A HORN SENTENCE IN COALITION LATTICES

GABOR CZzEDLI

ABSTRACT. Given a finite partially ordered set P, for subsets or, in other words,
coalitions X,Y of P let X < Y mean that there exists an injection ¢: X — Y
such that z < p(zx) for all x € X. The set L£(P) of all subsets of P equipped with
this relation is a partially ordered set. When L(P) is a lattice, it is called a coalition
lattice. A recursive construction of coalition lattices is given. Using this construction,
which can be of separate interest, it is shown that not every lattice is embeddable in
coalition lattices.

1. INTRODUCTION

Given a finite partially ordered set P = (P, <), the set of all subsets, alias
coalitions, of P will be denoted by L(P). For X,Y € L(P), amap ¢p: X — Y is
called an extensive map if ¢ is injective and for every x € X we have x < ¢(z).
Let X < Y mean that there exists an extensive map X — Y; this definition
turns £(P) into a partially ordered set L(P) = (L(P),<). When L(P) is a lattice
then it is called a coalition lattice. This concept, with roots in game theory and
the mathematics of human decision making, was introduced in [1] with a detailed
motivation.

For undefined terminology the reader is referred to Gréitzer [3]. Even without
explicit mentioning, all sets occurring in this paper except Section 2 are assumed
to be finite.

A partially ordered set P is called upper bound free, in short UBF, if for any
a,b,c € P we have

(a<c)& (b<c)) = ((a<b)or (b<a)).

The equivalence classes of the equivalence generated by <p will be called the
components of P. If P is an UBF poset and has only one component then P is called
a tree. A poset is called a forest if its components are trees. Clearly, a finite poset
is a forest iff it is UBF. For a € P we will use the notation (a] = {z € P: z < a}.
A poset P is a forest iff (a] is a chain for every a € P.

The main result of [1] asserts that, for a finite partially ordered set P, L(P) is a
lattice iff P is a forest. The meet in this lattice is described by
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Lemma A. ([1]) Let P be a forest, k > 2, and for Ay, ..., Ap € L(P) let
M={by N...N\Nbg: by € Ay,... by € Ak, and the infimum by N ... A by exists in
P}. If M is empty (in particular when one of the A; is empty) then /\f:1 A; = 0.
If M is non-empty then choose a mazimal element ¢ = a1 A ... A ap in M where
the a; belong to A; such that, for every i, c € A; = c¢=a;. Let A, = A; \ {a;} for
i=1,...,k, PP =P\{c}, and put C' = /\f:1 Al in L(P'). Then /\f:1 A; = C'U{c}
in L(P).

The following result, which follows directly from [1, (5) in the proof of Prop. 2],
will be also used in the sequel.

Lemma B. If X <Y in a coalition lattice and | X | = |Y | then there is an extensive
map X — Y which acts identically on X NY.

It is shown in [1] that the lattice £(P) is distributive iff it is modular iff all
trees of the forest P are chains. On the other hand, it is not known yet whether
coalition lattices generate the variety of all lattices. Developing a constructive
way to build an arbitrary coalition lattice from smaller ones, it will be shown that
the quasivariety generated by coalition lattices does not include all lattices. The
construction producing a new lattice from two given lattices in Section 2 may be
of separate interest.

2. A LATTICE CONSTRUCTION

Let L; be a complete lattice with bounds 0; and 1;, 7= 1,2, and let ) # S; C L;
such that 1; € Sy, 02 € Sy, S7 is closed under arbitrary meets and Ss is closed
under arbitrary joins. Note that the S; are necessarily complete lattices under the
ordering inherited from L; but they need not be sublattices. Let ¢: S; — Sy be a
lattice isomorphism. Associated with the quintuplet (Ly, Lo, S1, S2, %), we intend
to define a lattice L = L(Ly, Lo, S1, S2,%) as follows. Let L be the disjoint union
of Ly and Ls. For z,y € L we put x < y iff one of the following three possibilities
holds:

e x,y€c€ Ly and z <y in Ly;

e .,y € Lo and z <y in Lo;

e x € L,y € Ly and there exists a z € Sy such that x < zin Ly and ¢(2) <y
in LQ.

PI‘OpOSitiOIl 1. L = L(Ll, LQ, Sl, SQ, ’gﬁ) = <L(L1, LQ, Sl, SQ, ’Qb), §> deﬁned above
18 a complete lattice.

Proof. 1t is straightforward to check that (L, <) is a partially ordered set with least
element 0 = 0; and greatest element 1 = 15. To avoid confusion, A, <1, Ag, Vg,
etc. will denote the meet in L, the relation in Lq, the binary meet in Ls, the join
in 51, etc., respectively. Of course, Ag = A, and /g = V,.

Now we intend to show that any nonempty subset of L has a supremum. We
start with a particular case. Let ) # A C Ly and b = \/; A. We claim that b is a
supremum of A in L as well. Clearly, b € L; is an upper bound of A. Assume that
¢ € L is another upper bound of A in L. We may suppose that ¢ € Lo, for otherwise
b <q cyields b < ¢ prompt. Then for each a € A thereis a z, € S such that a <y z,
and 9(z,) < c. We have b=\/{a: a € A} <1 /{21 a € A} <1 Vg {24t a € A}
and ¥(Vg, {2za: @ € A}) = Vg, {¥(2a): a € A} = Vo {9(24): a € A} <5 ¢, whence
b < c. Therefore b is the join of A in L.
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Now let ) # C C L. Then C = A; U Ay with A; C L;. We claim that C has a
supremum in L. The case As = () has just been settled. If A; = ) then V,y Az is
clearly the supremum of C' in L. Therefore we assume that A; # () and Ay # (). Let
b; =V, Ai. By the previous arguments we have b; = \/ A;. Consider the element
t =N {z€ S by <o 2p = /\Sl{z € S1: by <y z} € Sy and let ¢ = 9(t) Va ba.
Since b; <; t, ¢ is an upper bound of b; and by, whence it is an upper bound of C'
in L. Suppose d € L is another upper bound of C'. Then d is an upper bound of the
A; and therefore also of the b;, i = 1,2. Hence by <5 d and there is a u € S1 such
that by <; u and 1 (u) <5 d. The choice of t yields t <y u, whence ¥(t) <o 1(u).
Consequently, ¢ = 1(t) Vo ba <5 1(u) Vo be <5 d, implying ¢ < d. Le., c=\/C. We
have shown that each nonempty subset of L has a supremum. Since L has a least
element, or using duality, it follows that L is a complete lattice.

When S is a principal dual ideal of L; and Sy is a principal ideal of Lo then
our construction resembles the Hall — Dilworth gluing (cf. [2] or [3, page 31]) with
the difference that we do not identify S; and Ss.

3. RESULTS ON COALITION LATTICES

Theorem 1. Let P be a finite forest, v a maximal element of P, u € P, and
suppose that v covers u in P. Let Ly := {X € L(P): v ¢ X}, Ly == {X €
LP):veX}, S1:={Xe€Li:ueX},So:={X€Lyué¢ X}, andp: S4 — Sa,
X — (X \ {u})U{v}. Then Ly is a prime ideal and Lo is a dual prime ideal of
L(P), both Ly and Lo are isomorphic to L(P\{v}), the conditions of Section 2 are
fulfilled, and L(P) is exactly the lattice L(Ly, Lo, S1, S2,).

Note that a rather special case of Theroem 1, when P is a chain, implicitly
occurs in [1]. The first conspicuous use of Theorem 1 is that we can easily draw
the diagram of £(P) for a tree P, provided it has not too many elements. A more
serious consequence is

Corollary 1. Fach coalition lattice can be obtained from the two-element lattice
by the construction of Section 2 (i.e. forming lattices L(Ly, Lo, S1,S2,%) from Ly
and Lo with appropriate Sy, So and 1)) and forming direct products of finitely many
lattices in a finite number of steps.

Consider the lattice Horn sentence
(xAhy=zAhNz=yAz&azVy=axVz=yVz)=—=x=71,

which we denote by y.

Corollary 2. x holds in every coalition lattice. In other words, the five-element
nondistributive modular lattice, Mz, cannot be embedded in a coalition lattice.

PROOFS

Proof of Theorem 1. Tt is easy to see that Ly = (P \ {v}] and Ly = [{v}). Thus,
being complementary subsets of L(P), Ly is a prime ideal and Lo is a dual prime
ideal. Ly = L(P \ {v}) hardly needs any proof. To show Ly = L(P \ {v}) let us
consider the map a: L(P \ {v}) — Lo, X — X U {v}. Then « is bijective and
X <Y implies a(X) < a(Y). Conversely, if a(X) < a(Y) then take an extensive
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map 3: a(X) — a(Y). Since v is a maximal element, 3(v) = v. So the restriction of
BtoX =a(X)\{v}isan X — Y map and X <Y follows. Thus, Ly = L(P\{v}).
Now we claim that, for any coalitions Ay,...,Ax € L(P),

k k
(1) A A4i2 () A
i=1 1=1

Using Lemma A, this will be shown via an induction on |A;|+...+|A,]|. If ﬂle A;
is empty then there is nothing to prove. Suppose that d € ﬂle A;. If d is a maximal

element of M given in the lemma then choosing ¢ = d we obtain d € /\f:1 A If
d is not maximal in M then choose a maximal element ¢ € M such that d < c.
Then d < ¢ < a; for the a; occurring in the lemma. So d € A} and d € P’. By
the induction hypothesis we obtain d € ﬂle Al C /\f:1 Al and d € /\f:1 A; follows
from the lemma. (1) has been proved.

It follows instantly from (1) that S; C L; is closed under meets. Clearly, 1,, =
P\ {v} € Sy and 01, = {v} € Sy. It is known, cf. [1, Prop. 2 and the comment
after it] that

A1V .. VA=A AN... N Ag.

Combining this with (1) we easily obtain

k k
V&QU%
=1 =1

Hence it follows that Sy C Ls is closed with respect to joins.

Now we intend to show that v is a lattice isomorphism. 1 is clearly bijective.
First let us assume that X <Y in S; and |X| = |Y|. By Lemma B there is an
extensive a: X — Y with a(u) = u. Clearly, (a\ {(u,u)})U{(v,v)} is an extensive
P(X) — (YY) map, yielding ¢(X) < ¢(Y). Now let X,Y € S; be arbitrary with
X <Y. Ifué¢ a(X) then we can replace a by (a\ {(u,a(u))}) U {(u,u)}, which is
also an extensive X — Y map. This way we can assume that Y7 = «(X) contains
u. Since X < Y7 and |X| = |Y3], the previous argument gives ¥ (X) < 1(Y;) and
we conclude the desired (X)) < ¢ (Y) from ¢(Y7) < ¢(Y). Hence 1 is monotone.
Suppose now that (X) < ¢(Y) and let 8: ¥(X) — ¢(Y) be an extensive map.
Since v € (X)) is maximal in P, §(v) = v. Hence (8 \ {(v,v)}) U {{u,u)} is an
extensive X — Y map, whence X <Y. Thus, 9 is an isomorphism.

What we have shown so far says that the lattice construction of Section 2 makes
sense in our case. The base set of L = L(Ly, La, S1,S2,%) and that of L(P) are
identical, but we have to show that they possess the same partial order. Since
Z < (Z) for every Z € Sy, it follows easily that if X <Y in L then X <Y in
L(P). The converse implication will be derived less easily.

Suppose X <Y in L(P); we have to show the same relation in L. Since v is
a fixed point of any extensive map, X € Lo, and Y € L, is impossible. The cases
{X,Y} C Ly and {X,Y} C Ly are trivial.

Consequently, we can assume that X € Ly and Y € Ly. Let us fix an extensive
map a: X — Y; we have to show the existence of a Z € Sy such that X < Z and
Y(Z)<Y.
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First we deal with the case v ¢ a(X). If u ¢ X then let Z = X U {u} > X
and the extensive map a U {(v,v)}: ¥(Z) — Y yields ¢(Z) < Y. If u € X then
put Z = X and consider the extensive map (a \ {(u, a(u))) U{{v,v)}: ¥(Z) =Y,
which gives ¥(Z) <Y.

From now on we assume that v € a(X), say a(b) = v. Since u < v, b # v, and b
and u are comparable by b, u € (v], we conclude b < u. If u ¢ X then let Z = (X'\
{b})U{u}; clearly X < Z and the extensive map (a\ {(b,v)})U{(v,v)}: ¥(Z) =Y
yields ¥ (Z) < Y. Thus, we suppose that u € X. We can also assume that b = u,
for otherwise, by b < u < v, we could consider the extensive map

v=uab), ifzr=u,
X—=Y, zw— a(u), ifx=0,

afz), otherwise

instead of . Now we put Z = X and the map (a\ {(u,v)}) U{{v,v)}: ¥(Z) =Y
yields ¥(Z2) <Y. O

Proof of Corollary 1. If |P| = 1 then |£(P)| = 2 and the statement holds. Suppose
|P| > 1 and the corollary holds for all forests with less than |P| elements. If there
is a pair (u,v) of elements in P such that v is a maximal element and v < v then
Theorem 1 applies. Otherwise P is an antichain, X <Y in £(P) is equivalent to
X CY, and L(P) is the | P|th direct power of the two-element lattice. [

Proof of Corollary 2. Since M3 cannot be embedded in the two-element lattice,
in virtue of Corollary 1 it suffices to show that this property is preserved under
the construction of Section 2 and direct products. Suppose M3 is embedded in a
direct product [[,.; L; but it cannot be embedded in the direct components L;.
Let mj: [[,c; Li — L; denote the jth projection. Since m;(M3) 2 Mz and M3 is a
simple lattice, 7;(Ms3) is a singleton for every j € I, a contradiction. Thus, direct
products preserve x. Now suppose that Ms is embedded in L = L(Lq, Lo, S1, S2, 7).
Since L = L; U Ly and M3 has three atoms, there is an i € {1,2} such that L;
contains at least two atoms of M3. Since L; is an ideal or a dual ideal of L, M3 C Lj;.
Thus, if x holds in L; and Ly then it also holds in L. [
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