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Abstract. It is proved that the class of finite semimodular lattices is the same
as the class of cover-preserving join-homomorphic images of direct products of

finitely many finite chains.

There is a trivial “representation theorem” for finite lattices: each of them is
a join-homomorphic image of a finite distributive lattice. This follows from the
fact that the finite free join semilattices (with zero) are the finite Boolean lattices.
The goal of the present paper is to give two analogous but stronger representation
theorems for finite semimodular (also called upper semimodular) lattices. Both
theorems state that these lattices are very special join-homomorphic images of
appropriate finite distributive lattices. This way we generalize the main results
of G. Grätzer and E. Knapp [4] and [5]. Since even the above-mentioned trivial
representation theorem was useful in [1], there is a hope that the new achievements
will be of some interest in the future.

To formulate our results we need the following notions. A sublattice {a1 ∧
a2, a1, a2, a1 ∨ a2} of a lattice is called a covering square if a1 ∧ a2 ≺ ai ≺ a1 ∨ a2

for i = 1, 2. A planar lattice is called slim if every covering square is an interval.
Now let L and K be finite lattices. A join-homomorphism ϕ : L → K is said to be
cover-preserving iff it preserves the relation �. Similarly, a join-congruence Φ of L
is called cover-preserving if the natural join-homomorphism L → L/Φ, x 7→ [x]Φ is
cover-preserving. As usual, J(L) stands for the poset of all nonzero join-irreducible
elements of L. For a poset P , H(P ) denotes the lattice of all hereditary subsets
(order ideals) of P . The width w(P ) of a (finite) poset P is defined to be max{n:
P has an n-element antichain}.

First we prove:

Lemma. Let Φ be a join-congruence of a finite semimodular lattice M . Then Φ
is cover-preserving if and only if for any covering square S = {a ∧ b, a, b, a∨ b} if
a ∧ b 6≡ a (Φ) and a ∧ b 6≡ b (Φ) then a ≡ a ∨ b (Φ) implies b ≡ a ∨ b (Φ).

Proof. To verify the “only if” part suppose that some S fails the described property.
Then [b]Φ 6= [a ∨ b]Φ in M/Φ gives [b]Φ < [a ∨ b]Φ = [a]Φ in M/Φ. Similarly,
[a∧ b]Φ < [b]Φ. Hence [a ∧ b]Φ 6� [a]Φ shows that Φ is not cover-preserving.

Conversely, to prove the “if” part, assume that Φ is not cover-preserving. We
have to find a covering square S for which the described property fails. By the
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2 G. CZÉDLI AND E. T. SCHMIDT

assumption on Φ there are a ≺ b ∈ M such that, with the notations A = [a]Φ ∈
M/Φ and B = [b]Φ ∈ M/Φ, A � B fails. Hence there is a C ∈ M/Φ with A < C <
B. With some c0 ∈ C let c = a ∨ c0 ∈ A ∨ C = C and let d = b ∨ c ∈ B ∨ C = B.
Let a = x0 ≺ x1 ≺ · · · ≺ xn−1 ≺ xn = c be a maximal chain in the interval [a, c],
and let i be the smallest subscript with xi /∈ A. The situation for (n, i) = (6, 4) is
depicted in Figure 1; notice however that xi ∈ C would also be possible.
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Figure 1

Let yj := b ∨ xj, 0 ≤ j ≤ i. Using semimodularity, it follows via induction that
xj ≺ yj and yj−1 ≺ yj for all 1 ≤ j ≤ n. In other words, each edge of Figure 1
represents a pair of covering elements. Hence S = {xi−1, xi, yi−1, yi} is a covering
square we were looking for. �

Theorem 1. Each finite semimodular lattice L is a cover-preserving join-homo-
morphic image of the direct product of w(J(L)) finite chains.

Proof. Let k = w(J(L)). In virtue of Dilworth [2], J(L) is the union of k appropriate
chains. Let us extend these chains of J(L) to maximal chains C1, . . . , Ck of L. Then
J(L) ⊆ C1 ∪ · · · ∪Ck. We may assume that k ≥ 2. Denote C1 × · · ·×Ck by C and
define a join-homomorphism

ϕ : C → L, (x1, . . . , xk) 7→ x1 ∨ · · · ∨ xk.

Clearly, ϕ is surjective. Let Φ denote the kernel of ϕ, and let {a ∧ b, a, b, a ∨ b}
be a covering square in C. Apart from indexing we may suppose that a ∧ b =
(x, y, z3, . . . , zk), a = (x+, y, z3, . . . , zk) and b = (x, y+, z3, . . . , zk) where x+ resp.
y+ denotes the unique cover of x resp. y in C1 resp. in C2. Under the assumption
a ≡ a ∨ b (Φ), a ∧ b 6≡ a (Φ) and a ∧ b 6≡ b (Φ) we have to show that b ≡ a ∨ b (Φ).
With the notation u = ϕ(a ∧ b) = x ∨ y ∨ z3 ∨ · · · ∨ zk our assumption means

x+ 6≤ u, y+ 6≤ u, y+ ≤ x+ ∨ u.

Using semimodularity we obtain from x ≺ x+ that u = x ∨ u ≺ x+ ∨ u, and we
conclude u ≺ y+ ∨ u similarly. Hence u ≺ y+ ∨ u ≤ x+ ∨ u yields x+ ∨ u = y+ ∨ u,
implying ϕ(b) = y+ ∨ u = x+ ∨ y+ ∨ u = ϕ(a ∨ b). This shows b ≡ a ∨ b (Φ). �

The representation defined in the proof of Theorem 1 is illustrated by Figure 2.
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Corollary 1. The cover-preserving join-homomorphic images of finite distributive
lattices are exactly the finite semimodular lattices.

Proof. This follows from Theorem 1 since cover-preserving join-homomorphisms
preserve semimodularity in virtue of Lemma 16 of Grätzer and Knapp [4]. �

Let us recall the main result from Grätzer and Knapp [5]:

Theorem 2. (Grätzer and Knapp [5]) Each finite planar semimodular lattice can
be obtained from a cover-preserving join-homomorphic image of the direct product of
two finite chains via adding doubly irreducible elements to the interiors of covering
squares.

Now we formulate a corollary of Theorem 1, which easily implies Theorem 2.

Corollary 2. Each finite planar slim semimodular lattice is a cover-preserving
join-homomorphic image of the direct product of two finite chains.

Proof. In virtue of Theorem 1, it is sufficient to show that w(J(L)) = 2 when L is
a planar slim semimodular lattice. Let C1 resp. C2 be the left resp. right boundary
chain in L. We intend to show that every p ∈ J(L) is in C1 ∪ C2. Suppose this is
not the case and choose a p ∈ J(L) \ (C1 ∪ C2). Let q stand for the unique lower
cover of p. Let u resp. v denote the greatest element of C1 resp. C2 such that u ≤ p
resp. v ≤ p. Let u+ resp. v+ be the upper cover of u in C1 resp. v in C2. Then
u ≤ q and v ≤ q but u+ � q and v+ � q. From u ≺ u+ we conclude q ≺ q ∨ u+ by
semimodularity, and q ≺ q ∨ v+ follows similarly.

Now p, q ∨ u+ and q ∨ v+ are all upper covers of q and, since u+ � p, p /∈
{q ∨ u+, q ∨ v+}. We distinguish two cases.

First assume that x = q ∨ u+ = q ∨ v+. Let x be leftwards from p in the
(fixed planar) Hasse diagram of L, and remember that v and v+ belong to the
right boundary C2. Consider a the paths A resp. B in the diagram witnessing
v < p ≺ p ∨ x resp. v+ < x. Since v+ � p, these two paths intersect in the plane
but not at a vertex, which contradicts planarity. When x is rightward from p, the
situation is similar. This shows that q ∨ u+ = q ∨ v+ is impossible.
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Therefore q has three distinct covers. For brevity, let {a, b, c} = {p, q∨u+, q∨v+}.
Since each of a, b, c covers q, semimodularity yields that each of a ∨ b, a ∨ c and
b ∨ c covers its two joinands. If two of these joins, say a ∨ b and b ∨ c, coincide
then a < a ∨ c ≤ a ∨ b ∨ c = a ∨ b and a ≺ a ∨ b give a ∨ c = a ∨ b, whence
{a, b, c} generates an M3 sublattice, which contradicts the assumption that L is
slim. Hence {a ∨ b, a ∨ c, b ∨ c} is a three element antichain. It is well-known, cf.
Lemma I.5.9 in Grätzer [3], that this antichain generates a sublattice isomorphic to
the eight element boolean lattice. This is a contradiction, for this boolean lattice
is not planar. �

Roughly saying, the join-homomorphism acts identically on the poset of all join-
irreducible elements in our second representation theorem.

Theorem 3. Every finite semimodular lattice L is a cover-preserving join-homo-
morphic image of the unique distributive lattice D determined by J(D) ∼= J(L).
Moreover, the restriction of an appropriate cover-preserving join-homomorphism
from D onto L is a J(D) → J(L) order isomorphism.

Proof. The argument, based on the Lemma, is similar to the proof of the previous
theorem. Let L be a finite semimodular lattice and let D be the distributive lattice
H(J(L)). Then, clearly, ϕ : H(J(L)) → L, I 7→

∨
LI is a join-homomorphism from

D = H(J(L)) onto L. This is illustrated in Figure 3. Let Φ denote the kernel of ϕ.

Figure 3. L, J(L) and the corresponding distributive lattice D = H(J(L))

Now we prove that ϕ is cover-preserving. Take a covering square S = {a ∧
b, a, b, a∨ b} in D = H(J(L)). Denote a ∧ b by I; it is a hereditary subset of J(L).
The condition a ∧ b ≺ a means that there exists an element p ∈ J(L) \ I such
that the hereditary subset (p, I) generated by p and I does not contain any other
join-irreducible element, i.e. a = (p, I) = {p}∪ I. Similarly, b = (q, I) = {q}∪ I for
some q ∈ J(L), q /∈ I.

We assume in L that p �
∨

LI (this is equivalent to the assumption a ∧ b 6≡ a
(Φ) formulated in D), q �

∨
LI (equivalent to a ∧ b 6≡ b (Φ)) and p ∨

∨
LI ≥ q in

L (equivalent to a ≡ a ∨ b (Φ)). Obviously,

p ∨
∨

L
I ≥ q ∨

∨
L
I >

∨
L
I.

From a = (p, I) = {p} ∪ I it follows that there is no r ∈ J(L) \ I such that
r < p, which gives p∧

∨
LI ≺ p in L. But L is a semimodular lattice and therefore∨

LI = (p∧
∨

LI)∨
∨

LI ≺ p∨
∨

LI. This implies p∨
∨

LI = q∨
∨

LI, or equivalently
b ≡ a ∨ b (Φ). By the Lemma this proves that ϕ is cover-preserving.

For any poset P , J(H(P )) ∼= P . This gives J(D) = J(H(J(L)) ∼= J(L), whence
the restriction of ϕ to J(D) is an order isomorphism onto J(L). �
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Finally, let L be a finite geometric lattice. Then J(L) is the set of atoms, this is
an unordered set and therefore H(J(L)) is a boolean lattice. We conclude:

Corollary 3. The cover-preserving join-homomorphic images of finite boolean lat-
tices are exactly the finite geometric lattices.
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E-mail address : czedli@math.u-szeged.hu

URL: http://www.math.u-szeged.hu/∼czedli/

Mathematical Institute of the Budapest University of Technology and Economics,
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