = eq(17; 25; 348; 6) ∧ eq(145678; 2; 3) by (7.24) and (7.47), (7.49)

eq(1; 25; 3; 4; 6; 7; 8) = eq(1; 25; 34; 6; 7; 8) ∧ eq(12456; 378) by (7.27) and (7.44), (7.50)

eq(1; 23456; 78) = eq(1; 25; 34; 6; 7; 8) ∨ eq(1; 2; 3; 456; 78) by (7.27) and (7.48), (7.51)

eq(1; 2; 3; 48; 5; 6; 7) = eq(1; 25; 348; 6; 7) ∧ eq(145678; 2; 3) by (7.36) and (7.47), (7.52)

eq(1; 2; 3; 4; 5; 67; 8) = eq(14; 2; 3; 58; 67) ∧ eq(1; 25; 34678) by (7.37) and (7.46), (7.53)

eq(123456; 78) = eq(134; 25; 6; 7; 8) ∨ eq(1; 2; 3; 456; 78) by (7.38) and (7.48), (7.54)

eq(1; 2; 35; 4; 6; 7; 8) = eq(14; 2; 358; 6; 7) ∧ eq(1; 23456; 78) by (7.35) and (7.51), (7.55)

eq(12; 3; 45; 6; 7; 8) = eq(12; 38; 45; 6; 7) ∧ eq(123456; 78) by (7.41) and (7.54), (7.56)

eq(167; 2; 3; 48; 5) = eq(17; 2; 3; 48; 5; 6) ∨ eq(1; 2; 3; 4; 5; 67; 8) by (7.49) and (7.53), (7.57)

eq(16; 2; 3; 4; 5; 7; 8) = eq(1346; 2578) ∧ eq(167; 2; 3; 48; 5) by (7.32) and (7.57), (7.58)

eq(1267; 3; 458) = eq(12; 3; 45; 6; 7; 8) ∨ eq(167; 2; 3; 48; 5) by (7.56) and (7.57), (7.59)

eq(1467; 2; 3; 58) = eq(14; 2; 3; 58; 67) ∨ eq(16; 2; 3; 4; 5; 7; 8) by (7.37) and (7.58), (7.60)

eq(1; 26; 3; 4; 5; 7; 8) = eq(1; 256; 34; 78) ∧ eq(1267; 3; 458) by (7.45) and (7.59), (7.61)

eq(17; 2; 3; 4; 5; 6; 8) = eq(17; 25; 348; 6) ∧ eq(1467; 2; 3; 58) by (7.24) and (7.60). (7.62)

Now 1, 4, 8, 3, 5, 2, 6, 7 is a Hamiltonian cycle, since G(S) contains the following edges: (1, 4) by (7.43),
(4, 8) by (7.52), (8, 3) by (7.29), (3, 5) by (7.55), (5, 2) by (7.50) , (2, 6) by (7.61) , (6, 7) by (7.53), and
(7, 1) by (7.62). Hence, Lemma 1 applies, completing the proof of Lemma 7. �

P r o o f. (Proof of Lemma 8) Again, (3.2), (3.3), (3.4), and the equalities for the heights are trivial.
Let S denote the sublattice generated by {α, β, γ, δ}; it contains the following partitions:

α = eq(178; 249; 356), (7.63)

β = eq(19; 26; 378; 45), (7.64)

γ = eq(1; 28; 359; 467), (7.65)

δ = eq(169; 258; 347), (7.66)

eq(1; 2; 3; 4; 5; 6; 78; 9) = eq(178; 249; 356) ∧ eq(19; 26; 378; 45) by (7.63) and (7.64), (7.67)

eq(19; 2; 37; 4; 5; 6; 8) = eq(19; 26; 378; 45) ∧ eq(169; 258; 347) by (7.64) and (7.66), (7.68)

eq(1; 28; 3; 47; 5; 6; 9) = eq(169; 258; 347) ∧ eq(1; 28; 359; 467) by (7.66) and (7.65), (7.69)

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 15

eq(124789; 356) = eq(178; 249; 356) ∨ eq(1; 28; 3; 47; 5; 6; 9) by (7.63) and (7.69), (7.70)

eq(19; 2345678) = eq(19; 26; 378; 45) ∨ eq(1; 28; 3; 47; 5; 6; 9) by (7.64) and (7.69), (7.71)

eq(1; 24678; 359) = eq(1; 28; 359; 467) ∨ eq(1; 2; 3; 4; 5; 6; 78; 9) by (7.65) and (7.67), (7.72)

eq(1345679; 28) = eq(1; 28; 359; 467) ∨ eq(19; 2; 37; 4; 5; 6; 8) by (7.65) and (7.68), (7.73)

eq(1; 2478; 3; 5; 6; 9) = eq(1; 2; 3; 4; 5; 6; 78; 9) ∨ eq(1; 28; 3; 47; 5; 6; 9) by (7.67), (7.69), (7.74)

eq(19; 28; 347; 5; 6) = eq(19; 2; 37; 4; 5; 6; 8) ∨ eq(1; 28; 3; 47; 5; 6; 9) by (7.68) and (7.69), (7.75)

eq(1; 24; 356; 78; 9) = eq(178; 249; 356) ∧ eq(19; 2345678) by (7.63) and (7.71), (7.76)

eq(17; 2; 356; 49; 8) = eq(178; 249; 356) ∧ eq(1345679; 28) by (7.63) and (7.73), (7.77)

eq(1; 24; 3; 5; 6; 78; 9) = eq(178; 249; 356) ∧ eq(1; 2478; 3; 5; 6; 9) by (7.63) and (7.74), (7.78)

eq(1; 26; 3; 4; 5; 78; 9) = eq(19; 26; 378; 45) ∧ eq(1; 24678; 359) by (7.64) and (7.72), (7.79)

eq(19; 2; 37; 45; 6; 8) = eq(19; 26; 378; 45) ∧ eq(1345679; 28) by (7.64) and (7.73), (7.80)

eq(19; 28; 3; 47; 5; 6) = eq(169; 258; 347) ∧ eq(124789; 356) by (7.66) and (7.70), (7.81)

eq(169; 28; 347; 5) = eq(169; 258; 347) ∧ eq(1345679; 28) by (7.66) and (7.73), (7.82)

eq(19; 2; 3; 4; 5; 6; 7; 8) = eq(19; 2; 37; 4; 5; 6; 8) ∧ eq(124789; 356) by (7.68) and (7.70), (7.83)

eq(178; 234569) = eq(178; 249; 356) ∨ eq(1; 26; 3; 4; 5; 78; 9) by (7.63) and (7.79), (7.84)

eq(19; 2456; 378) = eq(19; 26; 378; 45) ∨ eq(1; 24; 3; 5; 6; 78; 9) by (7.64) and (7.78), (7.85)

eq(19; 24; 35678) = eq(19; 2; 37; 4; 5; 6; 8) ∨ eq(1; 24; 356; 78; 9) by (7.68) and (7.76), (7.86)

eq(19; 234678; 5) = eq(19; 28; 347; 5; 6) ∨ eq(1; 26; 3; 4; 5; 78; 9) by (7.75) and (7.79), (7.87)

eq(178; 2356; 49) = eq(17; 2; 356; 49; 8) ∨ eq(1; 26; 3; 4; 5; 78; 9) by (7.77) and (7.79), (7.88)

eq(19; 24678; 3; 5) = eq(1; 26; 3; 4; 5; 78; 9) ∨ eq(19; 28; 3; 47; 5; 6) by (7.79) and (7.81), (7.89)

eq(1; 25; 34; 69; 7; 8) = eq(169; 258; 347) ∧ eq(178; 234569) by (7.66) and (7.84), (7.90)

eq(19; 25; 37; 4; 6; 8) = eq(169; 258; 347) ∧ eq(19; 2456; 378) by (7.66) and (7.85), (7.91)

eq(1; 25; 3; 4; 6; 7; 8; 9) = eq(169; 258; 347) ∧ eq(178; 2356; 49) by (7.66) and (7.88), (7.92)

eq(1; 2; 36; 4; 5; 7; 8; 9) = eq(17; 2; 356; 49; 8) ∧ eq(19; 234678; 5) by (7.77) and (7.87), (7.93)

eq(1; 2; 3; 45; 6; 7; 8; 9) = eq(19; 2; 37; 45; 6; 8) ∧ eq(178; 234569) by (7.80) and (7.84), (7.94)

eq(1; 2; 34; 5; 69; 7; 8) = eq(169; 28; 347; 5) ∧ eq(178; 234569) by (7.82) and (7.84), (7.95)

eq(19; 24; 3; 5; 678) = eq(19; 24; 35678) ∧ eq(19; 24678; 3; 5) by (7.86) and (7.89), (7.96)

eq(1; 23589; 467) = eq(1; 28; 359; 467) ∨ eq(1; 25; 3; 4; 6; 7; 8; 9) by (7.65) and (7.92), (7.97)

eq(17; 2356; 49; 8) = eq(17; 2; 356; 49; 8) ∨ eq(1; 25; 3; 4; 6; 7; 8; 9) by (7.77) and (7.92), (7.98)

eq(1; 2569; 34; 78) = eq(1; 26; 3; 4; 5; 78; 9) ∨ eq(1; 25; 34; 69; 7; 8) by (7.79) and (7.90), (7.99)

eq(19; 245; 37; 6; 8) = eq(19; 2; 37; 45; 6; 8) ∨ eq(19; 25; 37; 4; 6; 8) by (7.80) and (7.91), (7.100)

eq(16789; 234; 5) = eq(1; 2; 34; 5; 69; 7; 8) ∨ eq(19; 24; 3; 5; 678) by (7.95) and (7.96), (7.101)

eq(1; 24; 3; 5; 6; 7; 8; 9) = eq(178; 249; 356) ∧ eq(19; 245; 37; 6; 8) by (7.63) and (7.100), (7.102)

eq(1; 2; 38; 4; 5; 6; 7; 9) = eq(19; 26; 378; 45) ∧ eq(1; 23589; 467) by (7.64) and (7.97), (7.103)

eq(1; 26; 3; 4; 5; 7; 8; 9) = eq(19; 26; 378; 45) ∧ eq(17; 2356; 49; 8) by (7.64) and (7.98), (7.104)

eq(1; 2; 3; 4; 59; 6; 7; 8) = eq(1; 28; 359; 467) ∧ eq(1; 2569; 34; 78) by (7.65) and (7.99), (7.105)

eq(17; 2; 3; 4; 5; 6; 8; 9) = eq(17; 2; 356; 49; 8) ∧ eq(16789; 234; 5) by (7.77) and (7.101). (7.106)

16 G. CZÉDLI

Since G(S) contains the following edges: (1, 7) by (7.106), (7, 8) by (7.67), (8, 3) by (7.103), (3, 6) by
(7.93) , (6, 2) by (7.104), (2, 4) by (7.102), (4, 5) by (7.94) , (5, 9) by (7.105), and (9, 1) by (7.83), Lemma
1 is applicable and completes the proof of Lemma 8. �

P r o o f. (Proof of Lemma 9) Let S be the sublattice generated by {α, β, γ, δ}. Then the following
partitions belong to S:

α = eq(134; 25), (7.107)

β = eq(13; 245), (7.108)

γ = eq(12; 345), (7.109)

δ = eq(124; 35), (7.110)

eq(1; 2; 34; 5) = eq(134; 25) ∧ eq(12; 345) by (7.107) and (7.109), (7.111)

eq(14; 2; 3; 5) = eq(134; 25) ∧ eq(124; 35) by (7.107) and (7.110), (7.112)

eq(1; 2; 3; 45) = eq(13; 245) ∧ eq(12; 345) by (7.108) and (7.109), (7.113)

eq(1; 24; 3; 5) = eq(13; 245) ∧ eq(124; 35) by (7.108) and (7.110), (7.114)

eq(134; 2; 5) = eq(1; 2; 34; 5) ∨ eq(14; 2; 3; 5) by (7.111) and (7.112), (7.115)

eq(124; 3; 5) = eq(14; 2; 3; 5) ∨ eq(1; 24; 3; 5) by (7.112) and (7.114), (7.116)

eq(1; 245; 3) = eq(1; 2; 3; 45) ∨ eq(1; 24; 3; 5) by (7.113) and (7.114), (7.117)

eq(1; 25; 3; 4) = eq(134; 25) ∧ eq(1; 245; 3) by (7.107) and (7.117), (7.118)

eq(13; 2; 4; 5) = eq(13; 245) ∧ eq(134; 2; 5) by (7.108) and (7.115), (7.119)

eq(12; 3; 4; 5) = eq(12; 345) ∧ eq(124; 3; 5) by (7.109) and (7.116). (7.120)

Hence, the graph G(S) of S contains the following edges: (1, 2) by (7.120), (2, 5) by (7.118), (5, 4) by
(7.113), (4, 3) by (7.111), and (3, 1) by (7.119). Thus, a reference to Lemma 1 completes the proof of
Lemma 9. �

P r o o f. (Proof of Lemma 10) Now the sublattice S generated by {α, β, γ, δ} contains

α = eq(12; 34; 5; 6), (7.121)

β = eq(1; 2; 35; 46), (7.122)

γ = eq(1; 25; 36; 4), (7.123)

δ = eq(15; 24; 3; 6), (7.124)

eq(12; 3456) = eq(12; 34; 5; 6) ∨ eq(1; 2; 35; 46) by (7.121) and (7.122), (7.125)

eq(125; 346) = eq(12; 34; 5; 6) ∨ eq(1; 25; 36; 4) by (7.121) and (7.123), (7.126)

eq(12345; 6) = eq(12; 34; 5; 6) ∨ eq(15; 24; 3; 6) by (7.121) and (7.124), (7.127)

eq(1; 23456) = eq(1; 2; 35; 46) ∨ eq(1; 25; 36; 4) by (7.122) and (7.123), (7.128)

eq(1245; 36) = eq(1; 25; 36; 4) ∨ eq(15; 24; 3; 6) by (7.123) and (7.124), (7.129)

eq(12; 3; 4; 5; 6) = eq(12; 34; 5; 6) ∧ eq(1245; 36) by (7.121) and (7.129), (7.130)

eq(1; 2; 3; 46; 5) = eq(1; 2; 35; 46) ∧ eq(125; 346) by (7.122) and (7.126), (7.131)

eq(1; 2; 35; 4; 6) = eq(1; 2; 35; 46) ∧ eq(12345; 6) by (7.122) and (7.127), (7.132)

eq(1; 2; 36; 4; 5) = eq(1; 25; 36; 4) ∧ eq(12; 3456) by (7.123) and (7.125), (7.133)

eq(15; 2; 3; 4; 6) = eq(15; 24; 3; 6) ∧ eq(125; 346) by (7.124) and (7.126), (7.134)

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 17

eq(1; 24; 3; 5; 6) = eq(15; 24; 3; 6) ∧ eq(1; 23456) by (7.124) and (7.128). (7.135)

Since G(S) contains the edges (1, 2) by (7.130), (2, 4) by (7.135), (4, 6) by (7.131), (6, 3) by (7.133),
(3, 5) by (7.132), and (5, 1) by (7.134), Lemma 1 is applicable and completes the proof of Lemma 10. �

P r o o f. (Proof of Lemma 11) Now the sublattice S generated by {α, β, γ, δ} contains

α = eq(13; 256; 4), (7.136)

β = eq(156; 2; 34), (7.137)

γ = eq(12; 35; 46), (7.138)

δ = eq(13; 246; 5), (7.139)

eq(1; 2; 3; 4; 56) = eq(13; 256; 4) ∧ eq(156; 2; 34) by (7.136) and (7.137), (7.140)

eq(13; 26; 4; 5) = eq(13; 256; 4) ∧ eq(13; 246; 5) by (7.136) and (7.139), (7.141)

eq(1; 2; 3; 46; 5) = eq(12; 35; 46) ∧ eq(13; 246; 5) by (7.138) and (7.139), (7.142)

eq(13456; 2) = eq(156; 2; 34) ∨ eq(1; 2; 3; 46; 5) by (7.137) and (7.142), (7.143)

eq(12; 3456) = eq(12; 35; 46) ∨ eq(1; 2; 3; 4; 56) by (7.138) and (7.140), (7.144)

eq(1; 2; 3; 456) = eq(1; 2; 3; 4; 56) ∨ eq(1; 2; 3; 46; 5) by (7.140) and (7.142), (7.145)

eq(13; 2; 4; 56) = eq(13; 256; 4) ∧ eq(13456; 2) by (7.136) and (7.143), (7.146)

eq(1; 2; 34; 56) = eq(156; 2; 34) ∧ eq(12; 3456) by (7.137) and (7.144), (7.147)

eq(13; 2; 46; 5) = eq(13; 246; 5) ∧ eq(13456; 2) by (7.139) and (7.143), (7.148)

eq(13; 2; 4; 5; 6) = eq(13; 26; 4; 5) ∧ eq(13456; 2) by (7.141) and (7.143), (7.149)

eq(134; 256) = eq(13; 256; 4) ∨ eq(1; 2; 34; 56) by (7.136) and (7.147), (7.150)

eq(1235; 46) = eq(12; 35; 46) ∨ eq(13; 2; 46; 5) by (7.138) and (7.148), (7.151)

eq(134; 2; 56) = eq(13; 2; 4; 56) ∨ eq(1; 2; 34; 56) by (7.146) and (7.147), (7.152)

eq(15; 2; 3; 4; 6) = eq(156; 2; 34) ∧ eq(1235; 46) by (7.137) and (7.151), (7.153)

eq(12356; 4) = eq(13; 256; 4) ∨ eq(15; 2; 3; 4; 6) by (7.136) and (7.153), (7.154)

eq(135; 26; 4) = eq(13; 26; 4; 5) ∨ eq(15; 2; 3; 4; 6) by (7.141) and (7.153), (7.155)

eq(1456; 2; 3) = eq(1; 2; 3; 456) ∨ eq(15; 2; 3; 4; 6) by (7.145) and (7.153), (7.156)

eq(12; 35; 4; 6) = eq(12; 35; 46) ∧ eq(12356; 4) by (7.138) and (7.154), (7.157)

eq(1; 2; 35; 4; 6) = eq(12; 35; 46) ∧ eq(135; 26; 4) by (7.138) and (7.155), (7.158)

eq(14; 2; 3; 56) = eq(134; 256) ∧ eq(1456; 2; 3) by (7.150) and (7.156), (7.159)

eq(124; 356) = eq(12; 35; 4; 6) ∨ eq(14; 2; 3; 56) by (7.157) and (7.159), (7.160)

eq(1; 24; 3; 5; 6) = eq(13; 246; 5) ∧ eq(124; 356) by (7.139) and (7.160), (7.161)

eq(1234; 56) = eq(134; 2; 56) ∨ eq(1; 24; 3; 5; 6) by (7.152) and (7.161), (7.162)

eq(12; 3; 4; 5; 6) = eq(12; 35; 46) ∧ eq(1234; 56) by (7.138) and (7.162). (7.163)

Since G(S) contains the edges (1, 2) by (7.163), (2, 4) by (7.161), (4, 6) by (7.142), (6, 5) by (7.140),
(5, 3) by (7.158), and (3, 1) by (7.149), Lemma 1 is applicable and completes the proof of Lemma 11. �

P r o o f. (Proof of Lemma 12) Now the sublattice S generated by {α, β, γ, δ} contains

α = eq(1; 24; 35; 6; 7), (7.164)

18 G. CZÉDLI

β = eq(14; 26; 3; 5; 7), (7.165)

γ = eq(1; 2; 34; 5; 67), (7.166)

δ = eq(17; 2; 3; 4; 56), (7.167)

eq(1246; 35; 7) = eq(1; 24; 35; 6; 7) ∨ eq(14; 26; 3; 5; 7) by (7.164) and (7.165), (7.168)

eq(1; 2345; 67) = eq(1; 24; 35; 6; 7) ∨ eq(1; 2; 34; 5; 67) by (7.164) and (7.166), (7.169)

eq(17; 24; 356) = eq(1; 24; 35; 6; 7) ∨ eq(17; 2; 3; 4; 56) by (7.164) and (7.167), (7.170)

eq(134; 267; 5) = eq(14; 26; 3; 5; 7) ∨ eq(1; 2; 34; 5; 67) by (7.165) and (7.166), (7.171)

eq(147; 256; 3) = eq(14; 26; 3; 5; 7) ∨ eq(17; 2; 3; 4; 56) by (7.165) and (7.167), (7.172)

eq(1567; 2; 34) = eq(1; 2; 34; 5; 67) ∨ eq(17; 2; 3; 4; 56) by (7.166) and (7.167), (7.173)

eq(16; 2; 3; 4; 5; 7) = eq(1246; 35; 7) ∧ eq(1567; 2; 34) by (7.168) and (7.173), (7.174)

eq(1; 25; 3; 4; 6; 7) = eq(1; 2345; 67) ∧ eq(147; 256; 3) by (7.169) and (7.172), (7.175)

eq(1; 2345; 6; 7) = eq(1; 24; 35; 6; 7) ∨ eq(1; 25; 3; 4; 6; 7) by (7.164) and (7.175), (7.176)

eq(1246; 3; 5; 7) = eq(14; 26; 3; 5; 7) ∨ eq(16; 2; 3; 4; 5; 7) by (7.165) and (7.174), (7.177)

eq(14; 256; 3; 7) = eq(14; 26; 3; 5; 7) ∨ eq(1; 25; 3; 4; 6; 7) by (7.165) and (7.175), (7.178)

eq(167; 2; 34; 5) = eq(1; 2; 34; 5; 67) ∨ eq(16; 2; 3; 4; 5; 7) by (7.166) and (7.174), (7.179)

eq(1567; 2; 3; 4) = eq(17; 2; 3; 4; 56) ∨ eq(16; 2; 3; 4; 5; 7) by (7.167) and (7.174), (7.180)

eq(123456; 7) = eq(1246; 35; 7) ∨ eq(1; 25; 3; 4; 6; 7) by (7.168) and (7.175), (7.181)

eq(13567; 24) = eq(17; 24; 356) ∨ eq(16; 2; 3; 4; 5; 7) by (7.170) and (7.174), (7.182)

eq(1; 24; 3; 5; 6; 7) = eq(1; 24; 35; 6; 7) ∧ eq(1246; 3; 5; 7) by (7.164) and (7.177), (7.183)

eq(1; 2; 34; 5; 6; 7) = eq(1; 2; 34; 5; 67) ∧ eq(1; 2345; 6; 7) by (7.166) and (7.176), (7.184)

eq(1; 2; 3; 4; 5; 67) = eq(1; 2; 34; 5; 67) ∧ eq(1567; 2; 3; 4) by (7.166) and (7.180), (7.185)

eq(1; 2; 3; 4; 56; 7) = eq(17; 2; 3; 4; 56) ∧ eq(14; 256; 3; 7) by (7.167) and (7.178), (7.186)

eq(17; 2; 3; 4; 5; 6) = eq(17; 2; 3; 4; 56) ∧ eq(167; 2; 34; 5) by (7.167) and (7.179), (7.187)

eq(1356; 24; 7) = eq(123456; 7) ∧ eq(13567; 24) by (7.181) and (7.182), (7.188)

eq(13; 2; 4; 5; 6; 7) = eq(134; 267; 5) ∧ eq(1356; 24; 7) by (7.171) and (7.188). (7.189)

Since G(S) contains the edges (1, 3) by (7.189), (3, 4) by (7.184), (4, 2) by (7.183), (2, 5) by (7.175), (5, 6)
by (7.186), (6, 7) by (7.185), (7, 1) by (7.187), Lemma 1 is applicable and completes the proof of Lemma
12. �

P r o o f. (Proof of Lemma 13) Now the sublattice S generated by {α, β, γ, δ} contains

α = eq(13; 24; 567), (7.190)

β = eq(125; 3; 467), (7.191)

γ = eq(1357; 26; 4), (7.192)

δ = eq(126; 35; 47), (7.193)

eq(1; 2; 3; 4; 5; 67) = eq(13; 24; 567) ∧ eq(125; 3; 467) by (7.190) and (7.191), (7.194)

eq(13; 2; 4; 57; 6) = eq(13; 24; 567) ∧ eq(1357; 26; 4) by (7.190) and (7.192), (7.195)

eq(15; 2; 3; 4; 6; 7) = eq(125; 3; 467) ∧ eq(1357; 26; 4) by (7.191) and (7.192), (7.196)

eq(12; 3; 47; 5; 6) = eq(125; 3; 467) ∧ eq(126; 35; 47) by (7.191) and (7.193), (7.197)

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 19

eq(1; 26; 35; 4; 7) = eq(1357; 26; 4) ∧ eq(126; 35; 47) by (7.192) and (7.193), (7.198)

eq(123567; 4) = eq(1357; 26; 4) ∨ eq(1; 2; 3; 4; 5; 67) by (7.192) and (7.194), (7.199)

eq(12467; 35) = eq(126; 35; 47) ∨ eq(1; 2; 3; 4; 5; 67) by (7.193) and (7.194), (7.200)

eq(12356; 47) = eq(126; 35; 47) ∨ eq(15; 2; 3; 4; 6; 7) by (7.193) and (7.196), (7.201)

eq(1357; 2; 4; 6) = eq(13; 2; 4; 57; 6) ∨ eq(15; 2; 3; 4; 6; 7) by (7.195) and (7.196), (7.202)

eq(125; 3; 47; 6) = eq(15; 2; 3; 4; 6; 7) ∨ eq(12; 3; 47; 5; 6) by (7.196) and (7.197), (7.203)

eq(135; 26; 4; 7) = eq(15; 2; 3; 4; 6; 7) ∨ eq(1; 26; 35; 4; 7) by (7.196) and (7.198), (7.204)

eq(1; 24; 3; 5; 67) = eq(13; 24; 567) ∧ eq(12467; 35) by (7.190) and (7.200), (7.205)

eq(13; 2; 4; 56; 7) = eq(13; 24; 567) ∧ eq(12356; 47) by (7.190) and (7.201), (7.206)

eq(13; 2; 4; 5; 6; 7) = eq(13; 24; 567) ∧ eq(135; 26; 4; 7) by (7.190) and (7.204), (7.207)

eq(1; 2; 35; 4; 6; 7) = eq(126; 35; 47) ∧ eq(1357; 2; 4; 6) by (7.193) and (7.202), (7.208)

eq(123457; 6) = eq(13; 2; 4; 57; 6) ∨ eq(125; 3; 47; 6) by (7.195) and (7.203), (7.209)

eq(12; 3; 4; 5; 6; 7) = eq(12; 3; 47; 5; 6) ∧ eq(123567; 4) by (7.197) and (7.199), (7.210)

eq(124567; 3) = eq(125; 3; 467) ∨ eq(1; 24; 3; 5; 67) by (7.191) and (7.205), (7.211)

eq(1; 2467; 35) = eq(1; 26; 35; 4; 7) ∨ eq(1; 24; 3; 5; 67) by (7.198) and (7.205), (7.212)

eq(1; 24; 3; 5; 6; 7) = eq(1; 24; 3; 5; 67) ∧ eq(123457; 6) by (7.205) and (7.209), (7.213)

eq(1; 2; 3; 47; 5; 6) = eq(12; 3; 47; 5; 6) ∧ eq(1; 2467; 35) by (7.197) and (7.212), (7.214)

eq(1; 2; 3; 4; 56; 7) = eq(13; 2; 4; 56; 7) ∧ eq(124567; 3) by (7.206) and (7.211). (7.215)

Since G(S) contains the edges (1, 2) by (7.210), (2, 4) by (7.213), (4, 7) by (7.214), (7, 6) by (7.194),
(6, 5) by (7.215), (5, 3) by (7.208), (3, 1) by (7.207), Lemma 1 applies and completes the proof of Lemma
13. �

P r o o f. (Proof of Lemma 14) Now the sublattice S generated by {α, β, γ, δ} contains

α = eq(18; 2; 35; 4; 67), (7.216)

β = eq(1; 24; 37; 5; 68), (7.217)

γ = eq(16; 2; 34; 57; 8), (7.218)

δ = eq(12; 3; 45; 6; 78), (7.219)

eq(135678; 24) = eq(18; 2; 35; 4; 67) ∨ eq(1; 24; 37; 5; 68) by (7.216) and (7.217), (7.220)

eq(12678; 345) = eq(18; 2; 35; 4; 67) ∨ eq(12; 3; 45; 6; 78) by (7.216) and (7.219), (7.221)

eq(168; 23457) = eq(1; 24; 37; 5; 68) ∨ eq(16; 2; 34; 57; 8) by (7.217) and (7.218), (7.222)

eq(1245; 3678) = eq(1; 24; 37; 5; 68) ∨ eq(12; 3; 45; 6; 78) by (7.217) and (7.219), (7.223)

eq(126; 34578) = eq(16; 2; 34; 57; 8) ∨ eq(12; 3; 45; 6; 78) by (7.218) and (7.219), (7.224)

eq(18; 2; 35; 4; 6; 7) = eq(18; 2; 35; 4; 67) ∧ eq(168; 23457) by (7.216) and (7.222), (7.225)

eq(1; 2; 3; 4; 5; 67; 8) = eq(18; 2; 35; 4; 67) ∧ eq(1245; 3678) by (7.216) and (7.223), (7.226)

eq(1; 2; 35; 4; 6; 7; 8) = eq(18; 2; 35; 4; 67) ∧ eq(126; 34578) by (7.216) and (7.224), (7.227)

eq(1; 2; 3; 4; 5; 68; 7) = eq(1; 24; 37; 5; 68) ∧ eq(12678; 345) by (7.217) and (7.221), (7.228)

eq(16; 2; 3; 4; 57; 8) = eq(16; 2; 34; 57; 8) ∧ eq(135678; 24) by (7.218) and (7.220), (7.229)

eq(16; 2; 34; 5; 7; 8) = eq(16; 2; 34; 57; 8) ∧ eq(12678; 345) by (7.218) and (7.221), (7.230)

20 G. CZÉDLI

eq(1; 2; 3; 45; 6; 7; 8) = eq(12; 3; 45; 6; 78) ∧ eq(168; 23457) by (7.219) and (7.222), (7.231)

eq(12; 3; 45; 678) = eq(12678; 345) ∧ eq(1245; 3678) by (7.221) and (7.223), (7.232)

eq(1; 245; 37; 68) = eq(168; 23457) ∧ eq(1245; 3678) by (7.222) and (7.223), (7.233)

eq(12; 378; 45; 6) = eq(1245; 3678) ∧ eq(126; 34578) by (7.223) and (7.224), (7.234)

eq(18; 2; 345; 67) = eq(18; 2; 35; 4; 67) ∨ eq(1; 2; 3; 45; 6; 7; 8) by (7.216) and (7.231), (7.235)

eq(168; 2347; 5) = eq(1; 24; 37; 5; 68) ∨ eq(16; 2; 34; 5; 7; 8) by (7.217) and (7.230), (7.236)

eq(1567; 2; 34; 8) = eq(16; 2; 34; 57; 8) ∨ eq(1; 2; 3; 4; 5; 67; 8) by (7.218) and (7.226), (7.237)

eq(1278; 345; 6) = eq(12; 3; 45; 6; 78) ∨ eq(18; 2; 35; 4; 6; 7) by (7.219) and (7.225), (7.238)

eq(1234578; 6) = eq(18; 2; 35; 4; 6; 7) ∨ eq(12; 378; 45; 6) by (7.225) and (7.234), (7.239)

eq(1; 23457; 68) = eq(1; 2; 35; 4; 6; 7; 8) ∨ eq(1; 245; 37; 68) by (7.227) and (7.233), (7.240)

eq(1245678; 3) = eq(16; 2; 3; 4; 57; 8) ∨ eq(12; 3; 45; 678) by (7.229) and (7.232), (7.241)

eq(18; 2; 3; 4; 5; 6; 7) = eq(18; 2; 35; 4; 67) ∧ eq(168; 2347; 5) by (7.216) and (7.236), (7.242)

eq(1; 2; 34; 5; 6; 7; 8) = eq(16; 2; 34; 57; 8) ∧ eq(18; 2; 345; 67) by (7.218) and (7.235), (7.243)

eq(18; 27; 34; 5; 6) = eq(168; 2347; 5) ∧ eq(1278; 345; 6) by (7.236) and (7.238), (7.244)

eq(157; 2; 34; 6; 8) = eq(1567; 2; 34; 8) ∧ eq(1234578; 6) by (7.237) and (7.239), (7.245)

eq(124578; 3; 6) = eq(1234578; 6) ∧ eq(1245678; 3) by (7.239) and (7.241), (7.246)

eq(1; 2457; 3; 68) = eq(1; 23457; 68) ∧ eq(1245678; 3) by (7.240) and (7.241), (7.247)

eq(1; 24; 3; 5; 6; 7; 8) = eq(1; 24; 37; 5; 68) ∧ eq(124578; 3; 6) by (7.217) and (7.246), (7.248)

eq(15; 2; 3; 4; 6; 7; 8) = eq(1245; 3678) ∧ eq(157; 2; 34; 6; 8) by (7.223) and (7.245), (7.249)

eq(1; 27; 3; 4; 5; 6; 8) = eq(18; 27; 34; 5; 6) ∧ eq(1; 2457; 3; 68) by (7.244) and (7.247). (7.250)

Since G(S) contains the edges (1, 8) by (7.242), (8, 6) by (7.228), (6, 7) by (7.226), (7, 2) by (7.250),
(2, 4) by (7.248), (4, 3) by (7.243), (3, 5) by (7.227), (5, 1) by (7.249), Lemma 1 applies and completes the
proof of Lemma 14. �

P r o o f. (Proof of Lemma 15) Now the sublattice S generated by {α, β, γ, δ} contains

α = eq(137; 246; 58), (7.251)

β = eq(146; 257; 38), (7.252)

γ = eq(136; 2; 4578), (7.253)

δ = eq(1245; 37; 68), (7.254)

eq(1; 2; 3; 46; 5; 7; 8) = eq(137; 246; 58) ∧ eq(146; 257; 38) by (7.251) and (7.252), (7.255)

eq(13; 2; 4; 58; 6; 7) = eq(137; 246; 58) ∧ eq(136; 2; 4578) by (7.251) and (7.253), (7.256)

eq(1; 24; 37; 5; 6; 8) = eq(137; 246; 58) ∧ eq(1245; 37; 68) by (7.251) and (7.254), (7.257)

eq(16; 2; 3; 4; 57; 8) = eq(146; 257; 38) ∧ eq(136; 2; 4578) by (7.252) and (7.253), (7.258)

eq(14; 25; 3; 6; 7; 8) = eq(146; 257; 38) ∧ eq(1245; 37; 68) by (7.252) and (7.254), (7.259)

eq(1; 2; 3; 45; 6; 7; 8) = eq(136; 2; 4578) ∧ eq(1245; 37; 68) by (7.253) and (7.254), (7.260)

eq(124567; 38) = eq(146; 257; 38) ∨ eq(1; 2; 3; 45; 6; 7; 8) by (7.252) and (7.260), (7.261)

eq(1345678; 2) = eq(136; 2; 4578) ∨ eq(1; 2; 3; 46; 5; 7; 8) by (7.253) and (7.255), (7.262)

eq(124568; 37) = eq(1245; 37; 68) ∨ eq(1; 2; 3; 46; 5; 7; 8) by (7.254) and (7.255), (7.263)

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 21

eq(146; 25; 3; 7; 8) = eq(1; 2; 3; 46; 5; 7; 8) ∨ eq(14; 25; 3; 6; 7; 8) by (7.255) and (7.259), (7.264)

eq(137; 24; 58; 6) = eq(13; 2; 4; 58; 6; 7) ∨ eq(1; 24; 37; 5; 6; 8) by (7.256) and (7.257), (7.265)

eq(16; 24; 357; 8) = eq(1; 24; 37; 5; 6; 8) ∨ eq(16; 2; 3; 4; 57; 8) by (7.257) and (7.258), (7.266)

eq(1; 245; 37; 6; 8) = eq(1; 24; 37; 5; 6; 8) ∨ eq(1; 2; 3; 45; 6; 7; 8) by (7.257) and (7.260), (7.267)

eq(1245; 3; 6; 7; 8) = eq(14; 25; 3; 6; 7; 8) ∨ eq(1; 2; 3; 45; 6; 7; 8) by (7.259) and (7.260), (7.268)

eq(1; 24; 3; 5; 6; 7; 8) = eq(137; 246; 58) ∧ eq(1245; 3; 6; 7; 8) by (7.251) and (7.268), (7.269)

eq(1; 25; 3; 4; 6; 7; 8) = eq(146; 257; 38) ∧ eq(1; 245; 37; 6; 8) by (7.252) and (7.267), (7.270)

eq(16; 2; 3; 4; 5; 7; 8) = eq(136; 2; 4578) ∧ eq(146; 25; 3; 7; 8) by (7.253) and (7.264), (7.271)

eq(1; 2; 3; 4; 58; 6; 7) = eq(13; 2; 4; 58; 6; 7) ∧ eq(124568; 37) by (7.256) and (7.263), (7.272)

eq(135678; 24) = eq(13; 2; 4; 58; 6; 7) ∨ eq(16; 24; 357; 8) by (7.256) and (7.266), (7.273)

eq(123458; 6; 7) = eq(13; 2; 4; 58; 6; 7) ∨ eq(1245; 3; 6; 7; 8) by (7.256) and (7.268), (7.274)

eq(1; 2; 37; 4; 5; 6; 8) = eq(1; 24; 37; 5; 6; 8) ∧ eq(1345678; 2) by (7.257) and (7.262), (7.275)

eq(137; 2; 4; 58; 6) = eq(1345678; 2) ∧ eq(137; 24; 58; 6) by (7.262) and (7.265), (7.276)

eq(17; 2; 3; 4; 5; 6; 8) = eq(124567; 38) ∧ eq(137; 2; 4; 58; 6) by (7.261) and (7.276), (7.277)

eq(1358; 24; 6; 7) = eq(135678; 24) ∧ eq(123458; 6; 7) by (7.273) and (7.274), (7.278)

eq(1; 2; 38; 4; 5; 6; 7) = eq(146; 257; 38) ∧ eq(1358; 24; 6; 7) by (7.252) and (7.278). (7.279)

Since G(S) contains the edges (1, 6) by (7.271), (6, 4) by (7.255), (4, 2) by (7.269), (2, 5) by (7.270), (5, 8)
by (7.272), (8, 3) by (7.279), (3, 7) by (7.275), (7, 1) by (7.277), Lemma 1 is applicable and completes the
proof of Lemma 15. �

8. Appendix 2: the source code of the main program

As indicated in Section 4, here we present the Dev-Pascal 1.9.2 source code of the main computer
program. Note that there are two ways to include comments in the program. First, after // (two forward
slashes), the rest of a line is a comment. Second, any text between { and } (two curly brackets) is a
comment; in this case, the comment can expand to several lines but it cannot contain curly brackets.

program equp2024ot; uses sysutils, crt;

const created=’August 20, 2024’; createdate =

’Program equ2024ot version ’+created+’, (C) Gabor Czedli, 2024.’;

//***

// Some comment lines can contain misprints or can be ungrammatical; sorry.

const bellnos: array[1..10] of integer =

(1, 2, 5, 15, 52,

203, 877, 4140, 21147, 115975); {Bell numbers}

nmax=9; bnnmx= 21147 {=Bell(nmax)}; tnmx=2*nmax+1;

// nmax=8; bnnmx= 4140 {=Bell(nmax)}; tnmx=2*nmax+1;

freqdetail=60;{After how many dots to give details}

freqdotarray:array[4..nmax] of integer=

(5000, 2000, 1200, 600, 300,200);{After how many steps to display a dot}

layermax= 7770{max_x(stirling2(nmax,x))};

nnul=1; nmo=0; {"new 0", "new -1", increased}

type partt=array[1..tnmx] of byte; { Each entry is increased by 1 !

22 G. CZÉDLI

That is, the program computes with and stores 2,3,...,ne+1 (bytes)

but inputs 1,2,...,ne. E.g., for ne=6, if

1 0 2 3 6 0 4 5 0 -1 is the input, then the vector

2 1 2 4 7 1 5 6 1 0 is stored. So, in computations,

nnul=1 separates the blocks and nmo=0 terminates the partition!! }

PSett= {"set of partitions" type; with reference to the variable A0,

see later, its members are given in two ways: a "subset" of A0 given

by bits, and by listing the A0-indices of the members of a PSett }

record es: array[1..bnnmx] of Boolean;{which partitions of A0}

ssize: integer; {how many partitions are in PSett}

wh: array[1..bnnmx] of integer;//PSett={A0[wh[1]],...,A0[wh[ssize]]}

end; {PSett}

layert=record prtpnt: array[1..layermax] of integer; {pointers to A0}

lynum,diffpat: integer; {Layer=horizontal subset (element

of a common height). The layer consists of partitions

A0[prtpnt[1]],...,A0[prtpnt[lynum]]. If ordered, then the

first diffpat of these are different patterns, and they

represent all patterns. }

ordered: boolean;

end; {layert}

layersett=array[0..nmax-1] of layert;

blockstructt=array[1..nmax] of integer;

{its i-th entry is the number of i-element blocks}

var ne: integer {size of the base set}; bn: integer {:=bell(ne)};

h: integer; {will stand for a given height}

tne1: integer; {=2*ne+1} nep1: integer {:=ne+1};

A0:array[1..bnnmx] of partt; {Set of all partition of [ne];

each of its bn=Bell(ne) members in given in string form}

MJt:array[1..bnnmx,1..bnnmx] of integer; {operation table:

for i<j, M[i,j]=i meet j, for i>j, M[i,j]=i join j}

gps {general progress counter}, freqdot , dotsnumbr: longint;

f: text; rtop: longint; useots:Boolean; {do we use operation tables?}

fulllayers:layersett; {All layers in it will be full} X: PSett;

hour,minute,second,millisecond,hour0,minute0,second0,millisecond0:word;

//***

procedure fopen; forward; {Opens one of 4.txt, 5.txt, ..., 8.txt}

procedure inputdata; forward; {Inputs Eq(ne), initializes A0, fulllayers}

procedure dmistake(s: string); forward; {Halts with error message}

procedure readfline(var p: partt); forward; {Reads a partition from f}

procedure sToPart(var s:string; var p: partt);forward; {converts s into p}

procedure makefulllayers; forward; {Computes the layers of Eq(ne)}

function heightof(var x:partt):integer;forward;{:=height(x)}

function whattodo: char;forward;{Prompts for choosing action}

procedure readX(var X: PSett); forward; {reads into X \subseteq Eq(ne)}

procedure generate(var X:PSett); forward;

{X:=the sublattice X generates, without operation table}

{old name: joinmeetclose}

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 23

procedure join(var x,y,z: partt); forward; {z:=x+y} {nnul,nmo are used}

procedure meet(var x,y,z: partt); forward; {z:=x*y} {nnul,nmo are used}

function placeInSet(var y:partt):integer; forward; {y’s place in A0}

function compare(var x,y: partt):integer; forward;

{If x<y, then :=1; if x>y, then :=2; if x=y, then :=0}

procedure putInSet(var y:partt; var X: PSett); forward;{inserts y into X}

function isinset(var y:partt; var X: PSett):boolean;forward;{y in X ?}

procedure orderfullilayer(i:integer); forward; {Turns fulllayers[i]

ordered so that it starts with different patterns, if it was unordered}

procedure itspattern(var p: partt; var u: blockstructt); forward;

{u:= the pattern of p; p ~ 2 1 2 4 7 1 5 6 1 0}

function samepattern(var u, v: blockstructt): boolean; forward;

procedure handledots(c:char); forward;

{increments gps and writes s to screen at every freqdot step}

procedure timing(start:boolean); forward; {displays system time}

procedure filloptable; forward; {Sets MJt}

procedure ngenerate(var X:PSett);forward;

{X:=the sublattice X generates, "n" from "new"}

procedure setuseots; forward;

{sets useots, to control the use of operation tables}

procedure SetWriteScreen(var X: PSett); forward; {writes X to the screen}

procedure PWriteScreen(var x:partt); forward; {writes x to the screen}

procedure PSetCopy(var X,Y: PSett); forward; {Y:=X}

//***

procedure PSetCopy(var X,Y: PSett); {Y:=X}

var i,sz: integer;

begin sz:= X.ssize; Y.ssize:=sz; for i:=1 to bn do Y.es[i]:=X.es[i];

for i:=1 to sz do Y.wh[i]:=X.wh[i];

end;

procedure PWriteScreen(var x:partt); {forward} {writes x to the screen}

var i: integer;

begin //writeln(’number of elements = ’,ne);

for i:=1 to tne1 do

begin write(x[i]-1,’ ’);

if i mod 20 =0 then writeln;

end; writeln;

end;

procedure SetWriteScreen(var X: PSett); {writes X to the screen}

var i: integer;

begin with X do for i:=1 to ssize do PWriteScreen(A0[wh[i]])

end;

procedure setuseots; {forward;}

{sets useots, to control the use of operation tables}

var s: string; done: integer;

begin done:=0;

24 G. CZÉDLI

repeat readln(s);

if (pos(’y’,s)>0) or (pos(’Y’,s)>0) then done:=1;

if done=0 then if (pos(’n’,s)>0) or (pos(’N’,s)>0) then done:=2;

until done>0;

if done=1 then useots:=true else useots:=false;

end;

procedure filloptable; {forward;} {Sets JMt}

var i,j,bnne:integer; z:partt; cnt,rcnt,sbnne,pdt:longint;

const stpp=1000000; inarow=50;

begin bnne:=bellnos[ne]; sbnne:=bnne*(bnne-1) div 2; cnt:=0; rcnt:=0;

pdt:=round(sbnne/stpp); if pdt=0 then pdt:=1;

writeln(’Computing the ’,sbnne,’-element operation table. Each *,’);

writeln(’if any, indicates ’, 2*stpp,

’ new entries, i.e, the fulfillment of ~ 1/’,pdt,

’ part of this task;’); writeln(’ note that ’,inarow,

’ *s make a row and <ctrl-break> quits from the program.’);

for i:=1 to bnne do MJt[i,i]:=i;

for i:=1 to bnne-1 do for j:=i+1 to bnne do {now i<j}

begin join(A0[i],A0[j],z); MJt[j,i]:=placeInSet(z);

meet(A0[i],A0[j],z); MJt[i,j]:=placeInSet(z); inc(cnt);

if cnt mod stpp =0 then

begin write(’*’); inc(rcnt); if rcnt mod inarow=0 then writeln;

end;

end; writeln; writeln(’The operation table is filled up.’);

end;

procedure timing(start:boolean); {forward;} {displays system time}

begin if start then

begin

decodetime(time,hour0,minute0,second0,millisecond0);

writeln(

’ The computation below starts at (hour:min:second.millisec) ’

,hour0,’:’,minute0,’:’,second0,’.’,millisecond0,’ .’)

end else

begin decodetime(time,hour,minute,second,millisecond);

writeln(

’ The computation above started at (hour:min:second.millisec) ’

,hour0,’:’,minute0,’:’,second0,’.’,millisecond0);

writeln(

’ and terminated at (hour:min:seconc.millisecond) ’

,hour,’:’,minute,’:’,second,’.’,millisecond,’ .’)

end;

end;

procedure handledots(c:char);

{forward;} {increments gps and writes s to screen at every freqdot step}

begin inc(gps);

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 25

if gps mod freqdot = 0

then

begin write(c); inc(dotsnumbr);

if dotsnumbr mod freqdetail = 0 then

begin write(’(’,gps,’-th ’);

if rtop>0 then write(’ out of ’,rtop,’) ’) else write(’) ’);

end;

end;

end;

function samepattern(var u, v: blockstructt): boolean;{forward;}

var i: integer;

begin for i:=1 to ne do if u[i]<>v[i] then

begin samepattern:=false; exit

end;

samepattern:=true;

end;

procedure itspattern(var p: partt; var u: blockstructt); {forward;}

{u:= the pattern of p; p ~ 2 1 2 4 7 1 5 6 1 0}

var i,ic: integer;

begin for i:=1 to ne do u[i]:=0 {at the start, 0 i-element blocks};

i:=1; ic:=0 {the size of the actual block};

while p[i]<>0 do

begin{while p[i]<>0} if p[i]<>1 then inc(ic)

else begin{now p[i]=1} u[ic]:=u[ic]+1; {one more ic-element block}

ic:=0

end; inc(i);

end {while u[i]<>0}

end;

procedure orderfullilayer(i:integer); {forward;} {Turns fulllayers[i]

ordered so that it starts with different patterns, if it was unordered}

var j1,j2,chng: integer; isnew: boolean; patj1,patj2: blockstructt;

begin with fulllayers[i] do if not ordered then

begin ordered:=true; diffpat:=1;

for j1:=2 to lynum do

begin isnew:=true; {is A0[prtpnt[j1]] of a new pattern?}

for j2:=1 to diffpat do if isnew then

begin

itspattern(A0[prtpnt[j1]],patj1); itspattern(A0[prtpnt[j2]],patj2);

if samepattern (patj1,patj2) then isnew:=false;

end {for j2};

if isnew then

begin inc(diffpat); chng:=prtpnt[diffpat]; {for changing}

prtpnt[diffpat]:=prtpnt[j1]; prtpnt[j1]:=chng;

end; {if isnew}

end {for j1};

26 G. CZÉDLI

end;

end;

procedure testC(h:integer); {forward;} {We can enter a height}

var i, i1,i2,i3,i4, cnt,nX: integer; longlnm:longint; X,oldX:PSett;

function countcases:longint; {counts the cases up to automorphism}

var j4,sm:integer;

begin orderfullilayer(h);sm:=0; with fulllayers[h] do

begin for j4:=1 to diffpat do

sm:=sm+(lynum-j4)*(lynum-j4-1)*(lynum-j4-2) div 6;

end; {with fulllayers[h]}

countcases:= sm;

end;{function countcases}

begin {testC} nX:=4; cnt:=0; gps:=0; dotsnumbr:=0;

longlnm:=fulllayers[h].lynum; writeln;

if longlnm<nX then dmistake(’Too small layer, halting’);

orderfullilayer(h); rtop:=countcases;

writeLn(’Up to automorphism, there are at most ’,rtop,

’ 4-element sets of height=’,h);

writeLn(’ (The program will write a new dot on the screen at every ’,

freqdot,’-th set, if any.)’); writeln;

with fulllayers[h] do

begin {with fulllayers[h]}

for i1:=1 to diffpat do for i2:=i1+1 to lynum-2 do

for i3:=i2+1 to lynum-1 do for i4:=i3+1 to lynum do

begin with X do begin ssize:=0; for i:=1 to bn do es[i]:=false;

end;

putInSet(A0[prtpnt[i1]], X); putInSet(A0[prtpnt[i2]], X);

putInSet(A0[prtpnt[i3]], X); putInSet(A0[prtpnt[i4]], X);

PSetCopy(X,oldX);

if useots then ngenerate(X) else generate(X);

if X.ssize=bn then

begin inc(cnt); writeln; writeln;

write(’YES, Eq(’,ne,

’) has a 4-element horizontal generating set of’);

writeln(’ height ’,h,’. ’); write(’ (Such a generating’);

writeln(’ set was found at the ’,gps,’th trial.)’);

writeln(’ The generating set found is this:’);

SetWriteScreen(oldX);

writeln(’ Hit <enter> to abandon.’);

timing(false); exit;

end;

handledots(’.’);

end;{four-fold for} writeln; writeln; writeln(’NO, Eq(’,ne,

’) has no 4-element horizontal generating set of height ’,h,’.’);

writeln(’ (’,rtop,’ 4-element subsets have been checked.)’);

timing(false);

end; {with fulllayers[h]}

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 27

end; {testC}

function isinset(var y:partt; var X: PSett):boolean;{forward;}{y in X ?}

begin isinset:=X.es[placeInSet(y)]

end;

procedure putInSet(var y:partt; var X: PSett);{forward;}{inserts y into X}

var i: integer;

begin i:=placeInSet(y); if i=0 then dmistake(’Internal Error/putInSet’);

with X do if not isinset(y,X) then

begin inc(ssize); es[i]:=true; wh[ssize]:=i;

end;

end;

function compare(var x,y: partt):integer; {forward;}

{If x<y, then :=1; if x>y, then :=2; if x=y, then :=0}

var which, i: integer;

begin which:=0; i:=0;

repeat inc(i);

if x[i]<y[i] then which:=1; if x[i]>y[i] then which:=2;

until (which<>0) or (i>=tne1);

compare:=which;

end; {arePartsEqual}

function placeInSet(var y:partt):integer; {forward;} {y’s place in A0}

var left,right,middle, place, ii,flip,cnt,tillbn: integer;

begin left:=1; right:=bn; place:=0; flip:=0;cnt:=0; tillbn:=bn+5;

while (place=0) and (cnt<tillbn) do

begin

middle:= flip + ((left+right) div 2);

flip:=1-flip; ii:=compare(y, A0[middle]);

if ii=0 then begin place:=middle; right:=left

{to get out from the while loop}

end;

if ii=1 then right:=middle;

if ii=2 then left:=middle; inc(cnt)

end; {while}

placeInSet:=place

end;

function arecollapsed(ie,je:byte; var x: partt):boolean;

{is ie=je modulo x ? Here ie and je are the enlarged bytes }

var u,v: integer; b: byte; are:boolean;

begin if ie>je then begin b:=ie; ie:=je; je:=b end; are:=false;

u:=0; repeat inc(u) until x[u]=ie; v:=u-1;

repeat inc(v); if x[v]=je then are:=true;

until are or (x[v]=nnul); arecollapsed:=are;

end;

28 G. CZÉDLI

procedure segmentsort(u,v:integer; var z: partt); {sorts z[u]--zg[v] }

var i,j: integer; swapped:Boolean; b: byte;

begin if not ((1<= u) and (u<v) and (v<=tnmx)) then dmistake(’sort’);

i:=v;

repeat swapped:=false;

for j:=u to i-1 do if z[j]>z[j+1] then

begin {if} b:=z[j]; z[j]:=z[j+1]; z[j+1]:=b; swapped:=true;

end {if} ;

i:=i-1;

until (not swapped) or (i<=u)

end; {segmentsort}

procedure join(var x,y,z: partt);{forward;} {z:=x+y} {nnul,nmo are used}

var todo:array[2..nmax+1] of boolean; dne,i,j,iz,ibs,jz,fi,ti: integer;

begin

for i:=1 to tnmx do z[i]:=nmo;

dne:=0; for i:=2 to nep1 do todo[i]:=true;

iz:=0; {last place where we put an element into z}

for i:=2 to nep1 do if todo[i] then

begin

inc(iz); z[iz]:=i; ibs:=iz {block starts};

fi:=iz+1; inc(dne); todo[i]:=false;

for j:=i+1 to nep1 do

if todo[j] and (arecollapsed(i,j,x) or arecollapsed(i,j,y)) then

begin todo[j]:=false; inc(dne); inc(iz); z[iz]:=j;

end; {for j; the x\cup y -related elements are put in the block of i}

if iz>ibs then {i is not in a singleton block:}

begin ti:=iz; {now z[fi--ti] is an ordered segment of the block of

i, and we need to find its neighbors as long as we find new}

repeat

{Looking for the neighbors of the ORDERED segmeng z[fi]...z[ti].}

for jz:=fi to ti do {jz is used to walk in segment z[fi]...z[ti]}

for j:=i+1 to nep1 do

begin if todo[j] and (arecollapsed(z[jz],j,x)

or arecollapsed(z[jz],j,y)) then

begin inc(iz); z[iz]:=j; todo[j]:=false; inc(dne);

end;

end;

fi:=ti+1; ti:=iz ;

until (ti<fi) or (dne>=ne); {No more neighbor, segment, element}

end; {if iz>ibs}

if ibs+1< iz then begin segmentsort(ibs+1,iz,z);

end;

inc(iz); z[iz]:=nnul; {end of the block of i}

end; {for i} {all blocks are ready}

inc(iz); z[iz]:=nmo;

for j:=iz+1 to tnmx do z[j]:=nmo;

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 29

end; {join}

procedure meet(var x,y,z: partt);{forward;} {z:=x*y} {nnul,nmo are used}

var todo:array[2..nmax+1] of boolean; i,j,iz, i2: integer;

begin for i:=2 to nep1 do todo[i]:=true;

iz:=0; {next place in z}

for i:=2 to nep1 do if todo[i] then

begin inc(iz); z[iz]:=i; todo[i]:=false;

for j:=i+1 to nep1 do

if todo[j] and arecollapsed(i,j,x) and arecollapsed(i,j,y) then

begin todo[j]:=false; inc(iz); z[iz]:=j {enlarged by 1 !}

end; {for j}

inc(iz); z[iz]:=nnul;

end; {for i} inc(iz); z[iz]:=nmo;

for i2:=iz+1 to tnmx do z[i2]:=nmo;

end; {meet}

procedure ngenerate(var X:PSett);{forward;}

{X:=the sublattice X generates, "n" from "new"}

var oldsize, i,j,k,doneUpTo: integer;

begin doneUpTo:=0; {The purpose of doneUpTo: we not to check those

that were checked in the previous round.}

with X do

begin

repeat oldsize:=ssize;

for i:=1 to oldsize do

begin{for i}

for j:= doneUpTo+1 to oldsize do

begin{for j} k:=MJt[wh[i],wh[j]]; {join or meet}

if not es[k] then

begin es[k]:=true; inc(ssize); wh[ssize]:=k;

end; k:=MJt[wh[j],wh[i]];

{meet or join, the opposite of the above}

if not es[k] then

begin es[k]:=true; inc(ssize); wh[ssize]:=k;

end;

end;{for j}

end;{for i}

doneUpTo:=oldsize;

until ssize=oldsize;

end; {with X}

end; {ngenerate}

procedure generate(var X:PSett);{forward;}

{X:=the sublattice X generates, without operation table}

var oldsize, i,j,k,doneUpTo: integer; z: partt;

begin doneUpTo:=0; {The purpose of doneUpTo: we not to check those

that were checked in the previous round.}

30 G. CZÉDLI

with X do

begin

repeat oldsize:=ssize;

for i:=1 to oldsize do

begin{for i}

for j:= doneUpTo+1 to oldsize do

begin{for j} meet(A0[wh[i]],A0[wh[j]],z); k:=placeInSet(z);

if not es[k] then

begin es[k]:=true; inc(ssize); wh[ssize]:=k;

end; join(A0[wh[i]],A0[wh[j]],z); k:=placeInSet(z);

if not es[k] then

begin es[k]:=true; inc(ssize); wh[ssize]:=k;

end;

end;{for j}

end;{for i}

doneUpTo:=oldsize;

until ssize=oldsize;

end; {with X}

end; {generate}

procedure readX(var X: PSett);{forward;} {reads into X \subseteq Eq(ne)}

var s: string; p:partt; i: integer;

begin with X do

begin {with X} ssize:=0; for i:=1 to bn do es[i]:=false;{: X is empty}

while ssize<4 do

begin{with X while X.ssize<4}

writeln(’Enter the ’,ssize+1,

’-st/nd/rd/th partition; syntax: the same as in ’,ne,’.txt .’);

readLn(s); sToPart(s,p);

if placeInSet(p)>0 then putInSet(p,X)

else writeln(’ Invalid partition. Mind the syntax.’);

end{while X.ssize<4}

end {with X};

writeln(’Computing [X] has been started, please wait ...’);

end;

function whattodo: char;{forward;}{Prompts for choosing action}

var c: char; s: string;

begin c:=’ ’;

repeat writeLn(

’Type "a" or "b" (followed by <enter>) to choose from:’); writeln(

’(a) does a given 4-element set X of partitions generate Eq(n) or’);

writeln(’(b) is there a 4-element horizontal generating set’,

’ of a given height?’);

readln(s); if (pos(’a’,s)>0) or (pos(’A’,s)>0) then c:=’a’;

if (pos(’b’,s)>0) or (pos(’B’,s)>0) then c:=’b’;

until (c=’a’) or (c=’b’);

whattodo:=c;

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 31

end; {whattodo}

procedure dmistake(s: string); {forward;} {Halts with error message}

begin writeLn(’Error ’+s); writeLn(’Hit <enter> to quit’); readLn; halt;

end;

function heightof(var x:partt):integer;{forward;} {:=height(x)}

var i,j,h: integer;

begin h:=0; i:=1; j:=0;

while x[i]<>0 do

begin if x[i]<>1 then inc(j) else begin h:=h+(j-1); j:=0

end; inc(i);

end;

heightof:=h;

end;

procedure makefulllayers; {forward;} {Computes the layers of Eq(ne)}

var i,j: integer;

begin {first, we empty fulllayers:} for i:=0 to ne-1 do

begin

fulllayers[i].lynum:=0; fulllayers[i].ordered:=false;

end;

for i:=1 to bn do

begin j:=heightof(A0[i]);

with fulllayers[j] do

begin lynum:=lynum+1; prtpnt[lynum]:=i;

if lynum>layermax then dmistake(’Internal error 1’);

end;

end;

end;

procedure sToPart(var s:string; var p: partt);{forward, converts s into p}

var i,j,b2: integer; s1: string; code: word; b: byte;

begin

while (length(s)>0) and (s[length(s)]=’ ’) do delete(s,length(s),1);

s:=s+’ ’; i:=0;

while length(s)>0 do

begin i:=i+1; while (length(s)>0) and (s[1]=’ ’) do delete(s,1,1);

s1:=copy(s,1,pos(’ ’,s)-1); val(s1,b2,code);

if code<>0 then dmistake(’Invalid character’);

b:=b2+1; p[i]:=b;{bytes are increased by 1!}

delete(s,1,pos(’ ’,s));

end;

for j:=i+1 to tnmx do p[j]:=nmo;

end; {sToPart}

procedure readfline(var p: partt);{forward;}{Reads a partition from f to p}

var s: string;

32 G. CZÉDLI

begin readLn(f,s); sToPart(s,p)

end; {readline}

procedure fOpen; {forward;} {Opens one of 4.txt, 5.txt, ..., 8.txt}

var i: integer;

begin writeln; writeln(createdate);

writeln(’ Topic/purpose: 4-element generating sets of Eq(n).’);

write(’What is n (the size of the base set) ? ’);

readln(ne); if (ne<3) or (ne>nmax)

then begin writeln(’ Error! Only 3<n<’,nmax+1,

’ is allowed. The program halts after <enter>’);readln; halt

end;

assign(f,IntToStr(ne)+’.txt’); {$I-} reset(f); {$I+}

if ioresult >0 then {file opening was unsuccessful}

begin writeln; writeln(’ ERROR!’); writeln;

writeln(’ IMPORTANT: 1.txt, ..., 9.txt should be perfect and’);

writeln(’ they should be in the current folder! If not so,’);

writeln(’ ten run partitions.exe in the current folder ’);

writeln(’ to create these auxiliary files.’); writeln;

writeln(’Now the program will halt after <enter>’); readln;

end;

end; {procedure fOpen}

procedure inputdata; {forward;} {Inputs Eq(ne), initializes A0, fulllayers}

var i: integer; s2: string; // ii:integer;

begin bn:=0;{counter; at the end: Bell(ne)}

for i:=1 to 2 do

begin if eof(f) then dmistake(’Bad first two lines in the input file’);

readln(f,s2);

if eof(f) then dmistake(’Bad first two lines in the input file’);

end;

while not eof(f) do

begin inc(bn);

readfline(A0[bn]);

if eof(f) then dmistake(’The file should not end here’);

readLn(f,s2);

end; writeln;

if bn<1 then dmistake(’No partition is given in the input file’);

ne:=0; for i:=1 to tnmx do if A0[1,i]>ne then ne:=A0[1,i]; nep1:=ne;

ne:=ne-1; {since bytes in A0 are enlarged} tne1:=2*ne+1; close(f);

freqdot:=freqdotarray[ne];

end{inputdata};

begin {main} fOpen; inputdata;

if whattodo=’a’ then

begin

readX(X);

generate(X);

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 33

write(’[X] consists of ’,X.ssize,’ elements, so X ’);

if X.ssize<bn then

writeln(’does NOT generate Eq(’,ne,’)’) else

writeln(’GENERATES Eq(’,ne,’)’)

end

else

begin makefulllayers;

writeln(’The program is going to decide whether there is a horizontal’);

writeln(’generating set of a given height h, 1 <= h <= ’,ne-2,’.’);

if ne <= 8 then

begin

writeln(’Should we create operation tables (takes time but ’);

write(’ accelerates the computation later)? Enter y or n: ’);

setuseots;

end else useots:=false;

if useots then

begin writeln(’ Filling up the operation tables ... ’);

timing(true); filloptable; writeln; timing(false);

end;

repeat write(

’Enter the height (of the 4-element generating set to be found): ’);

readln(h);

until (0<h) and (h<ne-1);

timing(true); testC(h);

end;

write(’ Hit <enter> to abandon.’); readln;

end. {main}

9. Appendix 3: the source code of the auxiliary program

Before running the main program, the following auxiliary program should create the necessary files.

program partitions; uses sysutils, crt;

const created=’August 17, 2024’; createdate =

’Program partitions ver. ’+created+’, (C) Gabor Czedli, 2024.’;

const n=9; BellNumber=30000; {>=Bell1+...+Bell(n)} n2p1=2*n+1;

type partt=array[1..n2p1] of integer; {partition-type}

var i,k,po,pn,nb: integer;

A:array[1..BellNumber, 1..n2p1] of integer;

{Each row of A is a partition on some k, 2 <=k <= n in the form, say,

1,3,0,2,4,0,-1,-1,-1,...; 0 separates the blocks, -1 is the end symbol.

The elements of a block are in increasing order. The blocks are ordered

lexicographically. In the example above, k=4.}

pti,ptt: array[1..n] of integer; {pointer_initial and pointer_terminal;

the partitions of [k] are the pti[k], pti[k]+1,...,ptt[k] -th rows of A.}

hour,minute,second,millisecond,hour0,minute0,second0,millisecond0:word;

procedure initA; forward; {For k=1, puts Eq(k) into A, pti, ptt.}

34 G. CZÉDLI

function numbL(k:integer):integer; forward;

{The number of blocks of partition A[k]}

procedure copypartition(op,np:integer);forward; {Copies A[op,-] into

A[np,-]}

procedure insOBL(i1,j1,k: integer); forward;

{inserts i1 to the j1-st block of A[k,-] if this block exists}

procedure insNBL(i1,pn:integer); forward;

{inserts i1 to a new block in A[pn,-]; i1 > earlier elements}

procedure pts2file(k:integer); forward;

{Saves the partitions forming Eq(k) into k.txt}

procedure swap(i,j:integer);forward; {swaps partitions A[i,-] and A[j,-]}

function whichless(i,j:integer):integer; forward; {Gives 1,2,0

if A[i,-] < A[j,-], 2 if >, and 0 if =, respectively.}

function lessthanp(i:integer; var p: partt): integer; forward; {gives 1,

0, 2 if A[i,-] < p (first, 0: A[i,-] = p (none) 2: p < A[i,-] (second)}

procedure qsort(sta,top:integer); forward;

{sorts A from A[sta,-] to A[top,-]}

procedure timing(start:boolean); forward; {displays system time}

procedure timing(start:boolean); {forward;} {displays system time}

begin if start then

begin

decodetime(time,hour0,minute0,second0,millisecond0);

writeln(

’ The computation below starts at (hour:min:second.millisec) ’

,hour0,’:’,minute0,’:’,second0,’.’,millisecond0,’ .’)

end else

begin decodetime(time,hour,minute,second,millisecond);

writeln(

’ The computation above started at (hour:min:second.millisec) ’

,hour0,’:’,minute0,’:’,second0,’.’,millisecond0);

writeln(

’ and terminated at (hour:min:seconc.millisecond) ’

,hour,’:’,minute,’:’,second,’.’,millisecond,’ .’)

end;

end;

procedure qsort(sta,top:integer); {forward;}

{sorts A from A[sta,-] to A[top,-]}

var i,j,i5,spli: integer; p: partt;

begin if (sta+1=top) and (whichless(sta,top)=2) then swap(sta,top);

if sta+1 < top then

begin

for i5:=1 to n2p1 do p[i5]:= A[sta,i5]; {p=pivot}

i:=sta+1; j:=top;

while i <= j do

begin while (i<=top) and (lessthanp(i,p)=1) do inc(i);

while (j>sta) and ((lessthanp(j,p)=0) or (lessthanp(j,p)=2))

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 35

do j:=j-1;

if i<j then swap(i,j);

end{while i<=j};

swap(sta,j); spli:=j;

qsort(sta,spli-1);

qsort(spli+1,top)

end;

end;

function lessthanp(i:integer; var p: partt): integer; {forward;} {gives 1,

0, 2 if A[i,-] < p (first, 0: A[i,-] = p (none) 2: p < A[i,-] (second)}

var u,w: integer;

begin w:=0; u:=1; while (w=0) and (u<n2p1) do

begin u:=u+1; if A[i,u]<p[u] then w:=1; if A[i,u]>p[u] then w:=2;

end{while};

lessthanp:=w;

end;

function whichless(i,j:integer):integer; {forward;}{Gives 1,2,0

if A[i,-] < A[j,-], 2 if >, and 0 if =, respectively.}

var u,w: integer;

begin w:=0; u:=1; while (w=0) and (u<n2p1) do

begin {if equal so far then they terminate simultaneously!}

u:=u+1; if A[i,u]<A[j,u] then w:=1; if A[i,u]>A[j,u] then w:=2;

end; whichless:=w;

end; {whichless}

procedure swap(i,j:integer);{forward;} {swaps partitions A[i,-] and A[j,-]}

var u,v: integer;

begin for u:=1 to n2p1 do begin v:=A[i,u]; A[i,u]:=A[j,u]; A[j,u]:=v

end;

end;

procedure pts2file(k:integer); {forward;}

{Saves the partitions forming Eq(k) into k.txt}

var f: text; s:string; i,j,m: integer;

begin s:=IntToStr(k)+’.txt’; assign(f,s); {$I-} reset(f); {$I+}

if ioresult=0 then {already exist!}

begin write(’The file ’,s,’ already exists! Remove the files 2.txt,’);

writeln(’...,9.txt from’); writeln(’ the current folder and restart’,

’ the program again. Now hit <enter> to quit.’); readln; halt;

end;

{$I-} rewrite(f); {$I+} if ioresult<>0 then

begin writeln(’Something is wrong. No disk space? Hit <enter>’);

readln; halt;

end;

writeln(f,’§ The list of partitions on {1,...,’,k,’} begins here’);

m:=0;

36 G. CZÉDLI

for j:= pti[k] to ptt[k] do

begin inc(m); write(f,’§ The ’); write(f,m);

writeln(f,’ -st/nd/rd/th partition is the following:’);

i:=1; write(f,’ ’);

while A[j,i]<>-1 do begin write(f,’ ’,A[j,i],’ ’); inc(i);

end{while}; writeln(f,’-1’);

end{for j};

writeln(f,’§ This was the last partition on {1,...,’,k,’}’);

close(f);

end;

procedure insNBL(i1,pn:integer); {forward;}

{inserts i1 to a new block in A[pn,-]; i1 > earlier elements}

var i,j:integer;

begin i:=1; while A[pn,i] <> -1 do i:=i+1;

A[pn,i]:=i1; A[pn,i+1]:=0;

for j:=i+2 to n2p1 do A[pn,j]:=-1;

end;

procedure insOBL(i1,j1,k: integer); {forward;}

{inserts i1 to the j1-st block of A[k,-] if this block exists.}

var f1,f2,cnt,i: integer;

begin f1:=0; cnt:=1; i:=0;

{Goal: A[k,f1] should be the 1st element of the j1-st block}

while f1=0 do

begin i:=i+1; if cnt=j1 then f1:=i; if A[k,i]=0 then cnt:=cnt+1;

end; {Now A[k,f1] is the first element of the j1-st block.}

f2:=f1; while A[k,f2]<> 0 do f2:=f2+1;

{Now A[k,f2] is the 1st zero after A[k,f1]}

for i:=1 to n2p1-f2 do A[k,n2p1-(i-1)]:=A[k,n2p1-i]; {shift to right}

A[k,f2]:=i1; {The insertion, at last. Note that i1 must be bigger

than the earlier elements.}

end;

procedure copypartition(op,np:integer); {forward;} {Copies A[op,-] into

A[np,-]}

var i: integer;

begin for i:=1 to n2p1 do A[np,i]:=A[op,i];

end;

function numbL(k:integer):integer; {forward;}

{The number of blocks of partition A[k]}

var count,i: integer; stillSearchForMin1: boolean;

begin count:=0; stillSearchForMin1:=true; i:=0;

while stillSearchForMin1 do

begin i:=i+1; if A[k,i]=0 then count:=count+1;

if A[k,i]=-1 then stillSearchForMin1:=false;

end; numbL:=count;

A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF Eq(n) 37

end;

procedure initA; {forward;} {For k=1, puts Eq(k) into A, pti, ptt.}

var i: integer;

begin pti[1]:=1; ptt[1]:=1; A[1,1]:=1; A[1,2]:=0;

for i:=3 to n2p1 do A[1,i]:=-1;

end;

begin {main} writeln(createdate);

writeln(’For k=2,...,’,n,’, the program lists the partitions of’);

writeln(’ the set {1,2,...,k}, and prints them into ’,k,’.txt’);

timing(true);initA;

for k:=2 to n do

begin {creating all partitions on [k]}

pti[k]:=ptt[k-1]+1; ptt[k]:=ptt[k-1];

for po:=pti[k-1] to ptt[k-1] do {po: partition-old}

begin {for po,

constructing partitions from old A[po,-] on [k-1] }

nb:=numbL(po); {number of old blocks}

for i:=1 to nb do {adding k to the i-th block in new place}

begin ptt[k]:=ptt[k]+1; pn:=ptt[k];

copypartition(po,pn); insOBL(k,i,pn);

end;{for i} {next, we add k to a new block}

ptt[k]:=ptt[k]+1; pn:=ptt[k]; copypartition(po,pn);

insNBL(k,pn); {The descendants of A[po,-] have been created}

end;{for po; all partitions on [k] have been created}

end; {for k}

{for all k<=n, all partitions on [k] have been created}

for k:=2 to n do

begin

qsort(pti[k],ptt[k]); pts2file(k)

end; timing(false);

writeln(

’The required auxiliary files are ready. Hit <enter> to quit’);

readln;

end.{main}

References

[1] Czédli G. Lattices embeddable in three-generated lattices. Acta Sci. Math. (Szeged), 2016. Vol. 82. P 361–382.
DOI: 10.14232/actasm-015-586-2

[2] Czédli G. Generating Boolean lattices by few elements and exchanging session keys. arXiv:2303.10790

[3] Czédli, G, Kurusa, Á: A convex combinatorial property of compact sets in the plane and its roots in lattice theory.

Categories and General Algebraic Structures with Applications, 2019. Vol. 11. P 57–92. DOI: 10.29252/CGASA.11.1.57
[4] Czédli, G, Oluoch, L. Four-element generating sets of partition lattices and their direct products. Acta Sci. Math.

(Szeged), 2020. Vol. 86. P 405–448. DOI: 10.14232/actasm-020-126-7

[5] Grätzer G. General Lattice Theory. 2nd. ed. Basel–Boston–Berlin: Birkhäuser, 1998. XX+663 p. ISBN 978-3-7643-
6996-5.

[6] Grätzer G. Lattice Theory: Foundation. Basel: Birkhäuser, 2011. XXX 614 p. DOI: 10.1007/978-3-0348-0018-1

[7] P. Pudlák and J. Tůma: Every finite lattice can be embedded in a finite partition lattice; Algebra Universalis 10,
74–95 (1980).

https://doi.org/10.14232/actasm-015-586-2
https://arxiv.org/abs/2303.10790
https://doi.org/10.29252/CGASA.11.1.57
https://doi.org/10.14232/actasm-020-126-7
https://doi.org/10.1007/978-3-0348-0018-1

38 G. CZÉDLI

[8] Strietz, H. Finite partition lattices are four-generated. In: Proc. Lattice Th. Conf. Ulm, 1975, pp. 257–259.

[9] Strietz, H. Über Erzeugendenmengen endlicher Partitionenverbände. (German) Studia Sci. Math. Hungar. 12 (1977),

1–17 (1980)
[10] Whitman P. M. Lattices, equivalence relations, and subgroups. Bull. Amer. Math. Soc., 1946. Vol. 2. P. 507–522.

[11] Zádori L. Generation of finite partition lattices. In: Lectures in universal algebra: Proc. Colloq. Szeged, 1983. Colloq.

Math. Soc. János Bolyai, vol. 43. Amsterdam: North-Holland Publishing, 1986. P. 573–586.

Email address: czedli@math.u-szeged.hu

URL: http://www.math.u-szeged.hu/~czedli/

University of Szeged, Bolyai Institute. Szeged, Aradi vértanúk tere 1, HUNGARY 6720

	1. Notes on the dedication
	2. Introduction and our theorem
	3. Some lemmas, the Key Lemma, and a new proof of one of Strietz's results
	4. A tediously provable lemma
	5. The rest of tediously provable lemmas
	6. Proving Theorem 1 and Proposition 1 with our lemmas
	7. Appendix 1: the proofs of the technical lemmas stated in Section 5
	8. Appendix 2: the source code of the main program
	9. Appendix 3: the source code of the auxiliary program
	References

