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Representing some families of monotone maps by
principal lattice congruences

Gábor Czédli

Dedicated to George Grätzer on the occasion of his eightieth birthday

Abstract. For a lattice L with 0 and 1, let Princ(L) denote the set of principal
congruences of L. Ordered by set inclusion, it is a bounded ordered set. In 2013, G.

Grätzer proved that every bounded ordered set is representable as Princ(L); in fact,

he constructs L as a lattice of length 5. For {0,1}-sublattices A ⊆ B of L, congruence
generation defines a natural map Princ(A) → Princ(B). In this way, every family

of {0,1}-sublattices of L yields a small category of bounded ordered sets as objects
and certain 0-separating {0,1}-preserving monotone maps as morphisms such that

every hom-set consists of at most one morphism. We prove the converse: every small
category of bounded ordered sets with these properties is representable by principal

congruences of selfdual lattices of length 5 in the above sense. As a corollary, we can
construct a selfdual lattice L in G. Grätzer’s above-mentioned result.

1. Introduction

By an old result of N. Funayama and T. Nakayama [8], the congruence

lattice Con(L) of a lattice L is a distributive algebraic lattice. For finite

lattices, the converse also holds: by a classical result of R.P. Dilworth, every

finite distributive lattice D can be represented as the congruence lattice of a

finite lattice L; see [1], and see also G. Grätzer and E. T. Schmidt [22] for the

first published proof. As surveyed in G. Grätzer [10], many improvements of

this theorem yield an L with strong additional properties; here we mention

only G. Grätzer and E. Knapp [15], where L is a finite rectangular (and, thus,

planar and semimodular) lattice, G. Grätzer and E. T. Schmidt [23], where L

is rectangular and each of its congruences is principal, and G. Czédli and E. T.

Schmidt [7], where L is almost-geometric. If finiteness is dropped, then the

theory of representability of a single lattice in the above sense culminated in F.

Wehrung [29], where a non-representable distributive algebraic lattice D was

constructed; thisD has ℵω+1 compact elements. Later, P. Růžička [28] reduced

ℵω+1 to ℵ2; note that no further reduction is possible by A. P. Huhn [24].

Motivated by the rich history of congruence lattice representation problem,

G. Grätzer in [12] has recently started an analogous new topic of lattice theory.

Namely, for a lattice L, let Princ(L) = 〈Princ(L);⊆〉 denote the ordered set
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of principal congruences of L. A congruence is principal if it is generated by

a pair 〈a, b〉 of elements. Ordered sets (also called partially ordered sets or

posets) and lattices with 0 and 1 are called bounded. If L is a bounded lattice,

then Princ(L) is a bounded ordered set. Conversely, by G. Grätzer [12], each

bounded ordered set P is isomorphic to Princ(L) for an appropriate bounded

lattice L of length 5. The ordered sets Princ(L) of countable lattices L were

characterized as directed countable ordered sets with 0 by G. Czédli [5].

There are many results representing a monotone map between two finite

distributive lattices by congruence lattices; here we mention only G. Grätzer,

H. Lakser [16], [17], and [18], G. Grätzer, H. Lakser, and E. T. Schmidt [19]

and [21], and G. Czédli [2]; see G. Grätzer [10] for a survey again. Motivated

by these results and G. Grätzer in [12], G. Czédli [3] represents two bounded

ordered sets and a certain map between them by principal lattice congruences

simultaneously; see Proposition 2.1 later.

In this paper, we give a simultaneous representation for a set of bounded

ordered sets together with some collection of monotone maps by principal

lattice congruences. Even the result of G. Grätzer [12] and that of [3] are

strengthened, because we construct selfdual lattices of length 5.

1.1. Outline. In Section 2, we formulate the main result of the paper, The-

orem 2.8. Also, Proposition 2.1 and Example 2.2 discuss two particular cases;

they help in understanding quickly what Theorem 2.8 asserts. Based on Fig-

ures 1, 2, 3, 4 and Example 3.1, Section 3 motivates the main ideas of the proof

without rigorous details. In Section 4, we construct some lattices, and we prove

Lemma 4.6 stating that they are quasi-colored lattices. Also, Lemma 4.7 de-

termines the ordered sets of principal congruences of our quasi-colored lattices.

Based on Section 4, Section 5 completes the proof of Theorem 2.8. Finally,

Section 6 is devoted to some concluding remarks; in particular, we point out

how one can construct smaller lattices.

2. Our result

2.1. Representing one monotone map. Given two bounded ordered sets,

P and Q, a map ψ : P → Q is called a {0, 1}-preserving monotone map if

ψ(0P ) = 0Q, ψ(1P ) = 1Q, and, for all x, y ∈ P , x ≤P y implies that ψ(x) ≤Q

ψ(y). If, in addition, 0P is the only preimage of 0Q, that is, if ψ−1(0Q) = {0P},

then we say that ψ is a 0-separating {0, 1}-preserving monotone map. Note

that monotone maps are also called order-preserving maps. For a lattice L and

x, y ∈ L, the principal congruence generated by 〈x, y〉 is denoted by con(x, y) or

conL(x, y). Similarly, for X ⊆ L2, the least congruence including X is denoted

by conL(X). If L0 is a {0, 1}-sublattice of L1, then the natural extension map

ζL0,L1
: Princ(L0) → Princ(L1) defined by conL0

(x, y) 7→ conL1
(x, y) (2.1)
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is clearly a 0-separating {0, 1}-preserving monotone map. (It is well defined,

because ζL0,L1
(conL0

(x, y)) is clearly the same as conL1
(conL0

(x, y)).) We

know from G. Czédli [3] that each 0-separating {0, 1}-preserving monotone

map between two bounded ordered sets is of the form (2.1) in a reasonable

sense. More exactly, with the convention that we compose maps from right to

left, we have the following statement.

Proposition 2.1 (G. Czédli [3]). Let 〈P0;≤0〉 and 〈P1;≤1〉 be bounded ordered

sets. If ψ is a 0-separating {0, 1}-preserving monotone map from 〈P0;≤0〉 to

〈P1;≤1〉, then there exist a bounded lattice L1, a {0, 1}-sublattice L0 of L1,

and order isomorphisms

ξ0 : 〈P0;≤0〉 → 〈Princ(L0);⊆〉 and ξ1 : 〈P1;≤1〉 → 〈Princ(L1);⊆〉

such that ψ = ξ−1
1 ◦ ζL0,L1

◦ ξ0; that is, the diagram

〈P0;≤0〉
ψ

−−−−→ 〈P1;≤1〉

ξ0





y ξ−1
1

x





〈Princ(L0);⊆〉
ζL0,L1
−−−−−→ 〈Princ(L1);⊆〉

(2.2)

is commutative.

Therefore, 0-separating {0, 1}-preserving monotone maps between two or-

dered sets are characterized up to isomorphism as extension maps (2.1) for

principal lattice congruences.

2.2. Simultaneous representation of many monotone maps. A lattice

is of length 5 if it has a 6-element chain but does not have a 7-element chain.

Such a lattice is necessarily bounded. If L1 is a lattice of length 5, then it

has many {0, 1}-sublattices in general, and for any two comparable {0, 1}-

sublattices L2 ⊆ L3 of L1, the extension map ζL2,L3
defined as in (2.1) is a

0-separating {0, 1}-preserving monotone map. This motivates the extension

of Proposition 2.1 from a single monotone map ψ to a family of such maps.

First, we outline our purpose with an example.

Example 2.2. Let S = 〈S;≤〉 be the ordered index set in Figure 1 and,

for each i ∈ S, let 〈Pi; νi〉 be the bounded ordered set given in the figure.

Furthermore, for every i ≺ j in S, let ψij be the 0-separating {0, 1}-preserving

monotone map ψij : Pi → Pj indicated by dotted curves. The obvious images

of 0 and 1 are not indicated on purpose. For i < j but i ⊀ j, ψij is also

defined by the rule ψ01 = ψ21 ◦ ψ02 = ψ31 ◦ ψ03. Our goal is to find a selfdual

lattice L1 of length 5 and selfdual {0, 1}-sublattices L0, L2, L3 of L1 such that

〈Pi; νi〉 ∼= Princ(Li) and ψij is represented by ζLi,Lj
for all i < j in the same

sense as ψ := ψ01 is represented in (2.2).
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Figure 1. Monotone maps to represent; see Example 2.2

To give an exact description of our goal, the most economic way is to use

the rudiments of category theory. First, we define some concrete categories

and functors. An ordered set is nontrivial if it has at least two elements.

Notation and definition 2.3.

(i) As usual, we often consider an ordered set S = 〈S;≤〉 a small category.

This category, denoted by Cat(S) or Cat(〈S;≤〉), consists of the ele-

ments of S as objects and the pairs belonging to the ordering relation ≤

as morphisms.

(ii) The category of nontrivial bounded ordered sets with 0-separating {0, 1}-

preserving monotone maps will be denoted by POS0s
01.

(iii) The category of selfdual lattices of length 5 with lattice embeddings as

morphisms will be denoted by Latemb

sd5 .

(iv) We define a functor Princ: Latemb

sd5 → POS0s
01 as follows. For an object,

that is, a lattice L in Lat
emb

sd5 , Princ(L) = 〈Princ(L);⊆〉 is the ordered set

of principal congruences of L. For a morphism f : K → L in Lat
emb

sd5 , we

let
Princ(f) : Princ(K) → Princ(L), defined by

conK(x, y) 7→ conL

(

f(x), f(y)
)

.
(2.3)

Note that every morphism in Latemb

sd5 is a cover-preserving and {0, 1}-preserv-

ing lattice embedding. It is straightforward to see that Princ(f)(conK(x, y))

is the same as

conL

(

{〈f(u), f(v)〉 : 〈u, v〉 ∈ conK(x, y)}
)

.

Hence, the choice of x and y in (2.3) is irrelevant, and Princ(f) is a well-defined

map. It is clearly 0-separating and monotone. Since K is a {0, 1}-sublattice

of L, Princ(f) is {0, 1}-preserving. So, Princ(f) is a morphism in POS0s
01. It

is easy to see that Princ: Latemb

sd5 → POS0s
01 is a functor.
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Remark 2.4. If K is a {0, 1}-sublattice of L and f : K → L is the inclusion

map, then Princ(f) is the same as ζK,L given in (2.1).

Remark 2.5. We have excluded the singleton ordered sets from POS0s
01. This

is not a serious restriction, because the only arrow starting from or departing

at a singleton ordered set in POS0s
01 is an isomorphism between two singleton

ordered sets. On the other hand, for a lattice L, |Princ(L)| = 1 iff |L| = 1,

which is a non-interesting case.

Definition 2.6. Let S be an ordered set and let F : Cat(S) → POS0s
01 be a

functor. Following P. Gillibert and F. Wehrung [9], we say that a functor

E : Cat(S) → Latemb

sd5

lifts F with respect to the functor Princ, if F is naturally isomorphic (also

called naturally equivalent) to the composite functor Princ ◦ E. We say that

F is representable by principal lattice congruences in Latemb

sd5 if there exists a

functor E : Cat(S) → Latemb

sd5 that lifts F with respect to Princ.

As opposed to category theorists, an algebraist may feel that a family of

not necessarily distinct lattices together with embeddings is not as nice as it

should be. Hence, we also introduce the following concept.

Definition 2.7. We say that F : Cat(S) → POS
0s
01 from Definition 2.6 is

concretely representable by principal lattice congruences in Lat
emb

sd5 if there are

a lattice L in Lat
emb

sd5 and a functor E : Cat(S) → Lat
emb

sd5 such that

(i) for every s ∈ S, E(s) is a {0, 1}-sublattice of L;

(ii) for every “arrow” s ≤ t of Cat(S), E(s) is a {0, 1}-sublattice of E(t) and

E(s ≤ t) is the inclusion map from E(s) into E(t);

(iii) for every s, t ∈ S, if E(s) ⊆ E(t), then s ≤ t; and

(iv) E lifts F with respect to Princ.

In case of concrete representability, Remark 2.4 simplifies the situation,

since the functor Princ is applied only for inclusion maps. Clearly, if F from

Definition 2.7 is concretely representable by principal congruences, then it is

representable by principal congruences. Our main result is the following.

Theorem 2.8. For every ordered set S, every functor

F : Cat(S) → POS0s
01

is concretely representable by principal lattice congruences in Latemb

sd5 .

P. Gillibert and F. Wehrung [9, page 12] points out that a functor can

seldom be represented (that is, lifted). The representability of some examples

mentioned in [9, page 12] never happens for trivial reasons. Hence, it is not a

surprise that the proof of Theorem 2.8 in this paper is not short.

To show the strength of Theorem 2.8, we make two observations. First,

observe that Proposition 2.1 follows from the particular case of the Theo-

rem where S is the two-element chain. Second, applying the theorem for the
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case |S| = 1, we obtain the following generalization of the main result of G.

Grätzer [12].

Corollary 2.9. Every nontrivial bounded ordered set P is isomorphic to the

ordered set of principal congruences of some selfdual lattice L of length 5.

It will be clear from our construction that for a finite P in Corollary 2.9, we

always have a finite selfdual lattice L of length 5. Similarly, if S in Theorem 2.8

is finite and so is F (s) for every s ∈ S, then F can be lifted by a functor

E : Cat(S) → Latemb

sd5 with respect to Princ such that E(s) is a finite lattice

for every s ∈ S.

2.3. Added on May 4, 2016. One of the referees has pointed out that

our construction and proof yield a little more than stated in Theorem 2.8.

Following M. Kamara [25], a polarity lattice is a structure 〈L;∨,∧, π〉 such

that 〈L;∨,∧〉 is a lattice and π is a polarity, that is, is a unary operation

satisfying the identities

π(π(x)) = x, π(x ∨ y) = π(x) ∧ π(y), and π(x ∧ y) = π(x) ∨ π(y).

Clearly, selfdual lattices are exactly the lattice reducts of polarity lattices. We

are interested in polarity lattices 〈L;∨,∧, π〉 satisfying the property

Princ(〈L;∨,∧, π〉) = Princ(〈L;∨,∧〉) and length(〈L;∨,∧〉) = 5. (2.4)

Since every congruence is a join of principal congruences, the first equality in

(2.4) is equivalent to the condition that every congruence of 〈L;∨,∧〉 is also a

congruence of 〈L;∨,∧, π〉. Let PLat
emb

(2.4) denote the category of polarity lat-

tices satisfying (2.4) with embeddings as morphisms. (Embeddings are lattice

embeddings commuting with π.) We can consider Princ a PLat
emb

(2.4) → POS
0s
01

functor; see (2.3). Replacing Latemb

sd5 with PLatemb

(2.4) in Definitions 2.6 and 2.7,

we obtain the concept of representability by principal congruences in PLatemb

(2.4).

Addendum to Theorem 2.8 (Observed by an anonymous referee). The

functor F from Theorem 2.8 is concretely representable by principal congru-

ences also in PLatemb

(2.4).

At appropriate places, we will point out why π is preserved and why our

constructs are in PLatemb

(2.4); this is sufficient to verify the Addendum.

Corollary 2.10. For every nontrivial bounded ordered set P , there exists a

polarity lattice 〈L;∨,∧, π〉 ∈ PLatemb

(2.4) such that P ∼= Princ(〈L;∨,∧, π〉).

3. Method and outline

Our approach has three key ingredients. First, we borrow the basic idea of

G. Grätzer [12] but our gadget lattice is different; see Remark 4.3 later.

Second, we use two recent results from G. Grätzer [13] and [14], which allow

us to work with lattice congruences efficiently.
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Third, we need the quasi-coloring technique introduced in G. Czédli [2] and

developed further in G. Czédli [5] and [3].

Due to some powerful lemmas from [5], the proof of Proposition 2.1 in [3]

was quite short. As opposed to [3], the most involved lemmas from [5] cannot

be used here directly, because the lattices in [5] are neither selfdual, nor of

length 5. Hence, the present paper is much more self-contained than [3].

A quasiordered set is a structure 〈H ; ν〉where H 6= ∅ is a set and ν ⊆ H2 is a

reflexive, transitive relation on H . Quasiordered sets are also called preordered

sets. Instead of 〈x, y〉 ∈ ν , we often write x ≤ν y. Also, we write x <ν y and

x ‖ν y for the conjunction of x ≤ν y and y �ν x, and for the conjunction of

〈x, y〉 /∈ ν and 〈y, x〉 /∈ ν , respectively. Similarly, x =ν y will stand for the

conjunction of x ≤ν y and y ≤ν x. If g ∈ H and x ≤ν g for all x ∈ H , then

g is a greatest element of H ; least elements are defined dually. They are not

necessarily unique; if they are, then they are denoted by 1 = 1H and 0 = 0H .

In this case, we often use the notation

H−01 = H \ {0H , 1H}. (3.1)

Given H 6= ∅, the quasiorderings on H form a complete lattice with respect

to set inclusion. For X ⊆ H2, the least quasiorder on H that includes X is

denoted by quoH(X) or quo(X). We write quo(x, y) instead of quo({〈x, y〉}).

Next, in order to outline the construction needed in the proof of Theo-

rem 2.8, we continue Example 2.2; see also Figure 1.

Figure 2. The quasiordered sets for Examples 2.2 and 3.1

Example 3.1 (Continuation of Example 2.2).
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(A) For the ordered sets Pi in Figure 1, we assume that Pi ∩ Pj = {0, 1}

for i 6= j ∈ S. Define Ri =
⋃

{Pj : j ≤S i}, for i ∈ S, see Figure 2.

Observe that, for j ≤ k ≤ i, νj and ψjk = {〈x, y〉 : x ∈ Pj, ψjk(x) = y} are

both relations on Ri. Let us agree that ψjj is the identity map on Pj and

ψ−1
jk = {〈x, y〉 : ψjk(y) = x}. So, for i ∈ S, we can let

ν̂i = quoRi

(

⋃

{νj : j ≤S i} ∪
⋃

{ψjk ∪ ψ−1
jk : j ≤S k ≤S i}

)

.

In Figure 2, we give the quasiordered sets 〈Ri; ν̂i〉 as directed graphs; however,

we do it in an unusual way. Namely, for each i, we depict 1 ∈ Ri twice, so

the wavy arcs stand for equality. For example, |R0| = 3 but its graph contains

4 vertices. The duplicate vertices for 1 will serve explanatory purposes later.

The graphs in Figure 2 contain arcs, that is, curved edges, and straight edges.

The straight edges are understood as up-directed edges and they correspond

to the meaning of 0 and 1 in 〈Pj; νj〉. The solid (non-wavy) directed arcs

correspond to the orderings νj. Whenever y = ψjk(x) and j ≤ k ≤ i, then

Ri in Figure 2 contains the dotted directed arcs 〈x, y〉 and 〈y, x〉; to make the

figure less crowded, we use a single arc directed in both ways. Furthermore,

we omit the dotted directed arcs of the forms 〈0, 0〉 and 〈1, 1〉. (Since the ψjk

are always {0, 1}-preserving, these omitted arcs carry no information.) Note

that the dotted arcs are inherited from Figure 1 but now they are directed in

both ways. In this way, the Ri in the figure are directed graphs and the ν̂i are

the quasiorders generated by these graphs.

If 〈H ; ν〉 is a quasiordered set, then Θν = ν ∩ ν−1, also denoted by =ν , is

known to be an equivalence relation, and the definition

[x]Θν ≤ [y]Θν ⇐⇒ x ≤ν y (3.2)

turns the quotient set H/Θν into an ordered set 〈H/Θν;≤〉. In our case, it is

clear from the figure that 〈Pi; νi〉 ∼= 〈Ri/Θν̂i
;≤〉 for i ∈ S. Furthermore, all we

need to know about the ψjk, for j ≤ k ≤ i, is “encoded” in the quasiordered

set 〈Ri; ν̂i〉.

(B) Next, we turn the quasiordered sets 〈Ri; ν̂i〉 of Figure 2 into lattices Wi

as follows. For every u 6= 0 in the “middle layer” of 〈Ri; ν̂i〉, we replace u by

a covering pair au ≺ bu. The duplicate of 1 in the middle layer is replaced by

a selfdual simple lattice M of length five such as M = M4×3 (3.3)

in Figure 9, which we will use later. We omit the wavy arcs and, usually,

we omit the arcs of the form 〈u, 1〉. (3.4)

In M , we pick a covering pair a1 ≺ b1 such that a dual automorphism of M

maps a1 to b1. The lattices we obtain at this stage are depicted in Figure 3.

Besides giving the lattice structures by straight lines, Figure 3 also contains the

non-wavy arcs inherited from Figure 2, but we disregard them at present. For

each i ∈ S, Wi is a {0, 1}-preserving sublattice of W1. Observe that Princ(Wi)
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is a modular lattice of length 2 with pairwise distinct atoms con(au, bu), u ∈

Ri \ {0, 1}.

Figure 3. Auxiliary lattices with arcs for Examples 2.2

and 3.1

(C) From Wi in Figure 3, we obtain our lattices Li, i ∈ S, as follows. First,

we change the remaining arcs among the vertices of Figure 2 to directed arcs

among the corresponding “middle layer” edges in Figure 3. Next, whenever

〈[ap, bp], [aq, bq]〉 is a directed arc, we glue the selfdual lattice Gdb(p, q) given

in Figure 4 into Wi in the natural way suggested by the notation, that is, we

form Wi ∪ Gdb(p, q) such that Wi ∩ Gdb(p, q) = {0, ap, bp, aq, bq, 1}. That is,

for each directed arc in Figure 3, we add 22 new elements to Wi. The role of

these 22 elements, which are black-filled in Figure 4, is to force con(ap, bp) ≤

con(aq , bq). In this way, after replacing all directed arcs by appropriate copies

of the lattice from Figure 4, we obtain the lattices Li, i ∈ S. Clearly, for i ∈ S,

Li is a selfdual lattice of length 5 and it is a sublattice of L1. Observe that

|W1| = |M | + 14 = |M4×3| + 14 = 28 and W1 has 11 directed arcs. (Those

oriented in two ways count twice.) Hence, |L1| = 28+11 · 22 = 270. Similarly,

|L0| = 14 + 2 = 16, |L2| = 14 + 4 + 2 · 22 = 62, and |L3| = 14+ 8 + 3 · 22 = 88.

In Remarks 6.1–6.2 and Example 6.3, we will point out how to obtain smaller

lattices.
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Figure 4. The double gadget, Gdb(p, q)

Even in Examples 2.2 and 3.1, it is not trivial that our 270-element lattice

has only four principal congruences. In the rest of the paper, we give the

general construction and prove that it works.

4. The general construction and its properties

4.1. Quasi-colored lattices. Let L = 〈L;≤〉 be an ordered set or a lattice.

For x, y ∈ L, 〈x, y〉 is called an ordered pair of L if x ≤ y; this concept is

consistent with the one used in previous work with quasi-colorings. An ordered

pair 〈x, y〉 is a trivial ordered pair if x = y. The set of ordered pairs of L is

denoted by Pairs≤(L). IfX ⊆ L, then Pairs≤(X) will stand forX2∩Pairs≤(L).

Note that we shall often use the fact that Pairs≤(S) ⊆ Pairs≤(L) holds for

subsets S of L; this explains why we work with ordered pairs rather than

intervals. Note also that 〈a, b〉 is an ordered pair iff b/a is a quotient. If a ≺ b,

then 〈a, b〉 is a covering pair. The set of covering pairs of L is denoted by

Pairs≺(L); note that Pairs≺(L) ⊆ Pairs≤(L).

By a quasi-colored lattice we mean a structure L = 〈L,≤; γ;H, ν〉 where

〈L;≤〉 is a lattice, 〈H ; ν〉 is a quasiordered set, γ : Pairs≤(L) → H is a surjec-

tive map, and for all 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≤(L),

(C1) if γ(〈u1 , v1〉) ≤ν γ(〈u2 , v2〉), then con(u1, v1) ≤ con(u2, v2);

(C2) if con(u1, v1) ≤ con(u2, v2), then γ(〈u1, v1〉) ≤ν γ(〈u2, v2〉).

This concept is taken from G. Czédli [2] and [5]. By the “antichain variant”

of (Ci) we mean the condition obtained from (Ci) by substituting the equality

sign for ≤ν and ≤. Prior to [2], the name “coloring” was used for surjective

maps satisfying the antichain variant of (C2) in G. Grätzer, H. Lakser, and

E.T. Schmidt [20], and for surjective maps satisfying the antichain variant of

(C1) in G. Grätzer [10, page 39]. Note that in [2], [10], and [20], γ(〈u, v〉)

was defined only for covering pairs u ≺ v. To emphasize that con(u1, v1) and

con(u2, v2) belong to the ordered set Princ(L), we usually write con(u1, v1) ≤

con(u2, v2) rather than con(u1, v1) ⊆ con(u2, v2). It follows easily from (C1),
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(C2), and the surjectivity of γ that if 〈L,≤; γ;H, ν〉 is a quasi-colored bounded

lattice, then 〈H ; ν〉 is a quasiordered set with a least element and a greatest

element; possibly with many least elements and many greatest elements. For

〈x, y〉 ∈ L, γ(〈x, y〉) is called the color (rather than the quasi-color) of 〈x, y〉.

4.2. Two technical lemmas. Recently, G. Grätzer has proved the following

two statements. They will be very useful in this paper.

Lemma 4.1 (G. Grätzer [13]). Let L be a lattice such that every interval of

L is of finite length. Let δ be an equivalence relation on L with intervals as

equivalence classes. Then δ is a congruence relation iff the following condition

and its dual hold for every x, y, z ∈ L:

If x ≺ y, x ≺ z and 〈x, y〉 ∈ δ, then 〈z, y ∨ z〉 ∈ δ. (4.1)

For i ∈ {1, 2}, let pi = [xi, yi] be prime intervals of a lattice L. That is,

〈xi, yi〉 ∈ Pairs≺(L). We say that p1 is prime-perspective down to p2, denoted

by p1
p-dn
→ p2 or 〈x1, y1〉

p-dn
→ 〈x2, y2〉, if y1 = x1 ∨ y2 and x1 ∧ y2 ≤ x2; see

Figure 5, where the solid lines indicate prime intervals while the dotted ones

stand for the ordering relation of L. We define prime-perspective up, denoted

by p1
p-up
→ p2 or 〈x1, y1〉

p-up
→ 〈x2, y2〉, dually. We say that p1 is prime-perspective

to p2, in notation, p1
p-pr
→ p2, if p1

p-dn
→ p2 or p1

p-up
→ p2.

Figure 5. Prime perspectivities

Lemma 4.2 (Prime-Projectivity Lemma; see G. Grätzer [14]). Let L be a

lattice of finite length. Assume that [u1, v1] and [u2, v2] are prime inter-

vals in L, that is, 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≺(L) are covering pairs. Then

con(u1, v1) ≤ con(u2, v2) iff there exist a nonnegative integer n and a sequence

〈x0, y0〉, 〈x1, y1〉, . . . , 〈xn, yn〉 of covering pairs such that 〈x0, y0〉 = 〈u2, v2〉,

〈xn, yn〉 = 〈u1, v1〉, and 〈xi−1, yi−1〉
p-pr
→ 〈xi, yi〉 for all i ∈ {1, . . . , n}.

4.3. Basic gadgets. For parameters p 6= q, the quasi-colored lattice

Gup(p, q) = 〈Gup(p, q), λup

pq; γ
up

pq ;H(p, q), νpq〉

depicted in Figure 6 is our upward gadget. (Its “lattice part” is a lattice by,

say, D. Kelly and I. Rival [26, Corollary 2.4].) The upward gadget consists of

a 17-element lattice Gup(p, q) = 〈Gup(p, q);≤〉 = 〈Gup(p, q); λup

pq〉, a 4-element
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Figure 6. The (upward) gadget, Gup(p, q)

quasiordered set 〈H(p, q); νpq〉, which is actually a chain, and the quasi-coloring

γup

pq is defined by the figure as follows: for 〈x, y〉 ∈ Pairs≤(Gup(p, q)),

γup

pq(〈x, y〉) =



































p, if 〈x, y〉 is a p-colored edge in the figure,

q, if 〈x, y〉 is a q-colored edge,

q, if 〈x, y〉 = 〈cpq
4 , d

pq
4 〉,

0H(p,q), if x = y,

1H(p,q), otherwise (if [x, y] contains a thick edge).

(4.2)

The adjective “upward” comes from the fact that in order to get from ap to

cpq
1 , or from bp to dpq

1 , we have to go upwards; see Figure 6. Using Lemma 4.2,

it is straightforward to see that Gup(p, q) is a quasi-colored lattice.

Remark 4.3. G. Grätzer [12] uses a different technique and his gadget, de-

noted by S = S(p, q) in [12], cannot be quasi-colored by a four element chain.

Also, while (4.7) will turn our Gup(p, q) into a selfdual lattice, the analogous

construction with his S(p, q) would not give a lattice. These are the reasons

that we need a larger gadget; however, the size |Gup(p, q)| = 17 seems to be

optimal for our purpose.

We obtain the downward gadget lattice

Gdn(p, q) = 〈Gdn(p, q), λdn

pq; γ
dn

p,q ;H(p, q), νpq〉

by taking the dual

〈Gdn(p, q); λdn

pq〉 := 〈Gup(p, q); (λup

pq)
−1〉

of the lattice 〈Gup(p, q); λup

pq〉 and defining γdn

pq by the rule

γdn

pq(〈x, y〉) := γup

pq(〈y, x〉) for 〈x, y〉 ∈ Pairs≤(Gdn(p, q)), (4.3)

that is, for 〈y, x〉 ∈ Pairs≤(Gup(p, q)); see Figure 7. The upward gadget and

the downward one are our basic gadgets.
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Figure 7. The downward gadget, Gdn(p, q)

If [x, y] and [x′, y′] are intervals of a lattice such that {x, y, x′, y′} is a non-

chain sublattice, then [x, y] and [x′, y′] are transposed or, in other words, per-

spective intervals, and 〈x, y〉 and 〈x′, y′〉 are perspective ordered pairs. The

following convention applies to all of our figures that contain both thin and

thick edges: if γ is a quasi-coloring, then for an ordered pair 〈x, y〉,

γ(〈x, y〉) =























0, iff x = y,

u, if x ≺ y is a thin edge labeled by u,

1, if the interval [x, y] contains is a thick edge,

γ(〈x′, y′〉), if [x, y] and [x′, y′] are transposed intervals.

(4.4)

By this convention and the following lemma, our figures with thin and thick

edges determine the corresponding quasi-colorings. In order to formulate this

lemma, let 〈H ; ν〉 be a quasiordered set. For p, q1, . . . , qn ∈ H , we say that

p ∈ H is a join of the elements q1, . . . , qn ∈ H if qi ≤ν p for all i and, for

every r ∈ H , the conjunction of qi ≤ν r for i = 1, . . . , n implies p ≤ν r.

Even if a join exists, it need not be unique in the usual sense, but it is unique

modulo Θν = ν ∩ ν−1. The easy statement below is taken from G. Czédli [5,

Lemma 4.6].

Lemma 4.4. If u0 ≤ u1 ≤ · · · ≤ un are elements of a quasi-colored lattice

〈L,≤; γ;H, ν〉, then

γ(〈u0 , un〉) =ν

n
∨

i=1

γ(〈ui−1, ui〉) holds in 〈H ; ν〉. (4.5)

Although Gdn(p, q) and Gdn(u, v) are isomorphic in a self-explanatory sense,

we do not consider them equal if 〈p, q〉 6= 〈u, v〉. Actually, we always assume

that, for 〈p, q〉 6= 〈u, v〉,

the intersection of any two of Gup(p, q), Gup(u, v), Gdn(p, q),

and Gdn(u, v) is as small as it follows from the notation.
(4.6)

For example, if |{p, q, u}| = 3, then Gup(p, q) ∩ Gdn(p, u) = {0, ap, bp, 1} and

Gup(p, q) ∩Gup(q, p) = Gup(p, q) ∩Gdn(p, q) = {0, ap, bp, aq, bq, 1}.
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4.4. More about gadgets. Convention (4.6) allows us to speak of unions

easily, and these unions are bounded ordered sets. For example, we need the

ordered set

Gdb(p, q) := Gup(p, q)∪Gdn(p, q); (4.7)

which is the lattice from Figure 4; the ordering is understood in the natural

way. Although it would not be hard to verify that Gdb(p, q) is a lattice, we

conclude this fact from the following lemma, which will also be needed later.

Figure 8. G. Inserting the upward gadget Gup(p, q)

Lemma 4.5. Assume that L = 〈L;≤L〉 = 〈L; λL〉 is a lattice of length 5,

and let 0 < ap ≺ bp < 1 and 0 < aq ≺ bq < 1 in L such that none of the

intervals [0, bp], [ap, 1], [0, bq], and [aq, 1] is of length greater than 3. Assume

that ap ∨ aq = 1, bp ∧ bq = 0, and L ∩Gup(p, q) = {0, ap, bp, aq, bq, 1}. Let

LMMM := L ∪Gup(p, q) and λMMM := quo(λL ∪ λup

pq); (4.8)

see Figure 8. Then LMMM = 〈LMMM; λMMM〉, also denoted by LMMM

p,q or 〈LMMM

p,q ;≤
MMM〉, is a

lattice of length 5. Furthermore, both L and Gup(p, q) are {0, 1}-sublattices

of LMMM.

We say that LMMM is obtained from L by inserting an upward gadget. For an

ordered set P and ∅ 6= X ⊆ P , the least order ideal including X is denoted

by ↓P X or, if P is understood, by ↓X. For x ∈ P , we write ↓x rather than

↓{x}. The order filter ↑P x is defined dually.
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Proof of Lemma 4.5. For brevity, we will often write Gup, ↑Gx, and ≤G instead

of Gup(p, q), ↑Gup(p,q)x, and λup

pq , respectively. Let

B = B(p, q) := {0, ap, bp, aq, bq, 1} = L ∩Gup(p, q).

Since B is a complete {0, 1}-sublattice of both L and Gup(p, q), we can consider

the following closure operators
∗ : Gup → B, where x∗ is the smallest element of B ∩ ↑Gx,
• : L→ B, where x• is the smallest element of B ∩ ↑Lx

(4.9)

and, dually, the interior operators

∗ : Gup → B, where x∗ is the largest element of B ∩ ↓Gx,

• : L→ B, where x• is the largest element of B ∩ ↓Lx.
(4.10)

For a subset X of Y and a relation % ⊆ Y 2, the restriction % ∩X2 of % to X

is denoted by %eX . We claim that

λMMM is an ordering, λMMMeL = λL, λMMMeGup = λup

pq ,

for x ∈ L and y ∈ Gup, x ≤MMM y ⇐⇒ x• ≤G y ⇐⇒ x ≤L y∗,

for x ∈ Gup and y ∈ L, x ≤MMM y ⇐⇒ x∗ ≤L y ⇐⇒ x ≤G y•.

(4.11)

In order to verify this, observe that the second “⇐⇒” holds in the last two

lines of (4.11). Hence, we can define a new relation λ′ by (4.11) with λ′ in

place of λMMM and ≤MMM. It is straightforward to verify that λ′ is a quasiordering;

a part of the argument for antisymmetry runs as follows. Let, say, x ∈ L and

y ∈ Gup such that 〈x, y〉, 〈y, x〉 ∈ λ′. Then x ≤L x• ≤G y ≤G y∗ ≤L x. Since

x• ≤G y∗ and these elements are in B, we have that x ≤L x• ≤L y∗ ≤L x.

Using antisymmetry in L, we obtain that x = x• = y∗. Combining this with

x• ≤G y ≤G y∗, we obtain that x = y, as required. Finally, armed with the

fact that λ′ is a quasiordering, we obtain that λMMM = λ′, proving (4.11).

Note that x∗ = 1 for all x ∈ Gup \L. Thus, ↑LMMM (Gup \L) = (Gup \L) ∪ {1},

which is the second reason that Gup is called an upward gadget.

Next, in order to show that LMMM is a lattice, let x, y ∈ LMMM. We need to prove

the existence of x ∨MMM y := x∨LMMM y and x ∧MMM y := x∧LMMM y. Denoting the lattice

operations in L and Gup by ∨L, ∧L, and ∨G, ∧G, respectively, we claim that

if x ∈ L \Gup and y ∈ Gup \ L, then x ∧MMM y = x ∧L y∗, (4.12)

if x ∈ L \Gup and y ∈ Gup \ L, then x ∨MMM y = x• ∨G y, (4.13)

if x, y ∈ L, then x ∧MMM y = x∧L y, and x ∨MMM y = x ∨L y, (4.14)

if x, y ∈ Gup, then x ∧MMM y = x ∧G y, and x ∨MMM y = x ∨G y. (4.15)

We can assume that {x, y} ∩ {0, 1} = ∅. Since (Gup \ L) ∩ ↓LMMMx = ∅ for

x ∈ L\Gup, (4.12) is clear. Similarly, (L\Gup)∩↑LMMM y = ∅ for y ∈ Gup \L, and

we obtain (4.13). Next, let x, y ∈ L, and let z ∈ Gup be a lower bound of {x, y}

in LMMM. By (4.11), z∗ ≤L x and z∗ ≤L y, so z∗ ≤L x ∧L y. Using (4.11) again,

z ≤MMM x∧Ly. This gives the first equality in (4.14). In order to show the second

one, let u ∈ Gup be an upper bound of x and y. (4.11) gives that x ≤L u∗ and
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y ≤L u∗, and we obtain that x∨L y ≤L u∗ ≤G u. Hence, x∨L y ≤MMM u, proving

the second equality in (4.14). Since (4.15) follows analogously, LMMM is a lattice.

By (3.3) and the assumption on lengths in the lemma, LMMM is of length 5. �

It follows from Lemma 4.5 that Gdb(p, q), see (4.7) and Figure 4, is a lattice.

It is a selfdual lattice of length 5. The ordering on this lattice, denoted by λdb

pq ,

is the quasiorder generated by λup

pq ∪ λ
dn

pq . Since γup

pq and γdn

pq are not in conflict

on Pairs≤(Gup) ∩ Pairs≤(Gdn) = λup

pq ∩ λ
dn

pq , we have a map

γup

pq ∪ γ
dn

pq : Pairs≤(Gup) ∪ Pairs≤(Gdn) → H(p, q).

Letting γdb

pq(〈x, y〉) = 1H(p,q) for all pair 〈x, y〉 ∈ Pairs≤(Gdb) not belonging to

Pairs≤(Gup)∪Pairs≤(Gdn), we obtain a well-defined extension γdb

pq of γup

pq ∪ γ
dn

pq

to Pairs≤(Gdb). Equivalently, γdb

pq : Pairs≤(Gdb) → H(p, q) is determined by

Figure 4, convention (4.4), and Lemma 4.4. Using Lemmas 4.1 and 4.2, it

follows in a straightforward way that γdb

pq is a quasi-coloring. So we obtain a

quasi-colored lattice

Gdb(p, q) = 〈Gdb(p, q), λdb

pq; γ
db

pq ;H(p, q), νdb

pq〉,

which we call the double gadget.

We define a polarity π on Gdb(p, q) as Figures 4, 6, and 7 suggest. In

particular, π(ap) = bp, π(aq) = bq , π(epq) = epq , π(cpq
i ) = di

pq, and π(dpq
i ) =

cipq, for i ∈ {1, . . . , 5}. It is straightforward to conclude from (C1), (C2), (4.3),

and (4.4) that 〈Gdb(p, q), λdb

pq, π〉 ∈ PLatemb

(2.4).

4.5. Constructing large quasi-colored lattices. Let H be an arbitrary

set such that 0 ∈ H , 1 ∈ H and 0 6= 1. As in (3.1), H−01 stands for H \ {0, 1}.

The selfdual simple lattice depicted twice in Figure 9 is denoted by M4×3.

Its polarity is the rotational symmetry on the left of the figure. Note that,

instead of M4×3, we could use any selfdual lattice M satisfying (3.3); the

role of length(M) = 5 is to guarantee that L(H,∅,∅) in Figure 9 and, thus,

L(H, I, J) later in (4.19) are of length 5 rather than of length at most 5. Note

also that a0 = b0 is an arbitrarily fixed element of M4×3 (in a non-crowded

part of Figure 9). For each p ∈ H−01, take a 4-element chain Cp := {0 ≺ ap ≺

bp ≺ 1}. The ordering on this chain and that of the lattice M4×3 will also be

denoted by λCp
and λM4×3

, respectively. We assume that H , M4×3 and all

the Cp are as much disjoint as the notation allows, that is, the intersection of

any two is {0, 1}. Writing
⋃

p for
⋃

p∈H−01 , let

〈L(H,∅,∅); λH,∅,∅〉 := 〈M4×3 ∪
⋃

pCp ; λM4×3
∪

⋃

p λCp
〉, (4.16)

which is a obviously a lattice; see on the right of Figure 9. Its polarity extends

that ofM4×3 with the reflection across a horizontal axis. The polarity preserves

the quasi-coloring, which is indicated in the figure according to (4.4). Hence,

by (C1) and (C2), L(H,∅,∅) with its polarity becomes a member of PLatemb

(2.4).
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Figure 9. M4×3 and L(H,∅,∅) for H = {0, 1, u, v, w, . . .}

Next, we insert several upward gadgets and, dually, downward gadgets into

L(H,∅,∅); see the paragraph after Lemma 4.5. With H and L(H,∅,∅) as

above, let us agree that, for every p 6= q ∈ H \ {0},

Gup(p, q) ∩ L(H,∅,∅) = Gdn(p, q) ∩ L(H,∅,∅) = {0, ap, bp, aq, bq, 1}. (4.17)

Assume that

I and J are subsets of (H \ {0}) × (H \ {0})

such that p 6= q holds for every 〈p, q〉 ∈ I ∪ J .
(4.18)

Taking Conventions (4.6) and (4.17) into account, we define

L(H, I, J) := L(H,∅,∅) ∪
⋃

〈p,q〉∈I

Gup(p, q) ∪
⋃

〈p,q〉∈J

Gdn(p, q), and

λH,I,J := quo
(

λH,∅,∅ ∪
⋃

〈p,q〉∈I

λup

pq ∪
⋃

〈p,q〉∈J

λdn

pq

)

.
(4.19)

As opposed to (4.16), the mere union in the second line of (4.19) is not sufficient

to obtain a quasiordering. Observe that, for 〈p, q〉 ∈ I and I′ := I \ {〈p, q〉},

〈L(H, I, J); λH,I,J〉 is obtained from 〈L(H, I′, J); λH,I′,J〉 by

inserting the upward gadget Gup(p, q) at {0, ap, bp, aq, bq, 1},
(4.20)

and analogously with J and “downward” instead of I and “upward”. Hence,

a straightforward transfinite induction based on Lemma 4.5 yields that

〈L(H, I, J); λH,I,J〉 is a lattice of length 5 (4.21)

and, furthermore, if H1 ⊆ H2, I1 ⊆ I2, and J1 ⊆ J2, then

〈L(H1, I1, J1); λH1,I1,J1
〉 is a sublattice of 〈L(H2, I2, J2); λH2,I2,J2

〉. (4.22)

Next, we turn the lattice 〈L(H, I, J); λH,I,J〉 into a quasi-colored lattice.

Let νH,∅,∅ be the unique ordering of H , with least element 0 and largest

element 1, such that 〈H ;≤H,∅,∅〉 := 〈H ; νH,∅,∅〉 is a modular lattice of length

2. That is, denoting the covering relation with respect to νH,∅,∅ by ≺H,∅,∅,

0 ≺H,∅,∅ p ≺H,∅,∅ 1 for all p ∈ H−01, and any p 6= q ∈ H−01

are incomparable with respect to νH,∅,∅.
(4.23)
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In accordance with Figure 9 and (4.4), for 〈x, y〉 ∈ Pairs≤(L(H,∅,∅)), we let

γH,∅,∅(〈x, y〉) =















p, if 〈x, y〉 = 〈ap, bp〉 and p ∈ H \ {0},

0, if x = y,

1, otherwise.

It is straightforward to see that 〈L(H,∅,∅), λH,∅,∅; γH,∅,∅;H, νH,∅,∅〉 is a

quasi-colored lattice. The quasi-colorings γup

pq and γdn

pq for p 6= q ∈ H−01

are not in conflict with γH,∅,∅. Furthermore, although the maps γup

p1, γ
up

1p,

γdn

p1 and γdn

1p, defined by (4.2) and (4.3), are not quasi-colorings, these maps

are not in conflict with γH,∅,∅ either. Therefore, there is a unique map

γH,I,J : Pairs≤(L(H, I, J)) → H such that

γH,I,J (〈x, y〉) =























γH,∅,∅(〈x, y〉), if 〈x, y〉 ∈ Pairs≤(L(H,∅,∅)),

γup

pq(〈x, y〉), if 〈x, y〉 ∈ Pairs≤(Gup(p, q)),

γdn

pq(〈x, y〉), if 〈x, y〉 ∈ Pairs≤(Gdn(p, q)),

1, otherwise.

Finally, after letting

νH,I,J := quoH(νH,∅,∅ ∪ I ∪ J), (4.24)

we are ready to formulate the key lemma of this section. Its importance will

be shown later by Lemma 4.7.

Lemma 4.6. Assume (4.18). Then

L(H, I, J) := 〈L(H, I, J), λH,I,J ; γH,I,J ;H, νH,I,J〉 (4.25)

is a quasi-colored lattice of length 5. If I = J , then it is a selfdual lattice.

Proof. We know from (4.21) that 〈L(H, I, J), λH,I,J〉 is a lattice. As usual,

projectivity is the reflexive transitive closure of the relation “perspectivity”.

It follows from the construction, see Figures 6 and 7, that, for every 〈x, y〉 ∈

Pairs≤(L(H, I, J)),

if γH,I,J (〈x, y〉) = p ∈ H−01, then 〈x, y〉 is projective to 〈ap, bp〉. (4.26)

The largest and the smallest congruence of a bounded lattice K will be de-

noted by ∇K and ∆K, respectively. They belong to Princ(K), because ∇K =

conK(0, 1). Using that γH,∅,∅ and the γup

pq and γdn

pq are quasi-colorings and so

they satisfy (C1), we conclude that for every 〈x, y〉 ∈ Pairs≤(L(H, I, J)),

if γH,I,J (〈x, y〉) = 1, then con(x, y) = ∇L(H,I,J). (4.27)

In order to prove that L(H, I, J) satisfies (C1), assume that 〈x1, y1〉 and

〈x2, y2〉 belong to Pairs≤(L(H, I, J)), p = γH,I,J (〈x1, y1〉), q = γH,I,J (〈x2, y2〉),

and 〈p, q〉 ∈ νH,I,J . We need to show that con(x1, y1) ≤ con(x2, y2). This is

trivial if p = q or p = 0. It is also trivial by (4.27) if q = 1. Hence, we

assume that {p, q} ∩ {0, 1} = ∅. Based on (4.24), it suffices to deal only with

the case 〈p, q〉 ∈ νH,∅,∅ ∪ I ∪ J . However, 〈p, q〉 ∈ νH,∅,∅ has already been
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excluded, because p 6= q and {p, q} ∩ {0, 1} = ∅. Thus, by duality, we can

assume that 〈p, q〉 ∈ I. Since 〈x1, y1〉 is projective to 〈ap, bp〉 by (4.26) and

since projective pairs generate the same congruence, con(x1, y1) = con(ap, bp).

Similarly, con(x2, y2) = con(aq , bq). Since 〈p, q〉 ∈ I, Gup(p, q) is a sublattice

of L(H, I, J) and ap, bp, aq, and bq belong to this sublattice. Therefore, as

Figure 6 shows,

〈aq, bq〉
p-up
→ 〈cpq

5 , d
pq
5 〉

p-dn
→ 〈epq , dpq

4 〉
p-up
→ 〈cpq

3 , d
pq
3 〉

p-dn
→ 〈cpq

2 , d
pq
2 〉

p-up
→ 〈cpq

1 , d
pq
1 〉

p-dn
→ 〈ap, bp〉.

Hence, by (the trivial direction of) Lemma 4.2, con(ap, bp) ≤ con(aq, bq).

Thus, con(x1, y1) = con(ap, bp) ≤ con(aq, bq) = con(x2, y2). This proves that

L(H, I, J) satisfies (C1).

Next, let α be the equivalence on L(H, I, J) whose non-singleton equivalence

classes are the [ap, bp] for p ∈ H−01, the [cpq
i , d

pq
i ] for 〈p, q〉 ∈ I and i ∈

{1, . . . , 5}, and the [cipq, d
i
pq] for 〈p, q〉 ∈ J and i ∈ {1, . . . , 5}. Using Lemma 4.1,

it is straightforward to see that α is a congruence. Clearly, α is distinct from

∇L(H,I,J). We claim that, for any 〈x, y〉 ∈ Pairs≤(L(H, I, J)),

γH,I,J (〈x, y〉) = 1 ⇐⇒ con(x, y) = ∇L(H,I,J). (4.28)

To see this, assume that γH,I,J (〈x, y〉) 6= 1H . Then con(x, y) ≤ α, defined in

the paragraph above, and so con(x, y) 6= ∇L(H,I,J). This, together with (4.27),

implies the validity of (4.28).

Next, in order to prove that L(H, I, J) satisfies (C2), let us assume that

〈u1, v1〉 and 〈u2, v2〉 both belong to Pairs≤(L(H, I, J)) such that con(u1, v1) ≤

con(u2, v2). With the notation p := γH,I,J (〈u1, v1〉) and q := γH,I,J (〈u2, v2〉),

we need to prove that 〈p, q〉 ∈ νH,I,J . Since, for i ∈ {1, 2},

ui = vi ⇐⇒ con(ui, vi) = ∆L(H,I,J) ⇐⇒ γH,I,J (ui, vi) = 0,

we can assume that u1 6= v1, u2 6= v2 and p 6= 0 6= q. By (4.28), we can

assume that con(u1, v1) 6= ∇L(H,I,J) 6= con(u2, v2) and p 6= 1 6= q. That is,

p, q ∈ H−01. Since 〈u1, v1〉 is projective to 〈ap, bp〉 by (4.26), con(u1, v1) =

con(ap, bp). Furthermore, γH,I,J (〈u1, v1〉) = p = γH,I,J (〈ap, bp〉) by (4.4).

Hence, we can assume that 〈u1, v1〉 = 〈ap, bp〉 and, similarly, 〈u2, v2〉 = 〈aq, bq〉.

After all these simplifications, in order to prove (C2), we have to show that

if p, q ∈ H−01, con(ap, bp) ≤ con(aq, bq) 6= ∇L(H,I,J), and p 6= q,

then 〈p, q〉 = 〈γH,I,J (〈ap, bp〉), γH,I,J(〈aq , bq〉)〉 ∈ νH,I,J .
(4.29)

By Lemma 4.2, there are covering pairs 〈xi, yi〉 ∈ Pairs≺(L(H, I, J)) such that

〈aq, bq〉 = 〈x0, y0〉
p-pr
→ 〈x1, y1〉

p-pr
→ · · ·

p-pr
→ 〈xn, yn〉 = 〈ap, bp〉. (4.30)

We can assume that (4.30) is a shortest possible sequence and n > 0. For

i = 0, . . . , n, let ri = γH,I,J (〈xi, yi〉). Of course, r0 = q and rn = p. Using

appropriate initial or final segments of the sequence given in (4.30), the easy

direction of Lemma 4.2 yields that con(aq , bq) ≥ con(xi, yi) ≥ con(ap, bp).
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Combining this with the premise in (4.29) and the definition of γH,I,J , we

obtain that

ri ∈ H−01 and {0, 1} ∩ {xi, yi} = ∅, whenever i ∈ {0, 1, . . . , n}. (4.31)

By the transitivity of νH,I,J , it suffices to show that, for i ∈ {1, . . . , n},

〈ri, ri−1〉 = 〈γH,I,J (〈xi, yi〉), γH,I,J (〈xi−1, yi−1〉)〉 ∈ νH,I,J . (4.32)

By duality, we can assume that the i-th prime perspectivity in (4.30) is a

prime-perspectivity down, that is, 〈xi−1, yi−1〉
p-dn
→ 〈xi, yi〉. We also assume

that ri 6= ri−1, because otherwise (4.32) is trivial.

Since the sequence in (4.30) is of minimal length, 〈xi−1, yi−1〉 6= 〈xi, yi〉 and

so yi−1 > yi. We know that L(H, I, J) is of length 5, and (4.31) yields that

1 > yi−1 > yi � xi > 0. (4.33)

Hence, the interval [yi, yi−1] is of length 1 or 2.

First, assume that this interval is of length 2. The “zigzag structure” of

our gadgets yield that 〈xi−1, yi−1〉
p-dn
→ 〈xi, yi〉 cannot happen within a single

gadget. Hence, there is an s ∈ H−01 such both 〈xi−1, yi−1〉 and 〈xi, yi〉 are

“thin edges” of appropriate basic gadgets, 〈as, bs〉 is a common thin edge of

these two gadgets, and yi ≺ bs ≺ yi−1. However, then ri = s = ri−1; see

Figures 6–9. This contradicts the assumption that ri 6= ri−1. Hence, [yi, yi−1]

is of length 1, that is, yi−1 � yi. It follows from the construction of L(H, I, J)

that both 〈xi−1, yi−1〉 and 〈xi, yi〉 are “thin edges” in the same basic gadget,

and 〈xi−1, yi−1〉
p-dn
→ 〈xi, yi〉 is only possible if 〈xi−1, yi−1〉 = 〈c

riri−1

5 , d
riri−1

5 〉

and 〈xi, yi〉 = 〈eriri−1 , d
riri−1

4 〉. Hence, Gup(ri, ri−1) is present in L(H, I, J),

which means that 〈ri, ri−1〉 ∈ I. Therefore, (4.24) gives that 〈ri, ri−1〉 ∈ νH,I,J ,

as required in (4.32).

Finally, if I = J , then L(H, I, J) = L(H, I, I) is clearly a selfdual lattice,

since we can obtain it from L(H,∅,∅) by inserting only double gadgets. It

is straightforward to see that the union of the polarity of L(H,∅,∅) and the

polarities of these double gadgets is a polarity π of L(H, I, I). Since π preserves

the quasi-coloring, (C1) and (C2) imply that L(H, I, I) with this π belongs to

PLatemb

(2.4). This completes the proof of Lemma 4.6. �

Next, with Θν defined right before (3.2), we formulate a corollary.

Lemma 4.7. Assuming (4.18), let L(H, I, J) be the quasi-colored lattice from

Lemma 4.6, and let ν stand for the quasiordering νH,I,J from (4.24). Then

the rule [p]Θν 7→ con(ap, bp) defines an order isomorphism

µH,I,J : 〈H/Θν ; ν/Θν〉 → 〈Princ(L(H, I, J));⊆〉.

Proof. To ease the notation in the proof, we omit (H, I, J) from the notation.

That is, we write L = 〈L,≤; γ;H, ν〉 and µ instead of (4.25) and µH,I,J ; then

µ : 〈H/Θν ; ν/Θν〉 → 〈Princ(L);⊆〉 is defined by [p]Θν 7→ conL(ap, bp).
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We need to show that µ is an order isomorphism. If 〈[p]Θν, [q]Θν〉 ∈ ν/Θν,

then γ(〈ap, bp〉) = p ≤ν q = γ(〈aq , bq〉), and (C1) implies that conL(ap, bp) ≤

conL(aq , bq). Hence, µ is a well-defined map and it is order-preserving. Ob-

viously, Princ(L) = {conL(x, y) : 〈x, y〉 ∈ Pairs≤(L)}. To prove that µ is

surjective, let 〈x, y〉 belong to Pairs≤(L). With r := γ(〈x, y〉), the equality

γ(〈ar , br〉) = r = γ(〈x, y〉) and (C1) imply that µ([r]Θν) = conL(ar , br) =

conL(x, y). Thus, µ is surjective. Finally, assume that µ([p]Θν) ≤ µ([q]Θν),

that is, conL(ap, bp) ≤ conL(aq , bq). By (C2), p = γ(〈ap, bp〉) ≤ν γ(〈aq , bq〉) =

q, that is, 〈[p]Θν, [q]Θν〉 ∈ ν/Θν. This implies that µ is injective and µ−1 is

order-preserving. �

5. Tailoring our quasi-colored lattices to the functor F

In the rest of the paper, F : Cat(S) → POS0s
01 will be a functor as in

Theorem 2.8. To ease the notation, we will write 〈Pi; νi〉, or 〈Pi;≤i〉, and ψij

instead of F (i) and F (i ≤ j), respectively. The least element and the greatest

element of Pi are denoted by 0i and 1i, respectively. We can assume that

for i 6= j ∈ S, 0i = 0j , 1i = 1j, and |Pi ∩ Pj | = 2. (5.1)

In the opposite case, we take two new elements, 0 and 1, outside
⋃

{Pi : i ∈ S}.

Let P ′
i = (Pi \ {0i, 1i})∪ {0, 1}. We define an ordering ≤′

i on P ′
i such that the

map

αi : 〈Pi; νi〉 → 〈P ′
i ; ν

′
i〉, defined by x 7→















x, if x ∈ Pi \ {0i, 1i},

0 if x = 0i,

1 if x = 1i,

is an isomorphism. We let ψ′
ij = αj ◦ ψij ◦ α

−1
i . Let F ′ : Cat(S) → POS

0s
01

be defined by F ′(i) = 〈P ′
i ;≤

′
i〉 and F (i ≤ j) = ψ′

ij. This functor is naturally

isomorphic to F , because α : F → F ′ is a natural isomorphism. Therefore, if

(5.1) fails, then we can work with F ′ instead of F . This justifies assumption

(5.1). For j ∈ S, let

Rj :=
⋃

{Pi : i ≤ j}. (5.2)

Observe that νi ⊆ R2
j := Rj ×Rj, ψij ⊆ R2

j and ψ−1
ij = {〈x, y〉 : x = ψij(y)} ⊆

R2
j for all i ≤ j. Hence, we can let

ν̂j = quoRj

(

⋃

{νi : i ≤ j, i ∈ S}

∪
⋃

{ψij : i ≤ j, i ∈ S} ∪
⋃

{ψ−1
ij : i ≤ j, i ∈ S}

)

.
(5.3)

Also, let Θ̂j = ν̂j ∩ ν̂
−1
j . Note that as an easy consequence of ψij = ψkj ◦ ψik,

for i ≤ k ≤ j, ψik ⊆ ν̂j and ψ−1
ik ⊆ ν̂j. (5.4)
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Lemma 5.1. For j ∈ S, the rule

κj([x]Θ̂j) =

{

x, if x ∈ Pj,

ψij(x), if x ∈ Pi,
(5.5)

defines an order isomorphism κj : 〈Rj/Θ̂j; ν̂j/Θ̂j〉 → 〈Pj; νj〉.

The first line of (5.5) is only for emphasis; it can be omitted, since ψjj is

the identity map. Since Rj =
⋃

{Pi : i ≤ j} by definition, there exists an

appropriate i in the second line of (5.5). If x ∈ Pi1 ∩ Pi2 = {0, 1}, then no

matter which of i1 and i2 serves as i, because ψij is {0, 1}-preserving.

Proof. Consider the auxiliary map κ′j : 〈Rj; ν̂j〉 → 〈Pj; νj〉, defined by κ′j(x) :=

ψij(x) for x ∈ Pi. This map is well defined, because ψi1j and ψi2j are not in

conflict on Pi1 ∩Pi2 = {0, 1}. First, we show that κ′j is monotone in the sense

that, for all x, y ∈ Rj,

if 〈x, y〉 ∈ ν̂j, then 〈κ′j(x), κ
′
j(y)〉 ∈ νj. (5.6)

By transitivity, it suffices to show this only for

〈x, y〉 ∈
⋃

{νi : i ≤ j} ∪
⋃

{ψij : i ≤ j} ∪
⋃

{ψ−1
ij : i ≤ j};

see (5.3). If 〈x, y〉 ∈ νi for some i ≤ j, then 〈κ′j(x), κ
′
j(y)〉 = 〈ψij(x), ψij(y)〉

belongs to νj, because ψij is monotone. If 〈x, y〉 ∈ ψij , that is, ψij(x) = y,

then 〈κ′j(x), κ
′
j(y)〉 = 〈y, y〉 ∈ νj by reflexivity. Similarly, if 〈x, y〉 ∈ ψ−1

ij , that

is, ψij(y) = x, then 〈κ′j(x), κ
′
j(y)〉 = 〈x, x〉 ∈ νj. This proves (5.6).

Note the rule κj([x]Θ̂j) = κ′j(x). If [x]Θ̂j = [y]Θ̂j , then 〈x, y〉, 〈y, x〉 ∈ ν̂j.

So, (5.6) and the antisymmetry of νj yield that κ′j(x) = κ′j(y). Hence, the map

κj from (5.5) is well defined. We also conclude from (5.6) that κj is monotone.

By the first line of (5.5), κj is surjective. Hence, in order to complete the

proof, it suffices to show that

if 〈κj([x]Θ̂j), κj([y]Θ̂j)〉 ∈ νj, then 〈[x]Θ̂j, [y]Θ̂j〉 ∈ ν̂j/Θ̂j ; (5.7)

note that the injectivity of κj will follow from (5.7) since the ordering ν̂j/Θ̂j is

antisymmetric. In order to prove (5.7), assume that 〈κj([x]Θ̂j), κj([y]Θ̂j)〉 ∈

νj. This means that 〈κ′j(x), κ
′
j(y)〉 ∈ νj, and we need to show that 〈x, y〉 ∈ ν̂j.

By the definition ofRj, there are i, k ∈ S with i ≤ j and k ≤ j such that x ∈ Pi

and y ∈ Pk. Hence, 〈x, κ′j(x)〉 = 〈x, ψij(x)〉 ∈ ψij ⊆ ν̂j, 〈κ
′
j(x), κ

′
j(y)〉 ∈ νj ⊆

ν̂j, and 〈κ′j(y), y〉 = 〈ψkj(y), y〉 ∈ ψ−1
kj ⊆ ν̂j imply 〈x, y〉 ∈ ν̂j by transitivity.

This proves (5.7) and the lemma. �

Proof of Theorem 2.8. First, we assume that S has a largest element, 1 ∈ S.

Let j ∈ S. With ν̂j given in (5.3), we define

Ij := {〈x, y〉 ∈ ν̂j : 0 6= x, 0 6= y, x 6= y}. (5.8)

Based on (4.21), we intend to define a functor E : Cat(S) → Latemb

sd5 as follows:

E(j) := L(Rj, Ij , Ij), for j ∈ S,

E(j ≤ k) := the inclusion map E(j) → E(k), for j ≤ k ∈ S.
(5.9)
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We know from Lemma 4.6 that E(j) ∈ Latemb

sd5 . To see that the second line of

(5.9) makes sense, let j ≤ k ∈ S. Combining (5.2), (5.3), (5.4), and (5.8), we

have that Rj ⊆ Rk and Ij ⊆ Ik. Hence, by (4.22), E(j) is a sublattice of E(k).

Thus, E from (5.9) is a functor. Let L = E(1). By (4.22), all E(j), for j ∈ S,

are sublattices of L. Actually, they are {0, 1}-sublattices, because we know

from Lemma 4.6 that both L and the E(j) are of length 5. Hence, (i) and (ii)

of Definition 2.7 are satisfied. Assume, for a moment, that s, t ∈ S such that

s � t. Then Rs * Rt by (5.1) and (5.2), L(Rs,∅,∅) * L(Rt,∅,∅) by (4.16),

and so E(s) = L(Rs, Is, Is) * L(Rt, It, It) = R(t). Thus, Definition 2.7(iii)

holds, and it suffices to prove that E lifts F with respect to Princ. Next, we

claim that

ν̂j = νRj,Ij,Ij
. (5.10)

We know from (4.24) that

νRj,Ij,Ij
= quoRj

(νRj,∅,∅ ∪ Ij). (5.11)

If 〈x, y〉 ∈ νRj,∅,∅ and x 6= y, then 〈x, y〉 = 〈0, p〉 or 〈x, y〉 = 〈p, 1〉 for some

p ∈ R−01
j by (4.23). By (5.1) and (5.2), we have that p ∈ Pi and 〈x, y〉 ∈ νi

for some i ≤ j. Hence, 〈x, y〉 ∈ ν̂j by (5.3), and we have that ν̂j ⊇ νRj,∅,∅.

Since ν̂j ⊇ Ij also holds by (5.8), (5.11) yields that ν̂j ⊇ νRj,Ij,Ij
. In order to

prove the converse inclusion for (5.10), assume that 〈x, y〉 belongs to the union

in (5.3) and x 6= y; we need to show that 〈x, y〉 ∈ νRj,Ij,Ij
. We can assume

that x 6= 0 6= y, since otherwise 〈x, y〉 ∈ ν̂j would easily give that 〈x, y〉 ∈

Ij ⊆ νRj,Ij,Ij
by (5.8) and (5.11). If x = 0, then 〈x, y〉 ∈ νRj,∅,∅ ⊆ νRj,Ij,Ij

by (4.23) and (5.11). If y = 0, then x = 0, because (5.3) gives that for some

i ≤ j, either 〈x, 0〉 ∈ νi and 0 is the unique least element of the ordered set

〈Pi; νi〉, or 〈x, 0〉 ∈ ψij and x = 0 since ψij is 0-separating, or 〈x, 0〉 ∈ ψ−1
ij

and x = 0 since ψij is 0-preserving. So if y = 0, then 〈x, y〉 = 〈0, 0〉 ∈ νRj,Ij,Ij

by reflexivity. In this way, we have shown that ν̂j ⊆ νRj,Ij,Ij
. That is, (5.10)

holds.

Armed with (5.10) and writing ν̂j, µj, and Θ̂j instead of νRj,Ij,Ij
, µRj ,Ij,Ij

,

and ΘνRj ,Ij,Ij
, respectively, Lemma 4.7 yields that

µj : 〈Rj/Θ̂j ; ν̂j/Θ̂j〉 → 〈Princ(E(j));⊆〉,

defined by [p]Θ̂j 7→ conE(j)(ap, bp),
(5.12)

is an order isomorphism. So is κj from Lemma 5.1. Hence, the composite map

ξj = µj ◦ κ
−1
j , from F (j) = 〈Pj; νj〉 to (Princ ◦ E)(j) = 〈Princ(E(j));⊆〉,

is also an order isomorphism. In order to show that ξ, defined by ξ(j) = ξj ,

is a natural isomorphism from F to Princ ◦ E, we need to prove that, for
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j ≤ k ∈ S, the diagram

〈Pj; νj〉
ψ

jk

−−−−→ 〈Pk; νk〉

ξj





y
ξk





y

〈Princ(E(j));⊆〉
ζE(j),E(k)
−−−−−−−→ 〈Princ(E(k));⊆〉

(5.13)

commutes, because the lower arrow is (Princ ◦ E)(j ≤ k) by Remark 2.4 and

ψjk = F (j ≤ k). To do so, consider an arbitrary element p ∈ Pj. By (5.5),

κj([p]Θ̂j) = p. Thus, (5.12) yields that ξj(p) = µj

(

κ−1
j (p)

)

= conE(j)(ap, bp).

Consequently,

ζE(j),E(k)(ξj(p)) = ζE(j),E(k)

(

conE(j)(ap, bp)
)

= conE(k)(ap, bp). (5.14)

Using (5.5) again, κk([p]Θ̂k) = ψjk(p). Hence, κ−1
k (ψjk(p)) = [p]Θ̂k. Thus,

ξk(ψjk(p)) = µk

(

κ−1
k (ψjk(p))

)

= µk

(

[p]Θ̂k

)

= conE(k)(ap, bp). (5.15)

Finally, we conclude from (5.14) and (5.15) that (5.13) is a commutative dia-

gram. Therefore, ξ is a natural isomorphism and Definition 2.7(iv) holds, that

is, E lifts F with respect to Princ.

Second, assume that 1 /∈ S. Add 1 as a new top to S to obtain S1 = S∪{1}.

Extend F to a functor F1 : Cat(S1) → POS
0s
01 by letting F1(1) = {0, 1}, the

two-element chain, and defining F1(i ≤ 1) = ψi1 : F1(i) → F1(1) by the rule

ψi1(x) = 0 ⇐⇒ x = 0. Clearly, F1 is a functor from Cat(S1) to POS
0s
01.

Since it is concretely representable by the first part of the proof, so is its

restriction, F .

Finally, we have already seen that E(j) = L(Rj , Ij, Ij) belongs to PLatemb

(2.4).

Clearly, the inclusion map E(j ≤ k) from (5.9) is polarity-preserving. This

completes the proof of Theorem 2.8. �

6. Concluding remarks

Remark 6.1. In order to construct smaller lattices, we can replace the Ij in

(5.8) by appropriate subsets I′j such that quo(νRj,∅,∅∪I′j) = quo(νRj,∅,∅∪Ij),

see (4.24), and I′j ⊆ I′k for j ≤ k. Note that Examples 2.2 and 3.1 use

this simplification; this is why, say, there is no arrow between 〈aq3
, bq3

〉 and

〈ar3
, br3

〉 in W1 of Figure 3.

Remark 6.2. In order to reduce the sizes of our lattices even further, let

Gdb

−e(p, q) denote the lattice that we obtain from Gdb(p, q) by omitting epq

and epq . As an ordered set, Gdb

−e(p, q) is a lattice, though not a sublattice of

Gdb(p, q). To keep our proof simple, we used both Gdb(p, q) and Gdb(q, p) to

force that con(ap, bp) = con(aq, bq). However, we can use Gdb

−e(p, q) alone for

this purpose; then (3.4) should be disregarded, because |Gdb

−e| = 20 < 22 =

|Gdb|.
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Example 6.3 (Continuation of Examples 2.2 and 3.1). Based on Remark 6.2,

we can obtain smaller lattices as follows. For each dotted arc in Figure 3, we

insert a copy of Gdb

−e, which brings 20 new elements. For the solid edge,

we insert Gdb(q3, p3), which adds 22 new elements. If L′
0, . . . , L

′
3 denote the

lattices we obtain in this way, then |L′
1| = 14+14+6 ·20+22 = 170. Similarly,

|L′
0| = 14 + 2 = 16, |L2| = 14 + 4 + 20 = 38, and |L3| = 14 + 8 + 20 + 22 = 64.

6.1. Added on May 4, 2016. An anonymous referee has pointed out that

the argument of F. Wehrung [30, Sect. 7-4.5] implies that we cannot replace

Cat(S) in Theorem 2.8 with an arbitrary small category. Actually, the same

holds even if we take the category Lat of all lattices with all lattice homomor-

phisms rather than Latemb

sd5 . We demonstrate this with the following example.

Example 6.4. Let A and B be the two-element chain and the three-element

chain, respectively. They belong to POS
0s
01. Let e : A → B and p : B → A be

the unique POS
0s
01-morphisms between A and B. The set {A,B} of objects

and the set {idA, idB , e, p, e ◦ p} of morphisms constitute a small category C,

which is a full subcategory of POS0s
01. Let F : C → POS0s

01 be the inclusion

functor; that is, F (x) = x for all x ∈ {A,B, idA, idB , e, p, e ◦ p}.

The meaning of “in Lat” below is self-explanatory by Definition 2.6.

Observation 6.5 (Suggested by an anonymous referee). F from Example 6.4

is not representable by principal lattice congruences in Lat.

Proof. For the sake of contradiction, suppose that E : C → Lat lifts F with

respect to Princ. By Definition 2.6, there exists a natural isomorphism ξ : F →

Princ ◦ E. In particular, since F acts identically, the diagram

B
ξB

−−−−−−−−−−−−→ (Princ ◦ E)(B)

p




y
(Princ ◦ E)(p)





y

A
ξA

−−−−−−−−−−−−→ (Princ ◦ E)(A)

(6.1)

commutes. Hence, (Princ ◦ E)(p) = ξA ◦ p ◦ ξ−1
B . Since all the three factors

are 0-separating, so is Princ(E(p)) = (Princ ◦ E)(p). If x, y ∈ E(B) such that

E(p)(x) = E(p)(y), then (2.3) yields that

Princ(E(p))(conE(B)(x, y)) = conE(A)(E(p)(x), E(p)(y)) = ∆E(A).

Thus conE(B)(x, y) = 0Princ(E(B)) = ∆E(B), since Princ(E(p)) is 0-separating,

and we have that x = y. Consequently, E(p) is injective. Since E is a functor

and idA is an identity morphism in C, E(p) ◦ E(e) = E(p ◦ e) = E(idA) =

idE(A). Therefore, E(p) is surjective and so it is an isomorphism in Lat. It

follows that Princ(E(p)) = (Princ◦E)(p) is an isomorphism in POS0s
01. Finally,

since p = ξ−1
A ◦ (Princ ◦ E)(p) ◦ ξB by the commutativity of (6.1) and each of

these three factors is an isomorphism, p is an isomorphism in POS0s
01. This

contradicts the definition of p (and |A| 6= |B|), completing the proof. �
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The following remark is needed in G. Czédli [4].

Remark 6.6. It is clear from (3.3) and the last sentence of the proof of

Lemma 4.5 that M4×3 can be replaced by any simple selfdual lattice having

at least four elements; then Lemmas 4.6 and 4.7 remain true except that the

length of L(H, I, J) need not be 5. For every p ∈ H and x, y ∈ L(H, I, J),

if x < ap and bp < y, then both 〈x, ap〉 and 〈bp, y〉 are 1-colored by our

construction, and each of (4.28) and Lemma 4.7 implies that con(x, ap) =

∇L(H,I,J) = con(bp, y). Finally, due to some last minute change in the present

paper, where [4] references (4.23), it should be understood as (4.24).

Acknowledgment. The referees’ hints are highly appreciated; some of these

hints are mentioned in Subsections 2.3 and 6.1.
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