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A test for identities satisfied in lattices of submodules

GEORGE HUTCHINSON AND GABOR CzEDLI

Abstract. Suppose R is ring with 1, and HZ(R) denotes the variety of modular lattices generated by
the class of lattices of submodules of all R-modules. An algorithm using Mal’cev conditions is given
for constructing integers m =0 and n=1 from any given lattice polynomial inclusion formula d ce.
The main result is that d < e is satisfied in every lattice in HZ(R) if and only if there exists x in R such
that(m - 1)x=n-1in R, where 0-1=0and k-1=1+1+...+1 (k times) for k = 1. For example, this
“divisibility” condition holds for m =2 and n =1 if and only if 1+1 is an invertible element of R, and
it holds for m =0 and n =12 if and only if the characteristic of R divides 12. This result leads to a
complete classification of the lattice varieties HZ(R), R a ring with 1. A set of representative rings is
constructed, such that for each ring R there is a unique representative ring S satisfying HZ(R) =
HXZ(S). There is exactly one representative ring with characteristic k for each k=1, and there are
continuously many representative rings with characteristic zero. If R has nonzero characteristic, then
all free lattices in HZ(R) have recursively solvable word problems. A necessary and sufficient
condition on R is given for all free lattices in HZ(R) to have recursively solvable word problems, if R
is a ring with characteristic zero. All lattice varieties of the form HZ(R) are self-dual. A variety
HZ(R) is a congruence variety, that is, it is generated by the class of congruence lattices of all
members of some variety of algebras. A family of continuously many congruence varieties related to
the varieties H#(R) is constructed.

§1. Introduction

A lattice is said to be representable by R-modules if it is embeddable in the
lattice of submodules of some R-module. The class £(R) of all lattices represent-
able by R-modules is known to be a quasivariety, that is, to be axiomatizable by
universal Horn sentences (see [10: pp. 311-312]). In particular, £(R) admits
isomorphic images, sublattices, and products including the trivial lattice, and so
the class H¥(R) of homomorphic images of lattices representable by R-modules
is a variety of (modular) lattices by Birkhoff’s theorem characterizing varieties
(see [5: Thm. 2, p. 152]). These varieties are natural objects for studying lattice
identities satisfied in all lattices of submodules of modules over a fixed ring. If R
is a field, then HZ(R) is a variety generated by Arguesian projective geometry
lattices, that is, by lattices of subspaces of vector spaces over R. If R is the ring of
integers, then HZ(R) is generated by all lattices of subgroups of abelian groups.
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Clearly, any lattice identity is satisfied in every member of £(R) if and only if it is
satisfied in every member of H¥(R), and so the word problems for free lattices
are the same for the quasivariety and the variety it generates.

Given a ring R with 1, let R-Mod denote the variety of left R-modules. The
operations of R-Mod are additive group operations {+, —, 0} plus unary scalar
multiplication operations 7 for each r in R, and the identities are as usual,
including 1x = x. For M in R-Mod, let Su(M) denote the lattice of submodules of
M and Con(M) the lattice of congruences of M. By [1: Thm. 1, p. 159], Su(M)
and Con(M) are isomorphic lattices. We shall also use Su(V) and Con(V) to
denote the subalgebra and congruence lattices for algebras V of other types.

In the theory of rings with 1, a term is a ring polynomial, obtained from
variables and the constants 0 and 1 by sum, negation and product operations. A
term obtained from variables, 0 and 1 by at most sum and negation operations is
said to be productless. A formula is a system of ring equations if it is the existen-
tial closure of a conjunction of one or more equalities between terms. If each term
of a system of ring equations is productless, then the system is said to be productless.
For example,

AN)EAY[x+x=(-y)+D & (y+y=0) & (x=0)]

is a productless system of ring equations. Suppose that } is a first-order lattice-
theoretic sentence that is satisfied in every lattice in £(R). By model theoretic
methods, M. Makkai and G. McNulty [17] showed that there exists a system of
ring equations }, satisfied in R such that } is satisfied throughout £(S) for any
ring S satisfying },. For any integers m and n, let D(m, n) be the ring divisibility
condition (Ix)(m - x = n - 1), where m - x denotes the m-th additive multiple of x.
Note that D(m, n) is a productless system of ring equations of a simple kind.
In the second section, we develop the ring divisibility test corresponding to any
given lattice polynomial inclusion formula d < e. Since Su(M) and Con(M) are
isomorphic lattices, d < e is satisfied throughout HZ(R) iff d c e is satisfied in
Con(M) for every M in R-Meod. By Mal’cev’s Theorem [5: Thm. 4, p. 172],
R-Mod has permutable congruences. That is, xvy=xoy=yox for x and y in
Con(M), where x°y denotes composition of relations. If we replace meet by
intersection and join by composition everywhere in the lattice polynomial d, we
obtain a polynomial d° in intersection and composition, and we can define e° from
e similarly. By the above, d ce is satisfied in Con(M) iff d°ce® is satisfied
whenever congruences on M are substituted for the variables of d° and e°. But R.
Wille’s procedure [20: Satz 6.15, p. 76] can be used to generate a strong Mal’cev
condition F(d°, e°) such that d°< e° is satisfied for all congruences of M for every
M in R-Med iff E(d° e°) is satisfied for the variety R-Mod. Now, every
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polynomial f(x,, x,,...,x,) for R-Med is identically equal to some R-linear
polynomial }7_, 7,(x;). Using this fact, we find that 5(d°, e°) holds for R-Mod iff
a certain productless system of ring equations £2(d, e) is satisfied in R. Therefore,
d < e is satisfied throughout H#(R) iff the productless system of ring equations
£2(d, e) is satisfied in R. Now, we can use an old matrix diagonalization method to
show that any productless system of ring equations is ring equivalent to the
conjunction of finitely many divisibility conditions. Analysis of divisibility condi-
tions in a ring shows, first, that the set of divisibility conditions satisfied in a ring
with nonzero characteristic k depends only on k. Second, for rings with zero
characteristic, we also consider invariants called degrees of invertibility of primes.
For p prime and R a ring with 1, the degree of invertibility 8(R, p) of p in R is
the cardinal number in the interval [0, w], @ equal to aleph-nuil, such that
0(R, p) = w if D(p®*?, p®) is not satisfied in R for all 8 =0, and otherwise (R, p)
is the smallest B such that D(p®*', p®) is satisfied in R. It is showed that the set of
divisibility conditions satisfied in an R having characteristic zero is uniquely
determined by the function of degrees of invertibility

p— 0(R,p):P—[0, w],

where P is the set of all primes. Using this analysis, a recursive procedure is given
for constructing a single divisibility condition that is ring equivalent to any given
conjunction of finitely many ring divisibility conditions. Combining these
methods, we obtain the desired algorithm for constructing a ring divisibility test
D(m, n) that is satisfied in R if and only if d < e is satisfied throughout HZ(R).
The second section concludes with some immediate consequences of the ring
divisibility test for inclusion formulas.

In the third section, we first construct the set of representative rings. For
nonzero characteristic k =1, we can use the ring Z, of integers modulo k. Given
any function f:P— [0, w], we construct a ring R, with characteristic zero such
that 6(R;, p) = f(p) for all primes p. C. Herrmann and A. Huhn [8] defined lattice
identities corresponding to special ring divisibility conditions of form D(0, n) or
D(m, 1). By extensive use of their methods, we construct lattice identities n(m, n)
for m,n=2 and A(m, n) for m=0 and n=1, such that D(m, n) satisfied in R,
n{m, n) satisfied throughout HZ(R) and A(m, n) satisfied throughout H¥(R) are
all equivalent statements for any ring R with 1. It is then possible to show that
HZ(R)=HZ(Z,) iff R has characteristic k for k=1, and HZ(R)=HYZ(R;) iff R
has characteristic zero and (R, p) = f(p) for each prime p, completing the lattice
variety classification. The inclusion and join relationships between the varieties
H¥(R), in the complete lattice of varieties of meet and join algebras, are given
next.
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For each nontrivial ring R with 1, it is known that there are finitely-presented
lattices having recursively unsolvable word problems for HZ(R) (see [11: Thm. 1,
p. 386] and [15]). In subsequent work [12: Thm. 2], it is shown that there is a
five-generator, one-relation lattice presentation with unsolvable word problem
with respect to each of the varieties H¥(R). Recent work of C. Herrmann and A.
Huhn [6,7] proves that free lattices have solvable word problems in certain
varieties H¥(R), and certain other related varieties. In particular, they show this
for H¥(Z) and all H¥(Z,), k=1, and for the variety generated by all vector
subspace lattices, the variety generated by all complemented modular lattices, and
the variety generated by all abelian subgroup lattices and all complemented
modular lattices [7: Kor. 9, Kor. 11, p. 452]. Using the ring divisibility test, we
obtain direct confirmation of the solvability of free lattice word problems in
H%(Z,), k = 1. For zero characteristic, free lattices in HZ(R) have solvable word
problems if and only if f*(j, p) = min {j, 8(R, p)} is a recursive function for j=1
and p prime. (This is true if p — (R, p) is recursive on the set of primes p.) If R
is torsion-free or a (von Neumann) regular ring with characteristic zero, it is
shown that HZ(R) depends only on the set of primes Po={peP: p-1 is
invertible in R}, and free lattices have solvable word problems in H¥(R) if and
only if P, is a recursive set of primes. Section 3 concludes with the verification
that H¥(R) is a self-dual variety for all rings R with 1, by [13].

In the fourth section, we discuss the application of our results to congruence
varieties of lattices. Certain varieties of algebras are constructed by using the
operations and equations of Mal’cev conditions as the operations and identities of
the constructed varieties. The set N of positive integers is considered as a lattice
under the partial order of divisibility. A one-one correspondence is given between
the continuously many ideals of N and the congruence varieties corresponding to
certain of these constructed varieties of algebras.

There is an appendix dealing with computer implementation of the ring
divisibility test algorithm.

The joint authorship of this paper occurred under unusual circumstances. The
first author alone submitted the original manuscript under this title to Algebra
Universalis. The second author circulated his independent work in summary form
in May, 1976, and submitted a manuscript to the Colloquia Mathematica Janos
Bolyai Math. Soc. in July, 1976. Both authors independently constructed similar
algorithms for reducing submodule lattice inclusion formulas to ring divisibility
conditions. The current approach of §2 and the appendix combines features from
both methods. Both authors also independently constructed lattice identities
corresponding to ring divisibility conditions, using the methods of Herrmann and
Huhn. (Those of Prop. 6 for the first author; Prop. 5 for the second.) With this
exception, the results concerning lattice variety classification, the word problem,
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and self-duality in §3 are due to the first author. The congruence variety analysis
of §4 is due to the second author. When the large overlap between the two
authors’ concurrent work was discovered, the present joint paper combining the
two was agreed upon.

The authors thank the referee for helpful suggestions, especially a modification
of the proofs of Props. 5 and 6 that results in a shorter and clearer verification.
Helpful suggestions by Andrads Huhn, Christian Herrmann and Ralph Freese
are also gratefully acknowledged.

2. Reduction of lattice identities to ring divisibility conditions

We first describe R. Wille’s procedure for constructing a Mal’cev condition
characterizing satisfaction for congruences of an inclusion relation between
polynomials in intersection and composition. The procedure given here has been
tailored to our purposes, but the modifications are minor. Parallel to our
development of the procedure, we give an example of its application. We label the
alternating passages of procedure and example to avoid confusion.

Procedure. Suppose d < e is a lattice polynomial inclusion formula, and every
variable of d and e appears in the list x;, X,, ..., X,. As before, d° and e° denote
the polynomials obtained from d and e, respectively, by replacing meet by
intersection and join by composition throughout.

Let C, denote the set of polynomials in the operations of intersection and
composition on the variables x4, X, ..., X,,, n = 1. Given an algebra U of type 7,
the set Rel (U) of all relations on U (subsets of UX U) has intersection and
composition operations defined as usual. (Write x o y for composition: (4, v)ex°y
iff there exists w such that (u, w)e x and (w, v)€ y.) An inclusion formula ¢ < ¢,
on C, is said to be satisfied for congruences in the algebra of relations of U if

¢ <S¢, holds in Rel (U) whenever congruences 64, 0,, ..., 8, of U replace the
variables x;, x,, ..., X,, respectively. Given ¢ in C,, we define a finite sequence
Fy(c), Fi(c), ..., F(c) of lists of formulas, each formula being a finite sequence of

symbols of form (a;, a;) € c,, where a; and q; are variables in {a;:i= 1} and ¢, is in
C,. The recursive definition is as follows: First, Fy(c) is the list containing the one
formula (a,, a,)€ c. For k>0, F(c) and all subsequent terms are undefined if
F,_,(c) has no k-th formula. Suppose F,_;(c) has k-th formula {(a; a;) € c,. If
co=c,Nc, for some c¢;, ¢, in C,, then F(c) is obtained by adding the two
formulas (a;, a;)€ ¢, and (a;, a;)€ ¢, to the end of list F,_;(c). If co=c;° ¢, for
some ¢y, ¢, in C,, then F,(c) is obtained by adding the two formulas (a;, a,)€ ¢,
and (a,, a;)€ ¢, to the end of the list F,_;(c), where p is the smallest positive
integer such that the variable a, doesn’t occur in any formula of the list F,_,(c). If
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Co is a variable x;, i=n, then F(c)= F,_;(c). It is not difficult to verify that this
procedure terminates for any c in C,, and so we can define F(c) to be the final list
of formulas F(c), such that F,,;(c) is undefined. (The number of formulas in the
list F(c) equals the length of the polynomial ¢, that is, the number of occurrences
of intersection, composition and variable symbols in ¢. The polynomials of C,
appearing in formulas of F(c) subsequent to the first are just the component parts
of the polynomial ¢, at all levels.)

The procedure for computing 5(d°, e°) from d and e begins as follows:
Compute F(d°) and F(e°), and modify F(e°) to obtain F*(e°) by replacing each

variable a; by the variable f; in every formula of the list. Suppose {a,,a,, ..., a,,}
and {f,, f,, ..., f.} are the sets of variables appearing in the formulas of F(d®) and
F*(e°), respectively, excluding the variables x,, X,,...,x, of C,. Clearly, m

equals two plus the number of composition operators in d°, and similarly for s
and e°. (In the subsequent analysis of Mal’cev conditions for a variety ¥ of
algebras of type 7, we will use {a,, a,, ..., a,} as a free generating set for the free

¥ -algebra on m generators, and f; = f,(a,, a,, . . ., a,,) will be a 7-polynomial for
each i=s.)

EXAMPLE. The Fano identity of R. Wille (see [19: p. 134] and [10: Ex. 1,
p- 319]) is known to be satisfied throughout £(R) if and only if R has characteris-
tic two or is trivial. This identity is d < e, where:

d=(x;VX)A(x3Vx,)

e =[(x;vx3) A (X2 v x)]V[(x; v x) A (X, v x5)].
By our definition, we have:

d°=(x1° %) N (x3°x,)

e =[(x; © x3)N(x;3 © x4)] o [(x © x4) N (x;  x3)].

Computing recursively, we have F(d°)=F,(d°) as given below.

1. {a;, ay)ed® 2. {a;, ay)E X ° X,
3. {ag, a)ex3°x, 4. {ay, az)e x;
5. a5, ay) € x, 6. {a;, ay)€ x5

7. (a4, az) € x4
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Again, F*(e°), corresponding to F;s(e°), is given below.

L (fi,f)eee 2. {fi, fde(xr0x3) N (%, 0 x,)
3. fs f) € (x1 0 %) N (x50 x3) 4. (fu, fsrex;°x;

5. {fi. f)ex,0x, 6. {fs, f)ex 0 x,

7. fs, Y€ xz0 x5 8. {fi, fadex,

9. (fa, f3)€ x5 10. (f1, fsre x,

11. {fs, f3)e x4 12. (fs, fe) e x,

13. {fs, f2) e x, 14. (fs, f1h e x,

15. {f5, f) e x5

Note that m =4 and s =7 for our example.

Procedure. Construct partitions ¢,, ¢, . . . » ¢ of {ay, a5, ..., a,} correspond-
ing to the variables x,, x,, ..., x, of d° and e° as follows: For each k, k=n, ¢, is
the smallest partition of {a,, a,, ..., a,} such that a; and a; belong to the same
block of ¢, for every formula (a,, a;) € x, in the list F(d°). If x, doesn’t occur in
d°, then ¢, is the discrete partition {{a,}: i= m}. For any partition ¢ of
{ay,a,,...,a,}, let $*(a,) for i=m denote a;, where j is the smallest integer
such that a; and a; belong to the same block of &.

EXAMPLE. By analysis of F(d°), we have for the Fano identity:

¢1 = {{al’ a3}’ {aZ}: {aA}}a ¢2 = {{al}’ {aZa (13}, {a4}}’
¢3 = {{al’ a4}’ {a2}: {(13}}, ¢4 = {{al}’ {aZ’ 04}, {(13}}.

Therefore, $¥(a\) = a1, ¢T(a2) = ay, ¢¥(as)= a,, $*(a,)= a4, and so on.

Procedure. A formula in F*(e°) of form (fofrex, for k=n is said to be
operation-free. Each operation-free formula {f, frex, of F*(°) is said to
produce the corresponding polynomial equation

f.i((b;lc‘(al)’ d’f(aZ)’ cety d’f(am)) = f‘]((bf(al)’ ¢f(a2)’ cecy f(am))'

We say that the Mal’cev condition 5(d°, €°) is satisfied for a variety ¥ of algebras
of type 7 if there exist r-polynomials flay, as, ..., a,) for i=s such that each
polynomial equation produced by an operation-free formula of F*(e°) is an
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identity for ¥ and the two special equations a, =f(a,, a3, ...,4,) and a,=
f-(ay, as, ..., a,,) are also identities for V. (The two variables appearing in the
initial formula (f;, f-)€ e°> of F*(e°) have a special role.)

EXAMPLE. For the Fano identity, 5(d°, ¢°) is satisfied in a variety ¥ of
algebras of type 7 if there exist 7-polynomials fi(ay, a5, a3, a,) for i=7 such that
the following ten polynomial equations are identities for

1. fi(aq, az, a4, as) = falay, az, a4, as) 2. falay, az, as, a,)
= f3(al, asz, as, as)

3. fl(ala Qy, 4z, a,) = fs(aq, az, az, as) 4. fs(al, a,, as, a)
= fy(ay, a,, as, a,)

5. fias, az, 4y, a,) = felay, az, a4, as) 6. folay, as, as, a)
= f2(a1, as, 4z, a,)

7. f3(a1, az, Gz, Ag) = fiay, az, as, a,) 8. fay, az, as, a,)
= f,(a;, a,, as, ay)

9. a,= fi(ay, a, as, as) 10. a,=fo(aq, az, as, ay)

Here, the first eight equations are produced by the operation-free formulas of

F*(e°) (the last eight), and the last two equations are the special equations for f;
and f,.

THEOREM 1 (R. Wille). Suppose ¥ is a variety of algebras of type 7, and d°
and e° are polynomials in intersection and composition on the variables Xy, X5, ...,
x,. Let V,, be the free V-algebra, freely generated by {a,, a, ..., a,}, and let
b1, o, ..., b, be the partitions of {a;:i=m} constructed from F(d°) as described
above. Let g*:C,— Rel(V,,) be the unique homomorphism of intersection and
composition such that g*(x,) is the 7-congruence of V,, generated by ¢, for each
k = n. Then the following are equivalent statements:

(1) d°c e is satisfied for congruences in Rel (U) for every U in V.

(2) g*(d°) < g*(e®) in Rel (V).

(3) The Mal’cev condition 5(d°, e°) is satisfied for V.

Proof. Assume the hypotheses. Clearly (1) implies (2).

Assume (2). By an induction going from bottom to top of the list F(d°), we see
that (a;, a;) € g*(c) is true whenever (a;, g; ;)€ ¢ is a formula of F (d®). In particular,
{a,, a,)€ g*(d°) is true. By assumption, we have g*(d°)< g*(e°), and so {(a;, a)€

g*(e°) also. By an induction from top to bottom of the list F *(e°), we can show
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that there exist elements z,, z,, ... »2; of V., such that a;=12z,, a,=2, and
(2, zj) € g*(c) is true if (f, fiYe cis a formula of the list F*(e°). Let W,, be the free
7-algebra of T-polynomials on the variables {ay, a5,...,4a,)}, and let a: W, -V,
be the unique r-homomorphism such that a(g,) = a; for i = m. Since « is onto, we
can choose a 7-polynomial f; such that a(f,) = z,, for each i =s. By [5: Thm. 1, pp.
169-170], a;= z; in V,, implies that a; = f.(a,, as, . . ., a,,) is an identity of ¥ for
i=1,2. So, the special equations of 5(d° e°) are identities for V. Suppose
(f, f) € x, is an operation-free formula of F*(e°). Let A= {d)f(ap):p = m}. (For
example, A,;={ay, a,, a4} if ¢,={{a,}, {a,, ast, {a,}}.) Let W, . be the free
-algebra of all 7-polynomials on Ani and let V, . be the free ¥ -algebra on
A, Let B:W, , — V, . be the unique t-homomorphism such that B(a,) = a,
for each a,in A,, . Define 7-homomorphisms h: W, — W, and h*: VvV, — Vi
by h(a,)=h*(a,)= ¢>’,f(ap) for each p=m, using the free T-algebra and free
V-algebra properties. So, we obtain the commutative diagram below.

Wm _J_) Wm,k

l Ja

h*
Vm Vm,k

Now h*(a,)= h*(a,) whenever 4, and a, are in the same block of ¢, so
h*(v;) = h*(v,) whenever (v,, v,) is in 8*(xi). But (z, z;) € g*(x,) because (fs fiye
X is in the list F*(e°). Therefore, h*(z,) = h*(z;). Using the diagram commutativ-
ity and 7-homomorphism properties, we have:

B(ﬁ(d)f(al)’ ¢f(a2), MR d’f(am))) = Bh(fi(ab asz, ... H am)) =
h*a(f) = h*(z) = h*(z) = h*a(f) =
Bh(fi(ar, az, ..., a,)) = B(f(d¥(ar), d¥(ay),. .., d¥(a,)).

But then the equation f,(¢¥(a,), ..., o¥(a,) = f(d¥ay), ..., ¢¥(a,,)) produced
by the operation-free formula (J, ;)€ x. is an identity for ¥, by [5: Thm. 1, pp.
169-170] again. Therefore, the Mal’cev condition E(d°, e°) is satisfied for ¥,
using the indicated 7-polynomials fis f2» - .., f.. This proves that (2) implies (3).

Now suppose 5(d° e° is satisfied in ¥, say by r-polynomials
fila, a,, ..., a,) for i<s. Let U be any V'-algebra, and let y(x,), y(x,), R
y(x.) be any congruences on U. As before, y*(c) in Rel (U) can be uniquely
defined for each ¢ in C,. Suppose (¥1, ¥2) is in y*(d®°). By induction from top to
bottom of the list F(d°), there exist Y35 Y45 - -+ 5 ¥m in U such that (y, vy v*(c) if
(a;, a;)e ¢ is a formula of F(d®). Then an induction from bottom to top of F*(e°)
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shows that
L'
(fi(yh Y2, LR Ym)’ fj(Ylv )’2, ) ym)>€X’*(C)

if (f, f)€ c is a formula of F*(e°). (For formulas (f, f;) € x,. we use the hypothesis
that f,(¢*(ay), - .., ¢¥(an))=fi(d¥(a)), ..., ¢ila,)) is an identity of 1" and the
result that y(x,) identifies y, and y, if a, and a, belong to the same block of ¢,.)
In particular,

(fl(Yl’ Y25 - - Ym)> fz(}’n Y2, .- }’m»e 'Y*(eo)a

and so (y;, y,) is in y*(e°) by the two special identities of H(d°, e°). Therefore
v*(d°) < y*(e°), so d°c e° is satisfied for congruences in Rel (U). So, (3) implies
(1), completing Thm. 1.

The above proof is essentially the same as the proof given by R. Wille in [20].
For the reader’s convenience, we have gathered and elaborated arguments
appearing in several different places in the book, and have omitted parts of
Wille’s analysis that are not needed here.

To compute (d, ), we modify the previously described method for comput-
ing 5(d°, €°).

Procedure. After construction of F(d°), F*(e°) and ¢y, ¢, ..., ¢,, we intro-
duce ring variables r; for i=s and j=m. (In later analysis,
flay, as ..., a,) =X, F(a) for i=s in R-Mod.) For each operation-free for-
mula (f, f;) € x, of F*(e°) and each block A of ¢, the associated ring equation is

Y Arp a,e A= Y {r,:a,€ Al.
In addition, we have 2m special ring equations

r;=35; (Kronecker delta),

for i=1,2 and j=m. (In effect, we are equating coefficients of the identities of
£(d°, ¢°) produced by the operation-free formulas of F*(e°) and by the two
special identities a,=f, and a,=f,.)

Define (d, e) to be the existential closure of the conjunction of all ring
equations associated with operation-free formulas of F *(e°) and blocks of the
corresponding partitions, plus the 2m Kronecker delta equations. Since every
term of £2(d, e) is 0, 1 or a sum of one or more variables, {2(d, e) is a productless
system of ring equations.
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EXAMPLE. For the Fano identity, we obtain 24 ring equalities correspond-
ing to eight operation-free terms of F*(e®), each associated with a partition having
three blocks. They are given in the 8 X3 array below.

Tt rs=ratrs rp=rg, Tia=Tas
Tatla=ratr, r,=r, T43 =T33
1 =rs; M2t ra3=Ts;trss ry=rs,
sy = T3 FsatTsa=Taptrsy rs3=rs;
P31t =rg +res 1 =rg; T34 = Te4q
Te1=Tqq TeaF Tea=Tpp+ oy Te3 =1y
T3 =TI Faat T3 =Tptrs r3=ryy
Tt ra=rytr rnp=ry T73= T3

We also have the 2x4 array of Kronecker delta ring equalities below.

711=1 r12=0 r13:0 r14=0

21=0 rp=1 1r3=0 ry=0

By the definition, £2(d, e) is the existential closure of the conjunction of the 32
equations above.

Using ordinary arguments in the theory of rings with 1, we can show that
(d, e) is equivalent to 1+1=0. Specifically, the formula matrix of Q(d, e), a
system of 32 equations in 28 variables, is equivalent to the conjunction of
1+1=0 and 28 equations given by setting [r;)i=7,=4 equal to the matrix:

[1 0 0 0
0100
1 011
0010
1110
00 01

1 1 0 1.

By previous analysis, the Fano identity is satisfied throughout £(R) if and only if
R has characteristic two or is trivial [10: p.319]. Our next theorem thus agrees
with the known result for the Fano identity.
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THEOREM 2. Suppose R is a ring with 1 and d and e are lattice polynomials
O X1, X, . . ., X,. Then the formula d < e is satisfied in every lattice representable by
R-modules if and only if the productless system of ring equations 2(d, e) is satisfied
in R. There is a recursive procedure for computing (d, e) from d and e.

Proof. Assume the hypotheses. Using the discussion in the introduction and
Thm. 1, d c e is satisfied in every lattice representable by R-modules iff d c e is
satisfied in the lattice of congruences of each R-module M iff d°< e° is satisfied
for congruences in the algebra of relations of each R-module M iff 5(d°, e°) is
satisfied for R-Med.

If 02(d, e) is satisfied in R via an assignment g(r;) of elements of R for i=s
and j=m, it is easily checked that 5(d°, e°) is satisfied via f(a,, a,, ..., a,)=
2, g(r)(a) for iss.

Suppose Z(d°, €°) is satisfied in R-Mod via f,(a,, a,, ..., a,,) for i=s. Now
every polynomial in R-Moed is equivalent to some R-linear polynomial, so we can
choose g(r;) in R for i =s and j=m such that f,(a,, as, . .., a,,) =) g(_r,-,-)(aj) is
an identity of R-Mod for all i =s. Furthermore, we have R-linear uniqueness: If
2ty ;j(a,-)=z;"=1 ;,-(aj) is an identity of R-Meod for y, y,, ..., y,, and z,, 25, ...,
z,, in R, then y; = z; for all j=m. Using the identity of 5(d°, e°) corresponding to
an operation-free formula (f;, f;) € x, of F*(e°), we see that } ™, g(rip)(¢’,f(ap))=

pe1 g(r]-p)(¢>’,f(ap)) is an identity of R-Mod. If we convert both these sums to
equivalent R-linear polynomials and use R-linear uniqueness, we obtain the
associated ring equations Y {g(r,):a, € A}=Y {g(r;,): a, € A} for each block A of
¢y, satisfying the equations of €2(d, e) associated with (f, f;) € x,. Similarly, we can
apply R-linear uniqueness to the identities Y2, g(r;)(a;)=a; = i S_ij(a,-) for
i=1,2, obtained from the special equations of Z(d°, e°). This leads to satisfaction
of the Kronecker delta equations g(r;) = §; in R for i=1, 2 and j = m. Therefore,
Q(d, e) is satisfied in R via g(r;) for i=s and j=m. We omit the proof that
Q(d, e) is recursively computable from d and e; there is little difficulty in
constructing the required procedure from the definitions. (See the appendix for
computer implementation.) This completes Thm. 2.

Given an integer k and a term ¢ of the theory of rings with 1, let k - t denote
the additive multiple of ¢ by k, defined recursively by 0+ t=0, k- t=(k—1) - t+¢
for k>0, and k-t=—(|k|-t) for k<0. Note that (k,+k,)-r=k,-r+k,-r,
ky«(ky-ry=kik,-r and (k- r))(k, r,)=kk, - rir, for integers k, and k, and
1, Iy, Iy in any ring with 1. Furthermore, each element k - 1 for integer k is in the
center of R. This notation is used when it is convenient to regard R as an
associative algebra with unit over the ring Z of integers.

The productless system of ring equations of form (x)(m-x=n-1) for
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integers m and n is called the ““divisibility condition” for (m, n), and is denoted by
D(m, n), as before. For example, D(2, 1) denotes (3x)(0+x + x =0+ 1), which is
satisfied in a ring R with 1 if and only if 1+1 is an invertible element of R. Now,
the divisibility condition for (m, n) is equivalent to the divisibility condition for
{Im|, |nl) in any ring with 1. Furthermore, D(m, 0) for m =0 is satisfied in any ring
with 1, and so is ring equivalent to D(1, 1), say. Defining D(m, n) to be a
“normal” divisibility condition if m=0 and n=1, we have shown that each
divisibility condition is equivalent to some normal divisibility condition.
We now analyze divisibility conditions in rings R with 1.

DEFINITION. For k=1 and p prime, let expt (k, p), the exponent of p in k,
denote the largest B, B =0, such that p? divides k. As before, the degree of
invertibility 8(R, p) is the smallest B =0 such that D(p®*', p?) is satisfied in R,
with 6(R, p)=w if D(p®*', p?) is not satisfied in R for any B=0. Note that
D(pP*', pP) is satisfied in R if and only if B = (R, p). We will use the abbrevia-
tion g.c.d. for the greatest common divisor of a pair of integers.

PROPOSITION 1. Let R be a ring with 1 with characteristic j, and suppose
m=0 and n=1. If j= 1, then D(m, n) is satisfied in R if and only if the g.c.d. of
m and j divides n. Furthermore, 0(R, p) = expt (j, p) for all primesp if j=1. If j=0,
then D(m, n) is satisfied in R if and only if m>0 and 8(R, p) = expt (n, p) for all
primes p such that expt (n, p) <expt (m, p).

Proof. Assume the hypotheses, and suppose j= 1. Let ¢ be the g.c.d. (m, i), so
m/c and j/c are integers.and ¢ = ma + jb for some integers a and b. If ¢ divides n,
then m - (a(n/c) - 1)=(c—jb)(n/c)-1=n-1-b(n/c)-(j-1)=n-1 in R, since
j-1=0. So, D(m, n) is satisfied in R.

Now suppose D(m, n) is satisfied in R, say m-r=n-1 for r in R. Let
n=occ+r7 for integers o and 7, 0=7<c. Then 7(j/c)- 1=(n—oc)(jic)- 1=
(ley-(n-D—a-G-D=(@lc)-(m-r)=@-1)(m/c-r)=0 in R, so 7=0 and c
divides n. (If 7>0, then 0<7(jc)<j and 7(j/c)-1=0 in R, contradicting
j=char (R).) This proves the first part.

For p prime, D(p®*", p?) is satisfied in R iff the g.c.d. (pP*7, j) divides p® iff
B zexpt (j, p). So, 8(R, p)=expt (j, p) for each prime p.

Now assume j=0. Suppose D(m, n) is satisfied in R, say m - r=n -1 for r in
R. Clearly m>0, since j=0. Let p be a prime such that B = expt (n, p)<
expt (m, p). Then p?*! divides m and n=pPu for some u not divisible by p.
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Choose integers a and b with pa+tub=1. Now bm-r=bn- 1=pPub-1=
p?(1-pa)-1=pf-1-p*"'a-1.  Therefore, p**'-x=pf-1 for x=
(m/pP*)b-r+a-1in R, and so D(p#*!, p®) is satisfied in R. Therefore D(m, n)
satisfied in R implies m >0 and 6(R, p)=expt(n, p) for all primes p such that
expt (n, p) <expt (m, p).

Suppose m >0 and 6(R, p) =expt (n, p) whenever expt (n, p) <expt (m, p), for
all primes p. We prove D(m, n) is satisfied in R by induction on the number k of
prime divisors of m. If k =0, then D(1, n) is satisfied in any ring with 1. So, let
k >0 and choose a prime p dividing m, and assume the induction hypothesis. Let
B=expt(n,p) and «k=expt(m,p). Since m/p* has k—1 prime divisors,
(m/p*) - r=(n/p®) - 1 for some r in R by the induction hypothesis. If 8 =k, then
m-(pP - r)=pP(m/p*)- r=pP(n/p?)-1=n"1, so D(m, n) is satisfied in R. If
B <k, then p?''-ry=pf -1 for some r, in R by the hypothesis that (R, p)=
expt (n, p) whenever expt (n, p) <expt (m, p). So, m-rrg P=
((m/p*) - (P~ - rs® =((n/p?) - D(P® - )=n-1 in R, and again D(m, n) is
satisfied in R. This completes Prop. 1.

From Prop. 1, we see that the satisfiability of D(m, n) in R is completely
determined by m, n and char (R) if char (R)= 1. If char (R) =0, then the satisfia-
bility of D(m, n) in R is completely determined by m, n and the degrees of
invertibility 6(R, p) for primes p dividing m, in particular those for which
expt (n, p) <expt (m, p).

The results of Prop. 1 suggest that any finite number of arbitrary divisibility
conditions are ring equivalent to an appropriate single divisibility condition. We
now construct recursive functions for reducing two divisibility conditions, the first
normal, to one normal divisibility condition.

DEFINITION. Let my, n;, m, and n, be integers such that m, =0 and n, = 1.
Recursive functions f(m,, n,, m,, ny) and g(m,, n,, m,, n,) are defined by cases.
Below, let m denote f(my, n,, m,, ny) and n denote g(my, n;, m,, n,). (It is
intended that m=0 and n=1 and D(m, n) is ring equivalent to D(m,, n) &
D(m,, n,) in all cases.)

CASE 1. If n,=0, then let m = m,; and n=n,.
CASE 2. If n,#0 and m;, m,=0, then let m =0 and n=g.cd. (n,|ny).

CASE 3. Suppose m,, n,#0 and m,=0. Then let m =0. Define n to be a
divisor of n;, 1=n=n,, determined from its prime power factorization. Factor
ny, |my| and |ny| into prime powers, and for each prime p dividing n,, let
expt (n, p) =expt (|, p) if expt(|n,|, p)<expt(Im,|,p) and expt (|n,|, p)<
expt (ny, p), and let expt (n, p) = expt (n,, p) otherwise.
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CASE 4. Suppose my, n,#0 and m,=0. Then m=0 and n is a positive
divisor of |n,|. For each prime p dividing [n,|, let expt (n, p) =expt(n,, p) if
expt (ny, p) <expt(mi,p) and expt(n,, p)<expt(ny,p), let expt(n, p)=
expt (|n,|, p) otherwise.

CASE 5. Suppose m;, m,,n,#0. Then m and n are positive divisors of
|mym,|, computed by prime factorization. Suppose p is a prime dividing |m;m,)|.
For i=1,2, let x;=expt(|n], p) if expt(|n, p)<expt(m], p), and x, = w (plus
infinity) otherwise. If x;=x,= o, let expt (m, p) =expt (n, p) = 0. Otherwise, let
expt (n, p) be the minimum of {x,, x,}, and expt (m, p) = expt (n, p)+ 1.

EXAMPLE. Suppose m, = 7840, n, =280, m,=-756 and n,=1584. Then

m = f(my, ny, my, n,) and n = g(my, ny, m,, n,) are defined by case five. The prime
factorizations are:

my=2°5'7% n,=235'7), |my|=223°7", |n,|=237111,
The primes dividing |m,m,| are 2, 3, 5 and 7, and we have:

expt (n, 2) =min {3, 0} =3, expt (m, 2) =4
expt (n, 3) = min {w, 2} = 2, expt (m, 3) = 3.
expt (n, 5) =expt (m, 5)=0.

expt(n, 7) =min {1, 0} = 0, expt (m, 7) = 1.

Therefore, m =2%3%5°7' = 3024 and n =23325°7°=72.

PROPOSITION 2. Suppose m,, n,, m, and n, are integers such that m, =0,
n=1, m=f(my, ny, my, n,) and n = g(my, ny, my, n,). Then m=0 and n =1, and
D(m, n) is satisfied in any ring R with 1 if and only if D(m;,, n,) and D(m,, n,)
are satisfied in R.

We omit the proof, which is obtained by straightforward applications of Prop.
1, case by case.

We are now ready to describe the procedure which recursively constructs a
divisibility condition D(m(£2), n(£2)) which is ring equivalent to any given pro-
ductless system of ring equations {2. Roughly, each equation u=v of {2 corres-
ponds to some nonhomogeneous Z-linear equation, the left side a Z-linear
combination of the variables of £ and the right side an integer multiple of the
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ring unit. An integer matrix M and column vector V are constructed, correspond-
ing to the productless system of equations {2. In the next stage, a matrix A and
vector U are formed by an old method of diagonalizing integer matrices. In 1879,
Frobenius [4] used this method to study solutions modulo k of the integer matrix
equation MX =V, X an unknown column vector. The classical proofs of the basis
theorem for finitely-generated abelian groups also use this method [18: pp.
260-271]. In a weakened form, the theorem asserts that a diagonal matrix
product A =BMC=[a;], a; =0 if i#}], can be computed from any rectangular
integer matrix M, where B and C are (square) invertible integer matrices with
integer inverses (see [16: Thm. 15, p.361]). We will then verify that {2 is ring
equivalent to a productless system of ring equations corresponding to A and the
column vector U= BV. However, this system is ring equivalent to a conjunction
of divisibility conditions because A is diagonal, and so {2 is ring equivalent to a
single normal divisibility condition by iteration of Prop. 2.

PROCEDURE. Given a productless system 2 of ring equations, let z;,
22,..., 2, denote the variables of {2, arranged in the order of the existential
quantifiers of 2, for example. We assume that t= 1; if £ contains no variables,
then it is replaced by the equivalent formula (3z,)0. If the conjuncts of the
formula matrix of £ are equations y; = v; of productless terms for i =s, then we
can recursively construct an s X ¢ integer matrix M = [m;] and an integer column
vector V=[v,] of length s such that u, =, is ring equivalent to Y, my - z; =
v; -1 for each i=s. The ordered pair (M, V) is called the “matrix system”
corresponding to (2.

EXAMPLE. Suppose 2 is the productless system of ring equations:

@A)EY)@AW)[x+(—(y+ (0N =y+(-DI&[(y+y)+y = (—x)+ w)).

The 23 matrix system (M, V) for 2 is given by:
2 -2 0 -1
M= d = .
[1 3 —1] and v [ 0]

PROCEDURE. Let #,(Z) denote the ring of n X n integer matrices for n = 1.
From the sxt matrix system (M, V) for 0, compute a diagonal sXt¢ matrix
A =BMC=[qg;] and the corresponding s-vector U= BV =[y], where B is
invertible so that B and B! are in M (Z) and C is invertible so that C and C!

are in M,(Z). The method is described in [16: pp. 361-364] and also discussed in
the appendix.
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If s=¢ let d,=a; for i=s. If s>1¢ let d,=a; for i=t, and let d;,=0 for
t+1=i=s. Recursively define integer sequences mgy, my, ..., mg and ng, ny, ..
n,, beginning with my=ny=1. For 0<i=s, define:

L]

m=f(mi_, n_y,d, w) and n;=g(mi_y, n_y, d, w).

Finally, define m(2)=m, and n({2)=n,. Note that m(£2)=0 and n(2)=1 by
recursion using Prop. 2.

THEOREM 3. Suppose R is a ring with 1,  is a productless system of ring
equations, and m=m(2) and n=n({2) are integers obtained by the procedure
given above. Then m(Q) and n(Q) are recursively computable from 2, and Q is
satisfied in R if and only if the normal divisibility condition (Ax)(m -x=n-1) is
satisfied in R.

Proof. Assume the hypotheses. It is clear that m() and n({2) can be
computed recursively from 2 by the definitions. (See the appendix for further
details.)

Let 4,(R) denote the ring of n X n matrices over R. To each m X n integer
matrix X =[x;], there corresponds an m X n matrix X® =[x, - 1] with entries in
R. 1t is easily verified that (XY)® = X®Y® if X and Y are n X k and k X m integer
matrices, respectively. Also, (I,)® is the identity matrix of J(,(R) if I, is the
identity matrix of #,(Z). It follows that (X~ ’)R =(X®)"!if X has an inverse X'
in the ring M, (Z).

By the construction of (M, V) from {2, it is easily seen that Q is satisfied in R
iff there exists a t-vector Z on R such that MRZ = V¥, Defining B and B! in
M (Z) and C and C' in M,(Z) as in the procedure, we have MRZ = V® iff
BEMRCR(CRY'Z=BRV® iff AR(CR)'Z = UR, with A=BMC and U= BV as
before. So, there exists a t-vector Z on R such that MRZ = V¥ iff there exists a
t-vector Y on R such that ARY = U®. (Take Y =(C®)"'Z if Z exists, and take
Z=CRY if Y exists.)

Let Y =[y;] be a t-vector on R. Suppose s =t, and define d;, = g, for i=s, as
before. Since A is diagonal, ARY =[d, - y,);=,. Therefore, ARY=UR iff 4, - y, =
u; - 1 for i =s. Alternatively, assume s> t, and define d; = q; for i=t and d;,=0
for t+1=i=s. Then ARY=UR iff d,-y,=u;-1 for i =t and 0=y, -1 for
t+1=i=s. Whether s =1 or s >, therefore, there exists a t-vector Y on R such
that ARY = UR iff there exist y;, y5, ..., y; in R such that d; - y,=u, - 1 for i =s.
Therefore, (2 is satisfied in R if and only if the s divisibility conditions D(d,, u;),
i=s, are satisfied in R. By recursion on the definitions using Prop. 2,
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D(m(£2), n(£2)) is satisfied in R if and only if D(1,1) and the s divisibility
conditions above are satisfied in R. Therefore, {2 is satisfied in R if and only if the
normal divisibility condition (Ix)(m(£2) - x=n(Q2) - 1) is satisfied in R, proving
Thm. 3.

COROLLARY 1. If R is a ring with 1 and the set of divisibility conditions
satisfied in R is recursive, then the word problem for the free lattice L with
denumerably many generators in H¥(R) is recursively solvable. In particular, the
word problem for L is solvable if R has nonzero characteristic.

Proof. Assuming the hypotheses, equality of words in L occurs if and only if
the corresponding lattice identity is satisfied in every lattice in H#(R) [5: Thm. 1,
pp. 169-170]. The result then follows directly from Thms. 2 and 3 and Prop. 1.
If R has characteristic j=1, then d<e in L if and only if the g.c.d. of m(£2(d, ¢))
and j divides n(£2(d, e)).

COROLLARY 2. Let R and S be rings with 1. Then HZ(R)=HZ(S) if the
set of divisibility conditions satisfied in R and in S are the same. If R and S have
the same nonzero characteristic, then HZ(R)=H¥(S). If R and S both have
characteristic zero and the degrees of invertibility (R, p) and 6(S, p) are equal for
each prime p, then HE(R)=H%(S).

Proof. Again Thms. 2 and 3 and Prop. 1 suffice, since HZ(R) and H¥(S) are
varieties and so are determined by the lattice identities satisfied in all their
member lattices.

A surprising consequence of this result is that HZ(R) depends only on the
additive group structure of R and the position of the ring unit in that group; one
need not know the ring multiplication of R in order to determine HZ(R).

COROLLARY 3. Suppose R=[];.; R, is the product ring formed from an
indexed family {R},.; of rings with 1. Then HZ(R) is the join VI HZ(R,):iel} in
the complete lattice of all varieties of meet and join algebras.

Proof. Assume the hypotheses. It suffices to show that any arbitrary lattice
identity is satisfied throughout H¥(R) if and only if it is satisfied throughout
HX(R;) for all i in I. But any normal divisibility condition is clearly satisfied in R
iff it is satisfied in R, for all i in I, and so the result follows from Thms. 2 and 3.

Combining Thms. 2 and 3, we note two special cases. For a lattice polynomial
inclusion formula dce, let m=m((d, e)) and n=n((d, e)). First, d<e is
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satisfied in every lattice representable by modules if and only if m=n=1.
(Clearly m >0, and so m; and n; must have been defined from case 1 or 5 of the
definitions of f and g for each i, 0<i=s. So, n divides m by recursion through
the sequences m; and n,, 0=i=s. But D(m, n) is not satisfied in Z if 0<n <m,
and the only other possible outcome is m = n = 1.) Second, if d < e is not satisfied
throughout H¥(R) for any nontrivial R, then m=0 and n=1. (Note that
D(m, n) is satisfied in the field of rationals Q for m >0, and D(0, n) is satisfied in
Z, for n>1))

§3. Lattice variety classification and the word problem.

The reduction of lattice identities to ring divisibility conditions makes possible
a detailed analysis of the lattice varieties of the form HZ(R). Before beginning
this study, we insert a preparatory result and corollary.

PROPOSITION 3. Suppose R and S are rings with 1, and there exists a
function f:R — S preserving addition and satisfying f(1) = 1. (Ring multiplication
is not necessarily preserved by f.) Then every divisibility condition satisfied in R is
also satisfied in S, and so HZ(S)c HZ(R).

Proof. Assume the hypotheses. If m - r=n -1 for some r in R, then m - f(r)=
n-11in S. So, every divisibility condition satisfied in R is also satisfied in S, and
therefore HZ(S) c H¥(R) by Thms. 2 and 3.

COROLLARY 4. Suppose R is a ring with 1, and S is a subring of the ring
M, (R) of n X n matrices over R. If S contains rI for every r in R, where I is then X n
identity matrix over R, then H¥(R)=HZL(S).

Proof. Assume the hypotheses. Clearly, r+— rl is a ring homomorphism R — §
preserving 1. Let B;; denote the upper left element of the matrix B. Then
B+~ By is a function S — R preserving addition and mapping I to 1, although it
is not a ring homomorphism in general. However, H¥(R) = HZ(S) then follows
from Prop. 3, proving Cor. 4.

We next show that the degrees of invertibility of primes are completely
independent and unrestricted parameters for rings with characteristic zero.

DEFINITION. Let Q denote the field of rationals. For p prime, let Q, be the
subring of Q generated by {1/q: q € P—{p}}, where P denotes the set of all primes.
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Note that every prime except p is invertible in Q,, but 6(Q,, p) = w. Let Z[X]
denote the commutative ring of all polynomials on the variables X ={x,:peP}
with integer coefficients; we will use the fact that Z[X] is the free ring generated
by X in the variety of commutative rings with 1. If f:P—>][0, ] is an arbitrary
function from the set of primes P into the segment [0, »] of cardinal numbers,
then R; denotes the ring Z[ X ]/a(f), where a(f) is the ideal of Z[ X] generated by:

{pf(p)+1 . xp _pf(P) -1 :pE P’ f(p) < (x)}

(For example, if f(2)=3 and f(p)= o for odd primes p, then a(f) is the principal
ideal of Z[X] generated by 16 - x,—8 - 1)

PROPOSITION 4. For any function f:P— [0, o), Ry is a commutative ring
with characteristic zero such that 8(R,, p) = f(p) for each prime p.

Proof. Clearly R; is a commutative ring with 1, and R, has characteristic zero
because there is a ring homomorphism g:R; — Q preserving 1 such that

g(x, +a(f))=1/p for all primes p. If f(p) = w, then there is a ring homomorphism
8 R; — Q, preserving 1 such that g,(x, +a(f)) = 0 and g (x, +a(f))=1/q for q in
P—{p}. Since 6(Q,, p) = w, we also have 0(R;, p) = w by Prop. 3.

Suppose f(p) <w. By construction, D(pf®*! p/®) s satisfied via x, +a(f) in
R;. So, 8(R;, p)=f(p). Let S equal Q,[x,]/b, the quotient of the polynomial ring
on x, with coefficients in Q, divided by the principal ideal b generated by
p'®*!. x,—p/® - 1. There exists a ring homomorphism h:R;— S preserving 1
such that h(x, +a(f))=x,+b and h(x,+a(f))=1/q+b for q in P—{p}. Suppose
D(p**, p®) is satisfied in R;, and so is satisfied in S by Prop. 3, and so
PP u—pP 1= (pf®* . x —pf® . 1)y for some u, v in Q,[x,]. If B <f(p), then
D(p®*", p®) is satisfied in Q,[x,], and hence in Q, by Prop. 3 using the ring
homomorphism Q,[x,]— Q, obtained by replacing x, by 0, and this contradicts
6(Q,, p) = w. Therefore, B = f(p), and so 6(Ry, p) = f(p), completing Prop. 4.

We now construct lattice identities on four and five variables that discriminate
according to ring divisibility conditions. The methods of C. Herrmann and A.
Huhn are extensively used. In [8], they define identities x, and ¢, for k =2 which
distinguish between varieties H¥(R) according to certain divisibility conditions.
Specifically, x, is satisfied throughout HZ(R) iff the characteristic of R divides k,
that is, D(0, k) is satisfied in R. Also, ¢, is satisfied throughout H¥(R) iff k - 1 is
invertible in R, that is, D(k, 1) is satisfied in R. In unpublished work, A. Huhn has
obtained lattice identities corresponding to other divisibility conditions. The two
authors’ separate approaches are given next.
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DEFINITION. For variables x;, x5, x3, X4, recursively define:

b=(x,Ax3) V(XA X,),
1= di=(x; A %)V (X3 A X),

G ={l(c; Ab)V (XA X3)IA X}V (X34 X,)
and
i1 ={[(d: A D)V (X1 AX)IA X}V (x5 A X).
Then define n(m, n) on x;, x,, x3, X4, X5 to be the identity:
ge{l(ci_iAb)vxsinx,tvd,_,
where
q=bAl(x,AXx) V(XA X3)]A X5,

for all m,n=2.

DEFINITION. Let lattice polynomials d and e, f, for k Z0 on the variables
X1, X, X3, X, be given by the following recursion equations:

d=(x;vx)A(xsvxy),

e=%x1, €.=firivd)a(x,vx;)

fo=%x2  firi=(evx)A(xvx3).

(By substitution, we can obtain recursion relations expressing e, _,; as a polynomial
in e, X, X3, X3, x, for k=0 and f,,, as a polynomial in f,, x;, X,, X3, X;, for k=1.)
Then we define lattice identities A(m, n) for m=0 and n=1 by the following
expression:

d<x,ve, V.

This defines the two sets 1 and A of lattice identities.
We remark that the identities y, and g, for k =2 given in [8] are expressible
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(with notation changed), respectively by:
fier e dv(x v xs) A(x, v x,)]

and

d*/\[(xl/\x3)v(x2/\x4)]Cffvx2,

where e* denotes the polynomial dual to a given lattice polynomial e. C.
Herrmann (private communication) remarks that f, < f,. v x, v x, is also equivalent
to D(m, n) for the ring.

Note that the 7 and A identities are all inclusions of a small lattice polynomial
in a lattice polynomial constructed by a recursion formula. In this situation, it is
often easier to determine equivalent ring divisibility conditions by the use of Thm.
1(2) than by the general method of Thms. 2 and 3. Of course, we can transfer the
computation from the algebra of relations on a free R-module to its lattice of
submodules. In the next two propositions, we use this method to verify the
appropriate properties of our lattice identities.

PROPOSITION 5. Suppose m,n=2 and R is a ring with 1. Then n(m, n) is
satisfied in every lattice in H¥(R) if and only if the divisibility condition D(m, n) is
satisfied in R.

PROOF. Assume the hypotheses. Let n(m, n) be q < e, where ¢ is defined
above and e denotes the lattice polynomial on the right side of the inclusion.
Compute F(q°) and the associated partitions of {a,, a,, as, a,} as follows:

¢1={{a,, a,, ast, {a}}, ¢,= {{ai}, {as, as, a,l},

¢3={{ay, as}, {a,, adt, di={{ay, as}, {a,, as}},
¢s={{a,, a;}, {as}, {a}}

Let V, denote the free R-module on {a, a,, as, as}, 80 Yy ra;=0in V, for r, in
R, i=4, implies that r, =0 for i =4. Let g(x,) be the congruence on V, generated
by ¢, for k=5, and let g*: C5— Rel (V.,) preserve intersection and composition
such that g*(x,) = g(x,) for k=5. By Thm. 1, q°< e’ is satisfied for congruences
in Rel (M) for every M in R-Mod if and only if g*(¢°) < g*(e°). For M in R-Mod,
let Su(M) denote the lattice of submodules of M, so Su(M) and Con(M) are
isomorphic lattices. Defining h(x;)= R(a;—-a3)+ R(a, - a,), h(x,) =
R(az—a3)+R(a2_a4), h(x3)=R(a1—a3)+R(a2—a4), h(x,) =
R(a;—a,)+ R(a,—a3) and h(xs)= R(a;—a,) in Su(V,), we sce that g(x) in
Con(V,) corresponds to h(x,) in Su(V,) for k =5. Let W; be the meet and join
algebra of all lattice polynomials on {x1, x2, X3, x4, x5}, and let h*: W — Su(V,) be
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the unique meet and join homomorphism such that h*(x,) = h(x,) for k =5. Since
R-Mod is a congruence-permutable variety, it follows that q < e is satisfied in
every lattice in H¥(R) if and only if h*(q) < h*(e) in Su(V,).

By direct computations in Su(V,), we see that:

h*(b)=R(a,— a;)+ R(ay,—a;), and for k=1,
h*(c,)=R(k - a,+a,—(k+1)- a;)+ R(a;+a,—as;—ay),
h*(dy)=R(a,+k - a,~(k+1)- as)+ R(a;+a,— a;— a,).

It follows that h*(q)< h*(e) in Su(V,) if and only if:

R(a;—a,)cR(m - a,—m - az)+R(a;+(n—1)-a,—n- as)
+R(a,+ a,— as;— ay).

The condition above is equivalent to the existence of ry, r,, 3 in R such that:
ar—a=r(m-a;—m-az)+r(a;+(n—1) - a—n-as)+ ri(ai+ax— az— ag).

Since V, is free, it follows that the above equation holds if and only if r,=1,
r;=0and m-(—r,)=n-1in R. So, h*(q)<= h*(e) if and only if the divisibility
condition D(m, n) is satisfied in R. This proves Prop. 5.

PROPOSITION 6. Suppose m=0, n=1 and R is a ring with 1. Then A(m, n)
is satisfied in every lattice in HZ(R) if and only if the divisibility condition D(m, n)
is satisfied in R.

Proof. It is possible to verify Prop. 6 using [10: 311-318], as was done in
the earliest proof. However, the method of Thm. 1(2) is selfcontained and shorter,
so we outline it here.

Let e denote x,ve,V ., so A(m,n) is d<e with d=(x;Vx,)A(x3VX,) as
above. Construct F(d°) and the associated partitions as for the Fano identity
example. Similar to Prop. 5, we have the unique meet and join homomorphism
h*:W,—Su(V,) such that h(x;)=R(a;—as), h(x,)=R(a,—as), h(xs)=
R(a,—a,) and h(x,)=R(a,—a,) in Su(V,). By the argument above, d<e is
satisfied in every lattice in H¥(R) if and only if h*(d) < h*(e). Again computing,
we see that:

h*(d)=R(a,— a,),
h*(fk)= R(k . a1+a2_a3_ k- a4) for k 20,
h*(e,)=R{(k+1)-a,—as—k -a,) for k=0.
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Therefore, h*(d)< h*(e) in Su(V,) if and only if:

R(a;—a)cR(a,~as3)+R((n+1)-a;—as;—n - ay)
+R(m - a,+a,—as;—m - a,).

We can then show that h*(d) = h*(e) if and only if D(m, n) is satisfied in R, by an
argument similar to the proof of Prop. 5. This proves Prop. 6.

We can now complete the classification of all distinct lattice varieties gener-
ated by lattices of submodules over a fixed ring. As previously noted, the rings Z;
for k=1 and R, for f:P— [0, w] are in one-one correspondence with the distinct
lattice varieties of this kind.

THEOREM 4. Suppose R is a ring with 1. Then H¥(R) =HZL(Z,) if and only
if R has characteristic k, k = 1. Furthermore, H€(R) = HZ(R;) for f:P— [0, 0] if
and only if R has characteristic zero and f(p) equals the degree of invertibility
6(R, p) of p in R for all primes p.

Proof. 1t follows from consideration of the identities x. of [8: Satz 5,
p- 188] or 4A(0, k) of Prop. 6 that HZ(R) =HZ(S) implies that R and S are rings
with the same characteristic. Therefore, HZ(R)=HZ(Z,) if and only if R has
characteristic k, k =1, by Cor. 2.

Suppose HZ(R)=H¥(R,) for f:P—[0, w]. Then R has zero characteristic
by the above. Using Prop. 4 and considering the lattice identities 7(p®*?, p®) of
Prop. 5 or A(p?*!, p®) of Prop. 6, we see that 8(R, p) = 60(R;, p) = f(p) for all
primes p. Finally, if R has characteristic zero and 6(R, p) = f(p) for all primes p,
then HZ(R)=HZ(Ry) by Prop. 4 and Cor. 2. This proves Thm. 4.

It is not difficult now to give the inclusion and join relations between the
varieties HZ(R) for all rings R with 1, in the complete lattice U of all varieties of
meet and join algebras. By Thm. 4, we need only consider the rings Z; for k=1
and R; for f:P— [0, w].

THEOREM 5. Let j, k=1 and f, g:P— [0, o]. Then:

(1) HL(Z,)cHZL(Z,) if and only if j divides k.

(2) HL(Z;)) cHL(Ry) if and only if expt (j, p)=f(p) for all primes p.

3) HXZ(R;)=HZ(Z)) is always false.

4) HZ(R;) cHZL(R,) if and only if f(p)=g(p) for all primes p.

(5) Suppose R, is a ring with characteristic n,, for all i in some nonempty index
set L If {n;:ie I} is a bounded set of integers not containing zero, then it has a least
common multiple n, and HZ(Z,,) is the join of all the varieties H¥(R;), i€l in the
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complete lattice of varieties U. If {n,:ie I} is unbounded or contains zero, then it
has no least common multiple. In this case, the join in U of all H¥(R)), i€, is
HZ(R;), where f(p)=sup {6(R, p):ieI} for all primes p.

Proof. Assume the hypotheses. If j divides k, then there is a ring
homomorphism Z, — Z; preserving 1, and so HZ(Z,)cHZ(Z,) by Prop. 3. If
HZ(Z;)cHZL(Z,), then A(0, k) is satisfied throughout HZ(Z;), and so j divides
k, by Prop. 6. This proves part (1).

Suppose expt (j, p) = f(p) for all primes p. Then (3x)(j-x=m-1) has no
solution in R; for any m, 0<m <j, since otherwise expt (j, p) =expt (m, p) for all
primes p by Props. 1 and 4, which contradicts 0 <m <j. Therefore, the ideal
(j- DR; of R; doesn’t contain m -1 for 0<m <j, so R{/(j - DR; is a ring with
characteristic j. Since there is a cononical ring homomorphism R; — R/(j - 1)R;
preserving 1, we have HZ(Z;) =HZL(R//(j - 1)R;) = HZ(R;) by Thm. 4 and Prop.
3. Suppose HZ(Z;) cHZ(R;), so A(p/®*", p'®) is satisfied in HL(Z,) for each
prime p such that f(p) <w, by Props. 4 and 6. But then expt (j, p) = f(p) for each
prime p by Props. 1 and 6, proving part (2).

Clearly HZ(R;) = HZ(Z,) is always false, since A(0, j) is satisfied throughout
HXZ(Z;) but not throughout H¥(R;) by Prop. 6. This proves part (3).

Suppose f(p) = g(p) for all primes p. Then R; =Z[X]/a(f) and R, = Z[ X J/a(g)
for the commutative ring Z[X] and certain ideals a(f) and a(g) such that
a(g)<c a(f), using the definitions. So, there is a ring homomorphism R, — R;
preserving 1, and H¥(R;) cHZ(R,) by Prop. 3. Suppose HZ(R;) cHZ(R,), so
A(pP*!, pP) is satisfied in HL(R,) whenever it is satisfied in HZ%(R,) for any
prime p and 8 = 0. It follows by Props. 4 and 6 that f(p) = g(p) for every prime p,
proving part (4).

Suppose R =[];; R; for some nonempty family {R;};.; of rings with 1. By Cor.
3, HZ(R) is the join in U of all the varieties HL(R,), i€ L If {n,:i e I} has a least
common multiple n, then R has characteristic n, and so HZ(R)=H%(Z,) by
Thm. 4. Suppose {n;:i€ I} is unbounded or contains zero. Then R has charac-
teristic zero. Clearly, D(p®*"', p®) is satisfied in R if and only if it is satisfied in R,
for all i in I, for p prime and B =0. Therefore, f(p)=sup{8(R, p):icI} is the
degree of invertibility of p in R, and so HZ(R) = HZ(R;) by Thm. 4. This proves
(5), completing the proof of Thm. 5.

Note that H£(Q) = HZ(R) if and only if R has characteristic zero by Thm.
5(3,4) and Thm. 4. So, the minimal nontrivial varieties of form HZ(R) for rings
R with 1 are HZ(Q) and HZ(Z,) for p prime, the field cases, by Thm. 5(1, 2, 3).
The unique largest variety of form HZ(R) is clearly H¥(Z).

In general, the intersection of varieties of form HZ(R) for rings R with 1 need
not be of the same form. For example, H¥(Z,) NHZ¥(Q) contains all distributive
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lattices, among others. However, a ring R with 1 such that HZ(R)c
HZ(Z,) "HL(Q) is trivial, so HZ%(R) #HZL(Z,) "HZ(Q) because HZ(R) then
contains only the trivial lattice.

In Cor. 1, we noted that word problems for free lattices in HZ(R) are
recursively solvable if R has nonzero characteristic. The next result deals with
rings of characteristic zero. Essentially, free lattices in H¥(R) have solvable word
problems if we can recursively decide whether 6(R, p) =k for primes p and finite
k, even if we can’t recursively decide whether 6(R, p)= w or not.

THEOREM 6. Suppose R is a ring with characteristic zero and 6(R, p) is the
degree of invertibility of p in R for each prime p- Then the word problem for the free
HXZ(R)-lattice L on denumerably many generators is recursively solvable if and
only if f*(j, p) = min {j, 6(R, p)} is a recursive function on {j:j=1}X P. In particu-
lar, the word problem for L is recursively solvable if p— 0(R, p) is a recursive
function on the set of primes P.

PROOF. Assume the hypotheses. If the word problem for L is recursively
solvable, we can compute f*(j, p) as follows: f*(j,p)=j if all the formulas
A(p**', p*) for 0=k <j are not true for L, and otherwise f*(j, p) is the smallest k
such that A(p“*', p*) is true for L. By Prop. 6, f*(j, p)= k<j if and only if
0(R,p)=k for k<j. So, the indicated procedure computes min {j, (R, p)} for
j=1 and p prime.

Suppose f*(j, p) is recursively computable, and d and e are lattice polynomials
on the generating set {x;:i=1} for L. Let m = m((d, ¢)) and n = n(£2(d, e)). By
Thms. 2 and 3, d<e in L if and only if D(m, n) is satisfied in R. If m =0, then
d<e is false in L. Assuming m, n=1 and using Prop. 1, d<e in L iff (R, p=
expt(n, p), or equivalently f*(n, p)=expt(n,p), for all primes p such that
expt (n, p) <expt (m, p). Since f* is recursive and there are only finitely many
primes dividing m, there is a recursive procedure solving the word problem for L.

If p— 6(R, p) is recursive, then f*(j, p) = min {j, (R, D)} is recursive, so the
word problem for L is solvable. This completes Thm. 6.

COROLLARY 5. Suppose R is a torsion-free ring with 1, and P, is the set of
primes p such that p - 1 is invertible in R. Then H¥(R) depends only on Py, and the
free HZ(R)-lattice on denumerably many generators has «a recursively solvable
word problem if and only if P, is a recursive set of primes.

Proof. Assume the hypotheses. If D(p®*', p®) is satisfied in R via r for any
B=0, then p?-(p-r—1)=0, and so p is in P, since R is torsion-free. So,
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6(R, p)=0 for p in P, and 6(R, p) = w for p in P—P,. Then f*(j, p) = j(1— x(p)),
where x(p) is the characteristic function of the set P, in P. Therefore, f* is
recursively computable if and only if x is recursively computable. It follows that
the word problem for L is solvable if and only if P, is a recursive set of primes, by
Thm. 6. Since R has characteristic zero, H#(R) depends only on P, because
6(R, p) is determined by P, using Thm. 4. This proves Cor. 5.

Since the unitary subrings of the rational field Q are torsion-free, Cor. 5
applies. These rings are uniquely determined by their invertible primes; the
function Py — Q(P,) is a one-one correspondence from subsets P, of P to unitary
subrings of Q if Q(P,) is the unitary subring generated by {1/p:p e Py} [9: p. 86].

COROLLARY 6. Suppose R is a (von Neumann) regular ring with zero
characteristic, and P, is the set of primes p such that p - 1 is invertible in R. Then
HZ(R) depends only on P,, and the free HL(R)-lattice on denumerably many
generators has a recursively solvable word problem if and only if P, is a recursive
set of primes.

Proof. Assume the hypotheses. For p prime, there exists r in R such that
(p-Dr(p-1)=p -1, by the regularity of R. Since p - 1 is central in R, it follows
that D(p?, p) is satisfied in R. So, every prime p has degree of invertibility 0 or 1
in R, and f*(j, p) = 6(R, p) = 1— x(p) for all j=1 and primes p. Therefore, L has a
solvable word problem if and only if P, is a recursive set, and P, determines
HZ(R), as in Cor. 5. This proves Cor. 6.

Regular rings R with arbitrary sets of invertible primes can be formed from
appropriate products of Q and Z, for p prime. In any such product, p-1 is
invertible in R if and only if Z, is not a factor of R.

We remark that less is known of the quasivariety classification problem. That
is, only partial results are available for classifying the lattice quasivarieties £(R),
R aring with 1. The major result of [9] is the following: For rings R and S with 1,
Z(R)< £(S) if and only if for each small exact subcategory € of R-Meod, there
exists an exact embedding functor € — S-Med. In [9: Thm. 5, p. 88], a number of
results parallel to Thm. 5 are given. Two results are worth special mention. First, if
R is a ring with nonzero square-free characteristic k, then £(R)= £(Z,) [9: Thm.
5(6)]. Second, if R is a torsion-free ring, then £(R) depends only on the set of
primes invertible in R [9: Thm. 5(8)], similar to Cor. 5. It is not known whether
Z(R)=HZ(R) for any ring R with 1. However, equality does not always hold, as
the next result shows.
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COROLLARY 7. There exists a ring R with 1 such that Z(R)ZHZ(R).

Proof. For each k=4 divisible by p? for some prime p, there exists a ring R
with characteristic k such that £(R) is a proper subclass of £(Z,)[9: p. 92]. Since
L(Z)<HZZ,)=HZL(R) by Thm. 4, such an R suffices to prove Cor. 7.

We conclude this section with the verification that lattices of submodules
generate self-dual varieties.

THEOREM 7. For any ring R with 1, a lattice identity is satisfied in every
lattice representable by R-modules if and only if the dual identity is also satisfied in
every lattice representable by R-modules. That is, H¥(R) is a self-dual variety of
lattices.

Proof. 1t follows from [13: Thm. 3] that the quasivariety £(R) is self-dual
if R is a commutative ring with 1. Therefore, H¥(R) is self-dual if R is
commutative. Since Z, for k=1 and R; for f:P— [0, »] are commutative, Thm.
7 then follows from Thm. 4.

§4. Congruence varieties of lattices.

It ¥ is a variety of algebras of some type 7, the class of congruence lattices
{Con(V): Ve ¥} generates a variety of lattices that is called a “congruence
variety” (see B. Jonsson [14]). We note that HZ(R) is generated by the class
{Con(M): M € R-Mod}, and so is a congruence variety, for each ring R with 1. A
recent result announced by R. Freese [3] is rather surprising: Any modular but
not distributive congruence variety contains either HZ(Q) or HZ(Z,) for some
prime p. If R is a division ring, then HZ(R) equals H#(Q) or H¥(Z,) according
to whether R has characteristic zero or prime p, by Thm. 4 or {9: Thm. 5(10)].
Thus, the varieties generated by projective geometry lattices over a fixed division
ring are minimal with respect to all modular but not distributive congruence
varieties, not just those of form HZ(R). Also, Freese announces that a join of
congruence varieties is a congruence variety, if there is a fixed n such that each
congruence variety of the join is obtained from a variety of algebras with
n-permutable congruences. (Compare with Thm. 5(5).) In a private communica-
tion, Freese notes that the congruence variety € obtained from any subvariety ¥
of R-Med for any ring R with 1 satisfies € =HZ(S) for a suitable quotient
ring S of R. Specifically, $ = R/a, where:

a={reR: rm =0 for all m in each M in 71
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Freese’s argument, slightly modified, is as follows: Clearly a is a two-sided ideal of
R.Every A in ¥ can be regarded as an S-module by defining (r+a)v = rv for r in
R and v in A. Since Con(A) is the same for A regarded as R-module and as
S-module, € = HZ(S). Now let X =S—{0}, and for each s in X, choose r, in R
and x, in some R-module M, of ¥ such that s =r,+a and rx,# 0. Let M denote
the R-submodule of [[,.x M, generated by the element (x,),.x. Then M is in ¥,
and so M*® (the product of a copies of M) is in ¥ for any cardinal a. Also, M is
clearly isomorphic as an S-module to the ring S regarded as a left S-module.
Therefore, if N is in S-Med, then Con(N) is isomorphic to an interval sublattice
of Con(M*) for sufficiently large , and H¥(S) < € follows. Furthermore, Freese
considers modules over rings R not having a unit, and shows that no new
congruence varieties are obtained, by the following argument. Suppose ¥ is a
subvariety of the variety of all left R-modules, where R has no unit and so the
identity 1x = x doesn’t apply for R-modules. A ring R, with unit is constructed
having the same additive group structure as R xZ, and the ring multiplication
given by:

{ri, nXry, Ny) =(riry+ny - 1,4+ n, - 1y, nyny) for ry, r, in R and ny, n, in Z.

Given an R-module M, a unital R,-module M, is constructed with the same
additive group structure as M and scalar multiplication given by:

{r,n)v=rv+n - v (additive multiple), for rin R, n in Z, v in M.

Since Con(M) = Con(M,) for all M, the congruence varieties corresponding to ¥
and to the subvariety V', ={M,: Me ¥} of R,-Mod are the same. Note that the
congruence variety corresponding to all R-modules for R without unit is always
HXZ(Z), since any abelian group can be made into an R-module with the same
congruence lattice by defining all scalar products to be zero.

DEFINITION. Consider the congruence varieties H¥(Z,,) for m=1, and
HZ(Z). The set {m:m =1} can be made into a lattice N when partially ordered
by divisibility. (That is, meet is g.c.d. and join is least common multiple for two
integers of N.) By abuse of notation, we shall consider sets of congruence varieties
(see [5:p.172]). In particular, let ¥ denote {HL(Z,):m=1}, and let €(3)
denote all congruence varieties ¥ such that every member of the set of identities
3 is satisfied in every lattice in V.
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THEOREM 8. Suppose X,< X. Then the following are equivalent:

(1) Hy=HNE(X) for some set 3. of lattice identities.

(2) {m:HZLZ,,)e *,} is an ideal of the lattice N.

(3) There exist integers m;=z0 and n; =1 for j in some index set J such that:

Ho={HZL(Z,,):g.c.d. (m;, m) divides n; for all je J}.

Proof. Assume (1), and choose X so that each o in I is a lattice polynomial
inclusion formula d < e. Define m, = m(Q2(d, ¢)) and n, = n(£2(d, e)). As in Cor.
1, o is satisfied throughout H¥(Z,,) iff the g.c.d. (m,, m) divides n,. Therefore,
(1) implies (3).

It can be shown that any set of the form:
{meN: g.c.d. (m;, m) divides n;, je J},

all m;=0 and n; = 1, is an ideal of N. Therefore, (3) implies (2).
Assume (2), that H={m :H¥(Z,,) € ¥,} is an ideal of N. Let f:P— [0, w] be
defined by f(p) =sup {B:p® e H}, and define

3= {n('™", p'®): peP, f(p)<w}.

(If f(p) =0, let n(p, 1) denote the identity ¢, of [8: p. 190].) From Props. 1 and 5
and [8: Satz 6], it follows without much difficulty that ¥, =% N €(Z). Therefore,
(2) implies (1), completing Thm. 8.

DEFINITION. Suppose H is an ideal of N. Let f:P— [0, w] be given by
f(p)=sup{B:p® e H}, and let 3, be the set of lattice identities:

{n(p’®@*1, p’®): pe P, f(p)<w}.

Define a variety ¥} of algebras of type 7y as follows: Type 74 consists of abelian
group operations {+, —, 0} together with operations corresponding to each o in
3y The identities defining ¥ are the standard abelian group axioms for {+, —, 0}
plus identities corresponding to each o in 3. If o in 3, is d <e, then the
operations and identities corresponding to o are just the operations and equations,
respectively, of the Mal’cev condition 5(d°, e°), with different elements of Xy
assigned disjoint sets of operations. This defines the variety ¥} of 74-algebras,
and €, denotes the corresponding congruence variety of lattices, which is
generated by the class {Con(V): Ve ¥}
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THEOREM 9. H > €,; determines a one-one function from the set of all of

the continuously many ideals of N into the set of congruence varieties contained in
HZ(Z).

Proof. The abelian group axioms ensure that ¥ has permutable congru-
ences. So, d < e and d°ce® are equivalent statements for Con(V), given V in
V. Therefore, any lattice polynomial inclusion d < e is satisfied throughout €, if
and only if Z(d°, €°) is satisfied for ¥%,. it follows immediately that each o in p Y
is satisfied throughout %;,.

Every algebra V in ¥} has an abelian group reduct A with corresponding
Z-module A*. So, Con(V) is a sublattice of Con(A*), since congruence lattice
operations are obtained by restriction of equivalence relation lattice operations
[5: Cor. 2, p.51]. It follows that €,; cHZL(Z).

Suppose me H and M is in Z,,-Mod. So, each o in 3 is satisfied in Con(M).
We can define V in ¥y with the same abelian group structure as M and
additional operations for each o in 3, defined via Thms. 1 and 2, such that
Con(V)=Con(M). Therefore, HL(Z,,) = €, if me H.

Suppose m is not in H. By the definition of 3 and Prop. 1, there exists d < e
in ¥, which is not satisfied throughout H¥(Z,,). Therefore H%(Z,,) is not
contained in €. So, HL(Z,, )<= €y if and only if me H, m=1. It follows that
€y = 6x implies H=K for ideals H and K of N. That is, H > %6y, is a one-one
function, which completes Thm. 9.

The construction of 6y has some resemblance to the construction of the ring
R; and corresponding congruence variety H¥(R;) in Prop. 4. We ask below
whether these two methods lead to the same congruence varieties.

PROBLEM. Let f:P [0, w], and define H(f) to be the ideal of N such that
m e H(f) ift expt (m, p)= f(p) for each prime p. Is Cu(sy= HEL(R;) in general? (It
is clear that HL(R;) < Gy s).)

Appendix. Computer implementation of the word problem algorithm.

The central result of this paper is the algorithm for producing a ring divisibility
test D(m, n) from an arbitrary lattice polynomial inclusion formula dce. A
FORTRAN computer program for computing m = m(£2(d, e¢)) and n = n(£2(d, ¢))
has been designed and tested by the first author, and may be obtained upon
request. The computation is feasible for lattice polynomials of moderate length.
For example, A(4,2) is d<e for polynomials d and e of lengths 7 and 101,
respectively. To verify that D(4,2) is the equivalent ring divisibility condition
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required diagonalization of an 153 x 137 initial matrix system (M, V), and took
less than one second on an IBM 370/168 computer.

In this appendix, we describe the computer version of our algorithm. There
are two significant modifications of the discussion of §2. First, it is possible to
entirely avoid analysis of strings of characters or their Godel numbers. That is, the
computation can be restricted to integer arithmetic and comparison operations on
integers and integer vectors and matrices only. Second, the variables r; of £(d, e)
for i=1, 2 can be directly eliminated by means of the Kronecker delta equations.
Instead of the sXt initial matrix system of §2, we diagonalize an equivalent
(s—2m)Xx(t—2m) system.

The main program of our system inputs the lattice polynomial pairs for
analysis and calls a computational subroutine for analysis of each pair. To express
a lattice polynomial as a sequence of integers, it may be converted to Polish
notation and then each lattice operation or variable replaced by a code integer.
The system we use replaces join by —2, meet by —1, and the variable x; by i for

izl

EXAMPLE. (x;vx;)A(x;VXx3)is A VXX,V X;X5 in (forward) Polish notation,
and so corresponds to the sequence of integers:

-1,-2,1,2,-2, 1, 3.

Of course, many methods of generating or reading lattice polynomial pairs can be
used with our system, so long as the required pair of integer sequences is
generated and input to the computational subroutine.

The analysis of a lattice polynomial pair may be divided into six stages: lattice
polynomial syntax checking and analysis, computation of F-lists, computation of
partitions ¢4, ¢,, ..., ¢, corresponding to the variables x,, x5, . . ., X,, generation
of the (modified) initial matrix system, diagonalization of the matrix system, and
reduction of the resulting divisibility conditions to a single normal divisibility
condition.

Suppose my, m,, ..., m, is an arbitrary sequence of ‘“code” integers, (—1, —2
or positive). Recursively define a corresponding ‘“valency” sequence vg, vy, ...,
v,, beginning with v,=0. For 0<i=n, v;=v,_;+1 if m; represents meet or join
(m;e{-1,-2}), and v;=v,_,~1 if m;, represents a variable (m; = 1). (See [2: pp.
118-119] for a related concept of valency and its properties.) In our implementa-
tion, two-row matrices X, and X, are generated corresponding to the lattice
polynomials d and e for evaluation of the word problem d ce. In each case, the
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first row is the input sequence of code integers, and the second row is the valency
sequence excluding v,.

EXAMPLE. For d = (x; Vv x,)A(x3V x,), the coding and valency sequences are
used to form the 2 X7 matrix X, as follows:

[—1 -2 1 2 -2 3 4]
1 2 1 0 1 0 -1F

A sequence of code integers represents a (unique) lattice polynomial e if and
only if its valency sequence has last term —1 and all other terms nonnegative. So,
it is easily determined by computing the valency sequence whether the input
sequence of integers is syntactically correct. If m,, m,, ..., m, encodes a lattice
polynomial e, then e has n constituent parts (including e itself). For k =n, the
k-th constituent part e, of e corresponds to an interval subsequence m,, m,,

.., m, of the given sequence, beginning at m, as shown. The length of the
subsequence can be determined from the valency sequence by the condition that
v, <v4_; and v;Zv,_; for k=i<r. (In the example, (m,, ms;, my)=(-2,1,2) is
the constituent part of d for k=2 because v,<v, and v,, v3=v,, where
(01, 02, 13, 04)=(1,2,1,0).) Note that if m, represents a variable (m, = 1), then
v, <v,_; and ¢, is the variable represented by m, alone.

A 3Xn integer matrix Y can be conveniently used to compute the F-list of a
lattice polynomial e of length n. If the u-th formula of F(e°) is (a, a;)€ (&),
where e, is the k-th constituent of e, then column u of Y is formed by entering i, j
and k, respectively. The computation adapts the procedure for generating the
partial F-lists F,(e°), 0= u = n. Since F,(e®) is the single formula (a,, a,)€ e° and
e=e,, the first column of Y is given the coordinates 1, 2 and 1, respectively.
Suppose 0 <u=n, and F,_,(e°) contains t formulas, so that we assume that the
first t columns of Y have been completed, t= u. In particular, entries i, j and k
have been computed for the coordinates of column w. If ¢, is a variable (m, = 1),
then F (e®)=F,_,(e°) and Y is not changed in the u-th step. Otherwise, m, is in
{-1,-2}, and columns t+1 and t+2 of Y must be formed in the u-th step.

Suppose my, my,;, ..., m, is the code integer sequence corresponding to e,
rzk+2. Then there exists a unique s, k<<s<r, such that e, has integer
sequence my g, My, . .., M, and ¢, has integer sequence my,;, M o, ..., M,

(Here, e, is a binary meet or join of its constituents e, and e, ,.) Of course, s
can be computed by determining the length of ¢, ., from the valency sequence as
previously described. If m, = —1, the u-th step is completed by entering
i,j,k+1 and i, j, s +1 into the matrix Y in columns ¢+ 1 and t+2, respectively.
Suppose m, = —2, and p is the smallest positive integer not appearing in the
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first ¢ coordinates of rows 1 and 2 of Y. Then the u-th step is completed by
entering i, p, k+1 and p, j, s+1 in columns t+1 and t+2 of Y, respectively.

EXAMPLE. For d=(x,vx)A(x;vx,), the completed matrix Y is given
below:

1111 3
2.2 2 3 2
1 25 3 4

N A=
~N N b

Since m, =m;=-1 for u=1, the computation corresponding to F,(d°) enters
1,2,k+1and 1,2, s +1 into columns 2 and 3, respectively. Since d, corresponds
to (m,, my, m,) as previously noted, s+1=35.

Note that the third row of Y is a permutation of 1,2, ..., n in all cases. The
F-list stage of the computation is completed by computation of the three-row
matrices Y, and Y, corresponding to the input lattice polynomials d and e.

Partitions ¢ of {a,, a,, ..., a,} are conveniently represented by integer sequ-
ences of length m such that the i-th integer is j if ¢*(q)= a;. (Recall that
$¢*(a;)= a; if j is the smallest integer such that g, and a; belong to the same block

of ¢.)

EXAMPLE. {{a,, a3}, {a,}, {a,}} is represented by (1,2, 1, 4).

Therefore, computation of the partitions ¢y, ¢,, ..., ¢, corresponding to the
lattice polynomial variables x,, x,, ..., x, can be arranged in an n X m integer
matrix Z. Initially, each row of Z is set to 1,2, ..., m, corresponding to the

discrete partition {{a;}:i=<m}. We then sequentially examine the columns of the
F-list matrix Y, corresponding to the first input polynomial d. Suppose column u
of Y, contains i, j and k, respectively. If m,, that is, X,(1, k), is —1 or —2, then no
action is needed. Otherwise, m, is positive, representing some variable. In this
case, we modify row m, of Z to combine the block containing a; and the block
containing a; in the corresponding partition &.

EXAMPLE. Suppose row m, of Z is:
1 2142 6 4 2 1]

If the blocks containing a; and a; for i=7 and j =8 are to be combined for b, we
see that the corresponding entries are 4 and 2. Clearly, the required action is to
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replace each 4 by a 2, with the resuilting row m, for Z below:

[t 212246 2 2 1]

After all the columns of Y, have been processed, Z contains the full description
of the partitions ¢y, ¢,, . .., @,. It is easy to obtain an n-vector J such that J(k) is
the number of blocks in ¢, during the computation of Z. This completes the third
stage of the word problem analysis.

We are now prepared to generate the initial matrix system (M,, V,). For
appropriate s and f, M, is an s Xt integer matrix and V, is an s-vector. In the
implementation, it is convenient to use the sx(t+1) matrix [M,| V,] (V, in
column ¢+1). Since we use the Kronecker delta equations to eliminate variables,
the number of system equations s equals the number of equations corresponding
to the operation-free formulas of F(e°), for the second input polynomial e.
Beginning with s =0, add the partition block count J(k) to s for each occurrence
of a positive k in the sequence for e (top row of X,). Terms —1 and —2 in the
sequence are neglected. The number of system variables ¢ must also be computed.
During the F-list computation, the numbers m of variables {a;, a,, ..., a,} and q
of variables {f}, f,, ..., f,} are computed. (They are the maximum entries of the
top row of Y, and of Y,, respectively.) Since the system variables are r; for i=gq
and j=m, and the variables r; for i=1, 2 are eliminated by the Kronecker delta
equations, we take t =(q—2)m except in the case g=2. If g=2,s0 (q—2)m =0,
we take t=1.

To generate the initial matrix system (M,, V), we first set all matrix system
entries to zero. The nonzero entries of (M,, V,) are then computed and set by a
nested recursion. In the outer recursion, the columns of the F-list matrix Y, are
examined. Say that i, j and k, respectively, are the coordinates of column u of Y..
If m,, that is, X,(1, k), is —1 or —2, then no action is taken in the u-th step.
Suppose m, =1, and the first x rows for (M,, V,) have already been computed.
The inner recursion computes rows x+1,x+2, ..., x+J(m,) of (M, V,) in the
u-th step, each row corresponding to a block of the partition ¢ described in row
m, of Z. Suppose X is a block of ¢ and the corresponding equation is to be
entered in row w of the matrix system. Recall that the corresponding equation of
Q(d, e) is Y {r,:pe X}=) {r,, : pe X}. The variables r; for i=1,2 and j=m are
to be eliminated by the Kronecker delta equations, so the columns of M,
correspond consecutively to the variables:

F31, 1325 - -« 5 T3y Tas Faos o5 Tams -+ rq19 rq21 L] rqm'

If i equals 1 or 2, then the left side of the above equation equals 1 if i is in X and
0 otherwise, by the Kronecker delta equations. So, coordinate w of Vj is set to
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=1 or 0 accordingly. For i=3, the w-th coordinate of each column of M,
corresponding to a variable r,, for p in X is set to 1. Similarly, 1 or 0 is added
appropriately to coordinate w of V if j equals 1 or 2, according to whether jisin
X or not. For j=3, 1 is subtracted from the w-th coordinate of each column
corresponding to a variable r,, for p in X.

EXAMPLE. Suppose m =3 and q=4, so the columns of M, correspond to
31, 133, I33, Ta1, Fap @and 143, respectively. If i=1, j=4 and X ={1, 3} is the block
of ¢ corresponding to row w, then the corresponding equation ry; +r3 =1y + 143
becomes (—1) - ry;+(=1) - r,5=(=1)- 1 on substitution of r,; =1 and r;;=0 and
rearranging terms, and so row w of (M,, V) is set to:

[0 0 0 -1 0 -1] and [-1].

The double recursion described above completes the fourth stage, generation of
the initial matrix system (M,, V,).

The fifth stage, diagonalization of (M,, V,), is implemented by using the
well-known “elementary” row and column operations. If M=BM,C and V=
BV, for matrices B and C which are invertible elements of # (Z) and 4, (Z),
respectively, we call (M, V) a “fundamental system.” Let M and M’ be sx¢
integer matrices and V and V' integer s-vectors below. The row operations R1,
R2 and R3 and the column operations C1, C2 and C3 modify fundamental
systems so that the results are again fundamental systems.

(R1) If M'is obtained from M by transposing two rows and V' is obtained
from V by transposing the corresponding coordinates, then (M’, V') is an
R1-transformation of (M, V).

(R2) If M’ is obtained from M by multiplying a row by —1 and V" is obtained
from V by multiplying the corresponding coordinate by —1, then
(M', V') is an R2-transformation of (M, V).

(R3) If M’ is obtained from M by adding an integer multiple of one row to
another and V' is obtained from V by adding the same integer multiple
of the corresponding first coordinate to the corresponding second coordi-
nate, then (M’, V') is an R3-transformation of (M, V).

(C1) If M’ is obtained from M by transposing two columns, then (M, V) is a
Cl-transformation of (M, V).

(C2) If M’ is obtained from M by multiplying some column by —1, then
(M’, V) is a C2-transformation of (M, V).

(C3) If M’ is obtained from M by adding an integer multiple of one column to
a second column, then (M’, V) is a C3-transformation of (M, V).
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Suppose {2 is a productless system of ring equations with initial matrix system
(M,, V,). The row operations correspond to operations on 2 which replace the
system of equations with an equivalent system; the column operations correspond
to operations on (2 obtained by introducing a new system of variables by forming
suitable Z-linear combinations of the previous variables.

In the diagonalization procedure, a sequence (M, V), 0=k =u, of funda-
mental systems is recursively constructed. For each k, M, has the block form:

[Ak Bk]

G D.J

where A, is a k X k diagonal matrix, B, and C, are zero matrices of dimensions
kx(t—k) and (s — k) X k, respectively, and D, is an (s — k) X (t — k) integer matrix.
By convention, the initial matrix system has the above block form with D,= M,
and A,, B, and C, dropping out. The u-th final fundamental system (M,, V,)
satisfies either that D, is a zero matrix or u equals s or t; M, is a diagonal matrix
in all these cases. Of course, we again drop B,, C, or D, appropriately from the
block form in the cases u=s or u=t We describe below the construction of
(M, V,) from (M,, V,), assuming that M, is not a zero matrix. The general
iterative step from (M, _;, V,_,) to (M,, V) is similar, except that A, _,, B,_; and
C._; remain unchanged in this case. That is, this step is performed solely by row
and column transformations of the submatrix D, _; of M, _; and the corresponding
part of V,_; (the last s—k +1 coordinates).

As subsequently specified, we perform R3 and C3-transformations succes-
sively, beginning with (M,, V,), until we obtain a fundamental system (M’, V'),
with M'=[m/] such that some nonzero a =m/; divides every element of M’
Following [18: pp. 236-237], perform an R1, a C1, and a C2-transformation on
(M', V'), as needed, to obtain a fundamental system (M", V") for M"=[m;;] such
that m},=la|, where |a| also divides every element of M”". By s—1 R3-
transformations adding integer multiples —(m’/|a|) times row 1 to row i for
2<l<S we obtam a fundamental system (M*, V¥*) for M*=[m]] such that
m¥ =|a| and m¥ =0 for 2=i=s. Similarly, t— 1 C3-transformations of (M*, V*)
lead to a fundamental system (M, V;) with M;=[m{"] such that m{}=|al,

m{y =0 for 2=i=s, and m{?=0 for 2=j=tr. Most of the computation time
required for the word problem analysis is used for the diagonalization procedure.
For the steps above, we apply two observations to reduce computation time. First,
for each i, 2=i=s, no R3-transformation of the i-th row of the system is needed
if a test shows that m?, = 0. Second, the t—1 C3-transformations described above
change only the first row of the matrix, since at the point of computation the first
column has all zero coordinates except for m¥,. So, these C3-transformations can
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be computed simply by setting to zero all coordinates of the top row except for
the first.

To make the above procedure recursive, it suffices to give a method for
computing (M’, V). For a nonzero s X ¢t matrix N = [n;], let mag (N) denote the
smallest value for |n;| taken over all nonzero elements of N. Suppose that (N, W)
is an s Xt system with nonzero matrix N, such that mag (N) doesn’t divide every
element of N. It suffices to give an algorithm E constructing an sX¢ system
(N’, W") with nonzero matrix N’ such that mag (N') <mag (N), using finitely many
R3 and C3-transformations beginning with (N, W). Given such an E, we can
iteratively apply it, beginning with (N,, W,) = (M,, Vi), to obtain a sequence
(N, W), i=0, of fundamental systems for {). The process must terminate, since
mag (N;) for i=0 is a strictly decreasing sequence of positive integers, and the
final term of the sequence has the desired property for (M’, V').

Assuming the above hypotheses for (N, W) with N = [n;], define E as follows:
First, find an element n; such that |n;|=mag (N), and an element n,, not
divisible by n,. If n; doesn’t divide n,, so n, =on; + 1 for integers o and 7,
0 <7 <|ny], then let (N, W’) be the R3-transformation of (N, W) adding — o times
Tow i to row v, so mag(N')=r<mag(N). (In some cases, fewer iterations of
algorithm E are required to compute (M, V') if —¢ is replaced by —o—1 for
n; >0 or —o+1 for n;<0.) Again, let (N, W’) be an appropriate C3-
transformation of (N, W) if n; doesn’t divide n,,. In the remaining case, i# v and
j#w, and n,; = an; and n,, = bn; for some integers a and b. If we add —a times
row i to row v and then —b times column J to column w, we obtain (N", W") with
N"=[n}] such that ni = ny, ny, =ny; =0 and n}, = n,, — abn;;. Let 7 be the g.c.d.
of n; and nz,, so 7= o1h; +ony, for integers o, and o, computable from the
Euclidean algorithm. Since n; doesn’t divide n,, or n/,, we have 0<7<|n|.
Therefore, we can define (N, W’) from (N”, W") by an R3-transformation adding
o, times row i to row v followed by a C3-transformation adding o, times column
w to column j, obtaining mag (N') =+ <mag (N) again. This defines algorithm E
in all cases. Obviously E has the required properties, including recursiveness. A
considerable saving of computation time can be obtained for the repeated
searches to determine mag (N) for a matrix N. If [n;]=1 for some n; found in N,
then mag (N) =1 and n; divides every entry of N. In our implementation, we test
whether the current minimum nonzero magnitude of the matrix entries equals one
after searching each row. If the test is successful, then no further matrix rows are
searched, and the computation proceeds to the completion of the diagonalization
step beginning from the fundamental system (M’, V).

EXAMPLE. Suppose 2 is a productless system of ring equations having the
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initial matrix system (M, V), with 2 X4 matrix and 2-vector given by:
12 -6 0 24| 5

M,, V,) = .

(Mo, Vo) [10 18 —48 18 l 24]

(This matrix system does not arise from a lattice word problem.)

Let R3(i, j - k) denote the R3-transformation obtained by adding j times row k to
row i, and let C3(i,j- k) denote the corresponding C3-transformation. We
compute (M’, V') by a single application of algorithm E with n;=n;, and
Ny = Nyq, Obtaining:

e 0 -6 0 24 5
(M, V') = [46 2 —48 -102 l —1]’
by the operations R3(2,3-1), C3(1,2-2), R3(2,-8-1) and C3(2,-1-1). The
first diagonalization step is then completed by interchanging the two rows,
interchanging columns 1 and 2, and then the operations R3(2,3-1),
C3(2,—23-1), C3(3,24-1) and C3(4,51 - 1). The partially diagonalized system
(M,, V,) is given by:

2 0 0 O|—1]

(M, V‘)=[0 138 —144 -282 | 2J

The diagonalized system (M,, V,) of order 2 is then completed by C3(3,1 - 2),
interchanging columns 2 and 3, multiplying column 2 by —1, C3(3, -23 - 2) and
C3(4,47.2). The resulting system is:

2 0 0 0¢-1

Note that m,; =2 is the g.c.d. of the elements of M, and m,, =6 is the g.c.d.
of the elements of D, =[138 —144 —282]. In general, m;; for j=<u is the g.c.d.
of the elements of D;_; in this procedure. This completes the description of the
diagonalization process.

The final stage of the computation, reduction of a number of divisibility
conditions to one normal divisibility condition, is simply a recursion iteratively
applying the functions f and g of Prop. 2. We remark that all trivial diagonal
elements a; = 1 can be disregarded, since D(1, 1) & D(1, x) reduces to D(1, 1) by
cases 1 and S of the definitions. This stage is most easily designed using a
subroutine for prime power factorization of any positive integer j. That is, a
two-row matrix containing pairs (p, expt(j, p)) for all primes p dividing j is
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computed. The combined fifth and sixth stages above can be used for the analysis
of arbitrary productless systems of ring equations, beginning from the initial
matrix system.

In our implementation, some auxiliary information is printed, in addition to
the main computation m = m(Q2(d, ¢)) and n = n(£2(d, e)). Special messages are
given for the “extreme” outcomes: The ring is trivial if m =0 and n = 1; the ring
is arbitrary if m=n=1.1If m =0, the prime power factorization of n is given, that
is, all pairs (p, expt(n,p)) are printed for primes p dividing n. Supposing
0<n<m, we note that expt (m, p) = expt (n, p)+1 for every prime p dividing m.
So, D(m, n) is satisfied in R if and only if 6(R, p)=expt (n, p) for every prime p
dividing m (such primes need not divide n), by Prop. 1. In this case, we print the
degree of invertibility maximums, that is, the pairs (p, expt (n, p)) for all primes p
dividing m.

In operation, the algorithm described may fail either because insufficient
computer storage is available or in the unlikely event of arithmetic overflow.
More complicated algorithms could be designed to accommodate the computation
where it is not possible to hold the entire matrix system in the computer’s internal
storage. For example, more variables of Q(d, e) could be eliminated during
generation of the initial matrix system. Also, the matrices generated by the
algorithm are sparse, that is, they have a large percentage of zero entries. So,
alternative techniques for representing matrices by lists of nonzero entries or by
partitioning into submatrices could be considered. Finally, a general algorithm
based on Thm. 1(2) may be possible (see Props. 5 and 6). However, such methods
have not been pursued at this writing.
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