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Abstract. Given a finite partially ordered set P, for subsets or, in other words,
coalitions X,Y of P let X <Y mean that there exists an injection ¢: X — Y
such that x < p(z) for all z € X. The set L£(P) of all subsets of P equipped with
this relation is a partially ordered set. When L(P) is a lattice, it is called the
coalition lattice of P. It is shown that P is determined by the coalition lattice
L(P). Further, any coalition lattice satisfies the Jordan-Holder chain condition.
The so-called winning coalitions, i.e. coalitions X such that P\ X < X in L(P),
are shown to form a dual ideal in £(P). Finally, an inductive formula on |P| is
given to describe the lattice operations in £(P), and this result also works for
certain quasiordered sets P.
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1. Introduction and results

Given a finite partially ordered set P = (P, <), the set of all subsets, alias coalitions, of
P will be denoted by £(P). For X,Y € L(P), amap ¢: X — Y is said to be an extensive
map if ¢ is injective and for every z € X we have z < ¢(z). Let X < Y mean that
there exists an extensive map X — Y'; this definition turns £(P) into a partially ordered
set L(P) = (L(P),<). When L(P) is a lattice then it is called the coalition lattice of P.
This concept, with roots in game theory and the mathematics of human decision making,

T This paper, when first submitted in 1995, was dedicated to Evgenii Sergeyevich Lyapin
on his 80th birthday.
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was introduced in [3]. To present a natural example, let P be a voting committee each of
whose members has a certain strength measured on a numerical scale. The strength of a
coalition is the sum of strengths of its members. Putting z < y for “the strength of z is
smaller than or equal to that of y” we make P into a quasiordered set, most frequently a
chain which gives rise to a coalition lattice £(P). This example motivates the following
definition: given a coalition lattice £(P), an X € L(P) is called a winning coalition if
P\ X < X. For undefined terminology the reader is referred to Gréitzer [5]. Even without
explicit mentioning, all sets occurring in this paper are assumed to be finite.

A partially ordered set P is called upper bound free, in short UBF, if for any a, b, c € P
we have

(<) &(b<c) = ((a<b) or (b<a)).

The equivalence classes of the equivalence generated by <p will be called the compo-
nents of P. If P is an UBF partially ordered set and has only one component then P is
called a tree. A partially ordered set is called a forest if its components are trees. Clearly,
a finite partially ordered set is a forest iff it is UBF. For a € P we will use the notation
(a] = {x € P: © < a}. A partially ordered set P is a forest iff (a] is a chain for every
ac P.

If P = (P, <) is a finite quasiordered set rather than a partially ordered set then the
definition of £L(P) = (L(P), <), the UBF property and the above-mentioned motivating
example still make sense; then L£(P) is a quasiordered set, of course. A quasiordered set
Q is called a quasilattice if each two-element subset of () has an infimum and a supremum
in . (The infimum and supremum is defined only up to equivalence!) Equivalently, @ is
a quasilattice iff the partially ordered set @ (to be defined soon) induced by @ is a lattice.
Note that there is an algebraic characterization of quasilattices in Chajda [1], cf. also
Chajda and Kotrle [2].

The main result of [3] asserts that, for a finite quasiordered set @), £(Q) is a quasilattice
iff @ is UBF. In particular, for a finite partially ordered set P, L(P) is a lattice iff P is
a forest. Therefore, from now on, P and @) will always denote a finite forest and a finite
quasiordered set with UBF, respectively. The description of lattice operations in L(P),
cf. [3], is not so simple as generally in case of other lattices related with mathematical
structures. The structure of coalition lattices is described in [4]. The easy part of this
description is the following

Lemma A. ([3]) Let Ty, Ty, ..., Ts be the components of P. Then L(P) is isomorphic
to the direct product of the L(T;), 1 <i < s.

We will also need
Lemma B. ([3]) The lattice L(P) is distributive iff every tree component of P is a chain.

Our goal is to prove the following four theorems.
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Theorem 1. Every coalition lattice L(P) satisfies the Jordan-Hélder chain condition.
Le., any two maximal chains of L(P) have the same number of elements.

Theorem 2. The coalition lattice L(P) determines the forest P up to isomorphism. In
other words, if L(P) = L(P’) then P = P'.

Theorem 3.  Given a coalition lattice L(P), the winning coalitions form a dual ideal
of L(P). Equivalently, there exists a winning coalition W € L(P) such that, for any
X € L(P), X is a winning coalition if W < X.

While the meet in £(P) can be defined via a recursion on the size of P ([3, Proposition
1]), the description of join is much more complicated in [3]. Now we are going to give a
recursive formula for the join in £(Q).

Let Q = (@, <) denote the partially ordered set obtained from a quasiordered set )
with UBF in the canonical way, i.e., consider the intersection ~ of <g with its inverse, let
@ consist of the classes of the equivalence relation ~, and for A, B € é let A < B mean
that a < b for some a € A and b € B. For z,y € @, we write z < y if z < y but y £ x.
A subset F' of () is called an order filter if f € F, ¢ € Q and f < ¢q always imply ¢ € F.
E.g., the empty subset is always an order filter. Let us choose an element m € @) such that
M = m, the ~-class of m, is a maximal element in Q).

Consider the subset Z = {X € L£(Q): X N M = 0} of £(Q). Then Z is an order
ideal (dual order filter). Observe that for X € Z, Y € £(Q) if X ~ Y then Y € Z. Since
XNY CXAY and X VY C X UY (at least for one possible choice of X AY and X VY')
follow easily from [3] (and are explicitly stated in [4, Proof of Thm. 1]), Z is closed with
respect to (arbitrary choice of) infima and suprema, and Z is (isomorphic to) £(Q \ M).
The subset {x € Q: =z < m}, which is disjoint from M, will be denoted by D(m). Now
any element of £(Q) is of the (unique) form X UY where X € 7 and Y C M. The join in
L(Q) is described by the following

Theorem 4. Given X; € T andY; C M,i=1,2,...,n, put t := max(|Yi],...,|Yy]), let
A; be an order filter in X; N D(m) consisting of min(|X; N D(m)|,t — |Y;|) elements, put
B; := X; \ A;, and let C' be a t-element subset of M. Then

n

(1) \/(XiUYi):CU\n/Bi.

1=1

The proof of the above theorem will use the fact that £(Q) is a quasilattice. By the
remarks preceding Theorem 4 the join on the right hand side of (1) can be understood
both in £(Q) and in £(Q \ M).

Now let m be a maximal element in a forest P. For X € L(P), let X = X \ {m} if
me X, put X = X\ {c} if m ¢ X and c is the maximal element of X N D(m), and let
X =X if m¢ X and X N D(m) = 0. (Note that, by the UBF, X N D(m) is a chain or
empty, whence c is uniquely determined.) Then X belongs to the sublattice, in fact ideal,
I={Y e L(P):m¢Y}=L(P\{m}). The following assertion is an obvious consequence
of Theorem 4.
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Corollary 1. Let Xq,...,X,, € L(P) and suppose that not all of them are in Z. Then

i=1 i=1

The coalition lattice £(P) is the disjoint union of the above-defined ideal Z and the
filter D = {Y € L(P): m € Y}, and both Z and D are isomorphic to L(P \ {m}) in a
natural way. So, to compute meets via induction on |P|, it is sufficient to find the meet of
E and FU{m)} for E,F € I. Let F = F if D(m) C F and let ' = F U {u} if u is the
maximal element of D(m) \ F. Then F € Z and we have

Corollary 2. EA(FU{m})=EAF.

The advantage of this Corollary over the analogous Proposition 1 in [3] is that 7 =
L(P\ {m}) = D does not depend on the coalitions whose meet we intend to calculate.

Proofs

For a € P let p(a) denote the cardinality of the chain (a|, i.e. w(a) = |(a]|. For
A € L(P) we define u(A) = >, . 4 u(a). To avoid confusion, the elements of P resp. L(P)
will be denoted by lower case resp. capital letters. The proof of Theorem 1 will rely on
the following

Lemma 1. Let A,B € L(P). Then

(2) A< B <= (A< B&u(A) < u(B)).
and
(3) A<B <= (A< B&u(A)+1=u(B)).

Proof. Suppose A < B and choose an extensive map a: A — B. Then

p(4) = 3 o) £ 3" pla(@) < 3 pu®) = u(B).

acA acEA beB

If both inequalities in the above formula were equations then (Va)(a < a(a)) and a(A) = B
would imply A = B, a contradiction. Hence p(A) < p(B). The converse direction of (2)
is evident. The <= direction of (3) follows from (2). To show the = direction of (3) let
us assume that A < B. We have to distinguish two cases.

Case (i): |A| < |BJ. Choose an extensive map ¢ : A — B. Since A < ¢p(A) < B but
©(A), having less elements, is distinct from B, from A < B we conclude that A = ¢(A).
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Hence A C B. Let {bl,bg,...,bk} = B\A Since A < AU{bl} < AU {bl,bg} < ... <
AU {by,bs,...,b} = B, we conclude k = 1. Let z denote the smallest element in the
chain (by]. If z belonged to A then A < (A\ {z}) U{b1} < AU{b1} = B would contradict
A < B. Hence z ¢ A. The assumption z < b; would lead to A < AU{z} < AU{b1} = B,
another contradiction. Thus, by = z and u(B) = pu(A) 4+ u(z) = p(A) + 1, indeed.

Case (ii): |A| = |B|. Then we have an extensive bijection a: A — B. The set
H = {x € A: z < a(z)} cannot be empty, for otherwise A = a(A) = B would follow.
Let u be a minimal element of H and denote a(u) by v. We claim u ¢ B. Indeed,
otherwise u = a(y) would hold for some y € A, the minimality of u would imply y = u,
and v = a(y) = a(u) = v would contradict v < v. Let A; = A\ {u} and B; = B\ {v}.
Since u ¢ B = a(A), (a\ {{u,v)}) U {(u,u)}: Ay U{u} — By U{u} is an extensive map.
Hence A = Ay U {u} < By U {u} < By U{v} = B yields Ay U {u} = By U {u}, whence
A1 = B; and the extensive map a; = o\ {{u,v)}: A; — By must be the identical map.
Since pu(B) — u(A) = p(v) — p(u), it suffices to show that u < v. Suppose this is not the
case, i.e. u < ¢ < v holds for some ¢ € P. If ¢ ¢ Ay then A = A; U{u} < A1 U{c} <
A1 U{v} = By U{v} = B is a contradiction, so ¢ € A;. Denoting A; \ {c¢} = By \ {¢} by D
we have A = DU {u,c}, B=DU{¢,v},and A < DU{u,v} < B is a contradiction again.
Hence u < v and u(B) = u(A) + 1. o

Proof of Theorem 1. Let ) = Cy < C; < Cy < ... < C; = P be a maximal chain in
L(P). We infer from Lemma 1 that pu(P) = pu(Cy) = p(Ci—1) +1 = p(Ci_2) +2 = ... =
p(Co) +t =t, whence every maximal chain has p(P) + 1 elements. o

Proof of Theorem 2. Let & = S(L(P)) denote the set of singleton coalitions in L(P),
ie, S={X € L(P): |X|=1}. Fora,be P,a<bin P iff {a} < {b} in L(P). Therefore
it suffices to describe S in a lattice theoretic language, i.e. in a way which is invariant
under lattice isomorphisms; the theorem then will follow. Unfortunately, this description
is not always possible. For example, if P is the three-element chain {0 < a < b} then L(P)
has an automorphism interchanging {a,0} and {b}, and the same can be said when one of
the tree components of P is a three-element chain. That is why we deal with trees before
settling the general case.

From now on let P be a tree. This property of P can be recognized from L(P) since it
is easy to derive from Lemma A that P is a tree iff £(P) has exactly one atom. Note that
the only atom of £(P) is {0} where 0 is the smallest element of the tree P. A coalition
X € L(P) is called a cycle if the principal ideal (X] is a chain in £(P). All singleton
coalitions are cycles but not conversely. For a cycle X, distinct from the empty coalition,
let X~ denote the unique coalition covered by X in L(P). Let C denote the set of cycles
in L(P). For a coalition X € L(P) let h(X) denote the height of X, i.e. the length of any
maximal chain from ) to X. Note that X is a cycle iff |(X]| = h(X) + 1. Now we define
several subsets of L£(P) as follows:
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Th={X€C: h(X)=3 and X <Y for some Y € B},
To={X €C: h(X)=3 and thereisa Z € A

such that X~ || Z and |[(X V Z]| > 8}, and
T3 ={X €C: h(X)=3 and thereisa Y €C

such that X #2Y, X~ =Y and [(X VY]] > 8}

Let
R=AUBUTUT,UT3U{{0}}.

Here {0} is, of course, the unique atom of £(P). We claim that
(4) If £(P) is not distributive then S =TR.

First we show § C R. Let g denote the height function on P. l.e., with u defined in the
previous proof, g(a) = |(a]| —1 = p(a) — 1 for a € P. Clearly, h({a}) = g(a)+ 1. Therefore
{a} € R for every a € P with g(a) # 2. Now assume that g(a) = 2. If a is not a maximal
element in P then {a} € 73 C R. Therefore we can assume that a is a maximal element
of P. Let b be the unique lower cover of a, i.e. b < a.

Firstly, assume that a is the only element of P which covers b. Since L(P) is not
distributive, P is not a chain by Lemma B. Hence P\ (a] # 0. Let ¢ be a minimal element
of P\ (a]. Denoting {a}, {b} and {c} by X, X~ and Z, respectively, we obtain {a} € 75,
for (X \ Z] = ({CL,C}] contains Q)v {0}7 {b}a {C}v {CL}, {07 b}v {Oa C}v {O,CL}, {ba C}a {avc}v Le.
more than eight distinct coalitions.

Secondly, assume that {a = a1, as,...,ax} is the set of elements covering b, k > 2.
Putting X = {a} and Y = {a2} we see that {a} € T3, for the coalitions 0, {0}, {b}, {a},
{aa}, {0,b}, {0,a}, {0,as} all belong to (X VY] ={a,az}. We have shown § C R.

As a first step towards the converse inclusion in (4) we claim
(5) X e (L(P)\ (SU{D})) NC = X = {0,b} for some 0<b.

Let X € L(P)\ (SU{0}) be a cycle. If |X| > 3 then, for any maximal element u of
X, {u} || X \ {u}, contradicting the fact that (X]| is a chain. Therefore |X| = 2. Let
X = {a,b}. From {a}, {b} € (X] we infer that a and b are comparable, so we assume
0<a<b If0<a<bthen {0,a} || {b} in (X], a contradiction. Hence X = {0,b}. If
0 < ¢ < b for some ¢ € P then {0,c} || {b} in (X], a contradiction again. Therefore 0 < b,
proving (5).

For 0 < b we have h({0,b}) = 3. This fact and (5) clearly yield AU B U {{0}} C S.
Hence, by B C S, 7; C S follows immediately. Suppose X € 7o\ S. By (5), X = {0,b}
for some 0 < b. We have X~ = {b}, Z = {a} from AC S, a | band, by h(Z)=2,0 < a.
Since X V Z = {a,b}, (X vV Z] = L(Q) \ {Q} where @ is {0,a,b}, as a sub-poset of P.
Hence |(X V Z]| = 23 — 1 = 7, contradicting X € 75. Thus, 75 C S.

Suppose X € 73\ S. As previously, X = {0,b} and X~

= {b} = Y~ for some
0 < b. Now Y is a singleton, for otherwise A(Y) = h(Y ™) + 1

3 and (5) would
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imply Y = {0,b} = X, a contradiction. Therefore Y = {a} for some b < a. We have
X VY ={0,a}. Using Q = {0,a,b} as before we can derive |(X VY]| =23 —1 = 7. This
contradiction shows 73 C S. This proves R C S and (4).

Now let us assume first that £(P) has only one atom, i.e. P is a tree. If L(P) is
distributive then P is a chain by Lemma B. Since the chain P is determined by |P| and
| P| uniquely comes from 2!7!| = |£(P)], this case is settled. If £L(P) is not distributive then
P = S is determined up to isomorphism by (4).

Secondly let us assume that £(P) has more than one atom. Then, by Lemma A,

® £(p) = [ (),

where the T; are the tree components of P. But, as we mentioned before, the L(T;)
are directly indecomposable. It is known, cf. Grétzer [3, p. 153, Cor. II1.4.4] that if
we decompose a finite lattice as a direct product of directly indecomposable factors then
these factors are uniquely determined up to isomorphism. Applying this to (6) we infer
that the £(7;) are determined up to isomorphism. But any one of them has only one
atom. Consequently, by the previous part of the proof, they determine the 75, i.e. the tree
components, and therefore the whole P, up to isomorphism. o

The proof of Theorem 3 requires three lemmas. For a € P we set U, = {x € P: = >
a} =la)\{a} and D, = {x € P: x < a} = (a] \ {a}. We define the i-th layer P; of P via
induction as follows. Let P; consist of the maximal elements of P. If PLUP,U...UP; 1 # P
then let P; be the set of maximal elements of P\(PyUPU...UP;_1). There are finitely many
layers, say P, P, ..., P., they are disjoint and their union is P. The subset P,UP,U...UP;
will be denoted by @Q;. For a coalition X € £(P), P\ X will be denoted by X.

Lemma 2. A coalition C' € L(P) is winning iff
(7) |ICNx)| >|CnN[x)| for every =€ P.

Proof. Let C be a winning coalition and let ¢: C — C be an extensive map. Then ¢
maps C N [z) into C N [z) and (7) follows from injectivity.

Conversely, suppose that (7) holds. We will define extensive maps ¢;: CNQ; — CNQ;
via induction. This is sufficient, for ¢,: C — C will imply that C is winning. In virtue of
(7) we have CNQy = 0, so we let o; be the empty map, which is clearly extensive. Suppose
that ¢,_; is already defined and consider an arbitrary x € CNP;. Since ;1 maps CNU,
into CNU, and from (7) we obtain |CNU,| = |CN[z)|—1 < |CN[z)|-1 < |CN[z)| = |CNU,|,
we can fix an element y, € C N U, such that y, ¢ ¢; 1(C NU,). It follows from the UBF
property and x < y, that for distinct oy, 2o € C N P; we have y,, # y.,. Therefore

pi=pic1U{(z,yz): 2€CNP}: CNQ; — CNQ;

is an extensive map, proving the assertion. o



8 G. Czédli, B. Larose and Gy. Polldk

Lemma 3. Let C be a winning coalition and suppose that
(8) ICNU,| > |CNU,|.

holds for some a € C. Then there exists a winning coalition B such that B < C.

Proof. Let us fix an extensive map ¢: C — C. Since ¢ maps C N U, into C N U,, by (8)
we can fix an element b € C' N U, such that b ¢ o(C NU,). Firstly, we consider the case
CND,=0. Then let B = C\ {a}. Clearly, B < C and the map ¢ U {(a,b)}: B — B is
extensive, whence B is winning.

Secondly, suppose that C' N D, is nonempty, and let ¢ be the greatest element of the
chain C N D,. Now we set B = (C'\ {a}) U {c}. The relation B < C is clear. We can

assume that ¢(c) = a. Indeed, if a ¢ ¢(C) then we can take (¢ \ {{(c,¢(c))}) U{{(c,a)}
instead of ¢. If p(t) = a # ¢(c) then, by the choice of ¢, t < ¢ and ¢ can be replaced by

(P \{{e;p(e)), (8 a)}) U{{e a), (t, ¢(c))}. Thus, ¢(c) = a. Define a map

b, if z=a,
Yv: B— B, x— e, if p(z)=">

o(xz), otherwise.

Note that if p(z) = b then z < ¢ by the choice of b, ¢ and the fact that (b] is a chain. Hence
1) is an extensive map and B is a winning coalition. o

Lemma 4. There is exactly one minimal winning coalition in L(P). If W denotes this
coalition then, for any x € P, we have

(9) TeEW = [WnU,|=[WnU,|.

Proof. By finiteness, there is at least one minimal winning coalition W € L(P). After
showing that W satisfies (9) and at most one coalition can satisfy (9) the lemma will follow.

Let W be a minimal winning coalition and suppose that (9) is violated by some = € P.
First let x € W but |[W NU,| # |[W N U,|. Since any extensive mapping W — W must
map WNU, into WNU,, |[WnNU,| <|WNU,|. Hence [WNU,| < |WNU,| and Lemma
3 yields that W is not a minimal winning coalition, a contradiction. Therefore x ¢ W but
(WNU,|=|[WnNU,,|. Then [WN[x)|=|[WNU,| = |WnNU,| = |Wnlz)-1<|Wn|x),
contradicting Lemma 2. Thus, any minimal winning coalition satisfies (9).

Suppose that both W; and Wy satisfy (9) for every x € P but Wy # Wj. Take a
maximal element x in (W2 \ W1)U (W7 \ Wa). By the maximality of z, WoNU, = W1 NU,
and Wo N U, = W; NU,. Hence, by (9), we conclude z € Wy <= |[WanU,| =
WoNU,| <= |WiNU,|=|W1NU,| <= x & Wy, which contradicts the choice of z.
This proves the uniqueness, and the assertion follows. o



Notes on coalition lattices 9

Proof of Theorem 3. Let us denote the set of winning coalitions by W. Then W has a
unique minimal element by Lemma 4 and clearly has the property

VX, Y eL(P) (X <Y &XeW=YeW).
By finiteness, W is a dual ideal. o

It is worth noting that Lemma 4 gives a straightforward algorithm to construct the
minimal winning coalition.

Proof of Theorem 4. Denoting the right hand side of (1) by R first we show that R is
an upper bound of the X; UY;, 1 < j <n. Since |4;| <t —|Y;| and |C| = ¢, any injective
map A; — C can be extended to an injective map a: A; UY; — C. There is an extensive
map 3: Bj — \/;_, B;. Clearly, « U 3: X; UY; — R is an extensive map. Hence R is an
upper bound of the X; UY;, 1 <j < n.

Now let UUT € L(Q), where U € Z and T C M, be an arbitrary upper bound of
the X; UY;, 1 < j < n. Since any extensive map X; UY; — U UT maps Y; to T, we
infer |C| < |T|. We may assume that |Y7| < |Ya| < ... < |Y,|. Notice that for any X € 7
if Y/, Y” C M and |Y'| = |Y"”| then the coalitions X UY”’ and X UY" are equivalent,
e, XUY' < XUY” and XUY” < X UY’. Therefore we may assume, without loss of
generality, that Y1 C Yo C ... CY,, = C CT. All we have to show is

(10) B, <UU(T\C)

for 1 < j < n; indeed, then \/;_, B; <UU(T\C)and R=CU\/_, B <CUUU(T\C) =
U UT will already follow.

Assume first that | X; N D(m)| <t —Y;| and let ¢: X; UY; — UUT be an extensive
map. Then A; = X; N D(m), and B; N D(m) = 0 yields ¢(Bj) N T = (. Hence B; <
©(B;) CU CUU(T\C) and (10) follows.

In the rest of the proof we assume that | X;N.D(m)| > ¢t —|Y;|. Since X,;UY; < UUT,
there exists an extensive map 7: X; — UU(T'\'Y;) such that |7(B;)NT| is minimal. Since
7 maps Bj into U U (7(B;) NT), (10) clearly follows from

(11) [7(B;) NT| < T\ C],

which we are going to show. We may suppose 7(B;)NT # 0, for otherwise (11) is evident.

Suppose first that 7(A4,) € T, and choose a € Aj, b € B; such that 7(a) ¢ T and
7(b) € T. D(m) is a chain by the UBF property, whence a and b are comparable elements.
Since A; is a filter in X; N D(m), we conclude b < a, whence b < 7(a). From a € D(m)
we infer a < 7(b). Therefore

T(b), if z=a,
Y X; - UU((T\Y;), z—< 7(a), if 2=0

7(z), otherwise.

is also an extensive map, and |¢(B;) N T| < |7(B;) N T| contradicts the choice of 7.
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Thus 7(A;) C T, and we obtain

[7(Bj) N T| = |7(B;) N (T'\ Y;)| =
[(r(X) N (TAY))\ (T(A4) N (T\ V)| =
7(X5) N (T\Y)| = [7(45)] <
T\Y;| = (¢ = Y;]) = |T| = Y3 = (IC] = [Y5]) =
T =|Cl=[T\Cl,

proving (11). o

Proof of Corollary 2. By [3, Prop. 2| we have

(12) ZyNZy =271\ Zy

forany Zy,Z5 € L(P). Put X; := EU{m}, Y, := {m}, Xo := FU{m} and Y5 := (). With
the notations of Theorem 4 we have t = 1, C = {m}, 41 = 0 and B; = X; = EU{m}.
If D(m) C F then As = () and By = X, otherwise Ay = {u} and By = X5 \ {u}, so

B, = F'U{m} in both cases. Let us compute based on (12), Theorem 4 and D 2 T:

EA(FU{m})=EVFU{m}=(X;UY])V (X2UY) =
{m}U(B1V B2) = BV B2\ {m} = (Bi A B) \ {m} =
(BEu{m}) A(FU{m})) \{m} =
(EAF)u{m})\{m}=ENAF,

indeed. >

Remark. While revising the present paper, we were notified that Michelle Davidson and
George Gritzer found a new proof of the fact that £(Q) is a quasilattice iff @ is UBF, cf.
[6]. Their approach also offers a recursive construction of joins in £(Q), which is entirely
different from our Theorem 4.
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