DIAMOND IDENTITIES FOR RELATIVE CONGRUENCES

GABOR CzEDLI

ABSTRACT. For a class K of structures and A € K let Con*(A) resp. Con®(A)
denote the lattices of *- congruences resp. K-congruences of A, cf. Weaver [25].
Let Con*(K) := I{Con™*(A): A € K} where I is the operator of forming isomorphic
copies, and Con" (K) := I{Con®(A): A € K}. For an ordered algebra A the lattice of
order congruences of A is denoted by Con<(A), and let Con<(K) := I'{Con<(A): A €
K} if K is a class of ordered algebras. The operators of forming subdirect squares
and direct products are denoted by Q° and P, respectively. Let A be a lattice
identity and let ¥ be a set of lattice identities. Let X ¢ A (r;Q°, P) denote that
for every class K of structures which is closed under Q° and P if ¥ holds is Con" (K)
then so does A. The consequence relations ¥ |=c A (%;Q%), Y |Ec A (<;Q°)  and
¥ e A (H, S, P) are defined analogously; the latter is the usual consequence relation
in congruence varieties (cf. Jonsson [19]), so it will also be denoted simply by c. If
3 £ A (in the class of all lattices) then the above-mentioned consequences are called
nontrivial. The present paper shows that if ¥ = modularity and ¥ |=. A is a known
result in the theory of congruence varieties then 3 =c A (x;Q%), X Ec A (<;Q%)
and X Ec A (r;Q%, P) as well. In most of these cases A is a diamond identity in the
sense of [3].

1. INTRODUCTION

For a class K of algebras let Con(K) denote I{Con(A): A € K}, i.e. the class of
lattices isomorphic to congruence lattices of algebras in K. If K is a variety then
the lattice variety generated by Con(K) is called a congruence variety, cf. Jénsson
[19]. For a lattice identity A\ and a set of lattice identities 3, ¥ is said to imply
A in congruence varieties, in notation ¥ =, A, if every congruence variety that
satisfies (every member of) ¥ also satisfies A. If, in addition, ¥ does not imply A
in all lattices, in notation ¥ }~ A, then the consequence relation ¥ =, A is called
nontrivial. Many nontrivial results of the form {o} =. A have appeared so far,
cf., e.g., Nation [22], Day and Freese [8], Freese, Herrmann and Huhn [11] and
Joénsson [19]; for a more detailed list and a survey cf. Jénsson [19]. These results
state that certain lattice identities are equivalent to the modular or distributive
law in congruence varieties. Another kinds of |, results are given in [4], where
infinitely many nontrivial {o;} |=. \; are established such that the \; are pairwise
non-equivalent even in congruence varieties.

1991 Mathematics Subject Classification. Primary 08B10, Secondary 06CO05.
Key words and phrases. Congruence variety, relative congruence, ordered algebra, von Neu-
mann frame, lattice identity.

Research partially supported by Hungarian National Foundation for Scientific Research
(OTKA) grant no. 1903

Typeset by ApS-TEX



2 GABOR CZEDLI

The aim of the present paper is to generalize these results for more general
situations. Therefore we will consider structures (i.e., nonempty sets equipped
with operations and relations, cf. Weaver [25] for an overview), not only algebras.
The operators of forming subdirect squares, direct products and isomorphic copies
will be denoted by @°, P and I, respectively. The relations on direct products
are defined by componentwise, while the relations for substructures (or subdirect
products) are obtained via restriction to their base set. Another way of general-
ization is to consider Q%-closed classes K instead of varieties. Let I be a class of
similar structures and A, B € K. A map ¢: A — B is called a homomorphism
if it commutes with the fundamental operations and for any relation symbol p
and arbitrary aq,...,a, € A if pa(ay,...,a,) then pg(p(a),...,p(a,)). Given
A € K, the kernels of homomorphisms from A into other structures in K are
called KC-congruences or relative congruences of A. Let Con™(A) be the set of K-
congruences of A. The proof of Theorem 3 in Weaver [25] shows that Con™(A)
is a lattice (with respect to inclusion) provided K is closed under direct products.
Therefore Con” (K) := I{Con™(A): A € K} is a class of lattices when K is P-closed.
Considering Con" (K) instead of Con(K) offers us the third way of generalization.
For a structure A an equivalence relation © of A is called a x-congruence of A if ©
is a congruence in the algebraic sense and for any k-ary relation symbol p and any
(a1,b1),...,(ak,bx) € O we have

pA(alv-" ,CLk) — pA(bla"' 7b/€)a

cf. Weaver [25]. The *-congruences of A form a sublattice of the equivalence
lattice of A; this lattice will be denoted by Con*(A). For an algebra A we have
Con*(A) = Con(A).

A triple (A; F'; <) is called an ordered algebra if (A; F') is an algebra, (A; <) is
a partially ordered set, and every f € F' is monotone with respect to <. Varieties
of ordered algebras were studied e.g. in Bloom [1]. In case of ordered algebras,
the monotone and operation-preserving maps are called homomorphisms, and their
kernels are called order congruences. Given an ordered algebra A, the set Con®(A)
of of order congruences of A is an algebraic lattice. (This was proved in [6], where
an inner definition of order congruences and a description of their join is also given.)
For a class K of ordered algebras let Con~(K) := I{Con~(A): A € K}. For a class
K of ordered algebras and B € K the lattices Con*(B), Con*(B) and Con™(B) are
pairwise different in general, even if K is closed under P and Q)°.

We will investigate three further consequence relations among lattice identities.
Let A be a lattice identity and let ¥ be a set of lattice identities. Let ¥ =,
A (r;Q%5,P) resp. X E. A (Q°%) resp. ¥ . A (£;Q°) denote that for
every class K of structures which is closed under Q° and P resp. every Q°-closed
class KC of structures resp. every QQ°-closed class K of ordered algebras if 3 holds is
Con"(K) resp. Con™(K) resp. Con*(K) then so does A. According to the notations
above, =, could be denoted by |=. (H,S, P). The reader will certainly notice by
the end of the paper that the QQ°-closedness of I could be replaced by the following
weaker assumption: “if A € K and « is a congruence (of the respective type) of A
then a, as a subalgebra of A2, belongs to K.

Clearly, ¥ =, A follows from any of the above-defined three consequence rela-

tions. Our goal is to prove the converse under reasonable restrictions. I.e., we want
to turn a lot of ¥ =, A results into ¥ =. A (1;Q%, P), X . A (xQ°) and
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Y e A (£5Q%) statements. The proofs of the classical ¥ =, A results often in-
volve particular tools. For example, free algebras are used in Day and Freese [8, p.
1156] or Jénsson [19, p. 379]; Mal’cev conditions are used in Day [7] and Mederly
[21], and even commutator theory is required in [3]. The scope of these tools is
often extended far beyond varieties of algebras. There are free structures and there
are Mal’cev conditions for #-congruences, cf. Weaver [25]. Free ordered algebras
and some Mal’cev conditions are available for ordered algebras (cf. Bloom [1] and
[6]). The methods used in [2] and [5] also indicate that certain =, results can be
generalized. Even commutator theory has been developed for relative congruences
of quasivarieties of algebras and some Mal’cev-like conditions are also available, cf.
Kearnes and McKenzie [20], Dziobiak [9] and Nurakunov [23]. However, all these
recent developments are insufficient for our purposes as they require much stronger
closedness assumption on .

Fortunately, some of the known ¥ }=. A results, namely those in Freese and
Jénsson [12] and Freese, Herrmann and Huhn [11], are in fact ¥ =. A (Q°) results,
and we will not have much difficulty in generalizing them. In presence of modularity,
the rest of the known 3 =, A results can be, at least in principle, deduced from [3].
Since [3] relies on commutator theory, our main achievement is the generalizing [3]
so that commutator theory be avoided.

Let dist resp. mod stand for the distributive resp. modular law. Although the
usage of “known” hurts mathematical rigorousity below, it is time to indicate that
our aim is to prove the following

Proposition 1. Suppose ¥ =, X is a known result in the theory of congruence
varieties and ¥ = mod . Then ¥ =, A (r;Q%,P), Y E:X (xQ°) and X =
A (S5Q%).

We do not know if ¥ = mod can be omitted or “known result” can be replaced

by “true statement” in Proposition 1. If the answer were affirmative in both cases
then the congruence varieties would form a lattice, cf. [5].

2. PRELIMINARY LEMMAS AND MAIN RESULTS

For structures A and B a homomorphism ¢: A — B is called a x-homomorphism
if for every relation symbol p and ai,...,ax € A we have

palar, ..., ax) <= pp(plar),...,elar)).

It is easy to see, cf. Weaver [25], that s-congruences are precisely the kernels of
x-homomorphisms. A homomorphism resp. x-homomorphism ¢: A — A is called
a retraction resp. x-retraction if ¢ o ¢ = . The retraction of an ordered algebra
is defined analogously; then ¢ must be monotone, of course. If p: A — A is a
retraction then B := ¢(A) is called a retract of A. (The relations on B are defined
as the restrictions of the relations on A.) Associated with this ¢ we have a map
¢ from the set of equivalences of B into the set of equivalences of A defined by
$(0) = {{a,b) € A% {(p(a),p(b)) € O©}. In the sequel, the restriction of ¢ to
Con™(B), Con"(B) or Con=(B) will also be denoted by ¢.
Lemma 1. Suppose p: A — A is a retraction, A € IC, and B = ¢(A).

(A) If v is a *-retraction then ¢: Con*(B) — Con*(A)

(B) If B € K and K is P-closed then ¢: Con™(B) — Con™(A)

(C) If A is an ordered algebra and ¢ is monotone then ¢: Con*(B) — Con®(A)
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18 a lattice embedding.

Proof. Since the meet coincides with the intersection, it is evident that ¢ is a meet-
homomorphism in all the three cases. If © is an equivalence on B and a,b € B
then {a,b) € $(0) <= (p(a),@(b)) € © <= (a,b) = (p(a), p(b)) € O, thus
¢ is injective. The treatment for joins is more or less the same for all the three
cases, thus we detail (B) only. Assume that for C, D, E' € K and homomorphisms
a: B—C,3: B— D and v: B — E we have Kera V Ker = Kery in Con’C(B).
Then ¢(Kera) = Ker(aogp), ¢(Kerf3) = Ker(Sop) and ¢(Kery) = Ker(yoyp). Since
¢ is monotone, p(Kera) < @(Kery) and ¢p(Kerf) < p(Kery). Now let §: A — F
be an arbitray homomorphism such that F' € K, Kerd O ¢(Kera) = Ker(a o) and
Kerd O ¢(Kerf3) = Ker(8 o ¢); we have to show that Kerd O Ker(y o ¢). Suppose
(a,b) € Ker(y o) for some a,b € A. Since (p(p(a)),p(a)) = (p(a), p(a)) € Kera,
we have (p(a),a) € Ker(a o ¢) C Kerd. Similarly, (¢(b),b) € Kerd. Now consider
the restriction 6| g: B — F', which is a homomorphism. If ¢,d € B and (c, d) € Kera
then (¢, d) = (p(c), p(d)) € Ker(aop) C Kerd. Thus Kera C Ker(d|5), and Ker3 C
Ker(6|p) comes similarly. Therefore Kery C Ker(d|p). From (a,b) € Ker(y o )
we infer (p(a), (b)) € Kery C Ker(d|g) C Kerd, and (a,b) € Kerd follows by
transitivity. Therefore ¢ is a V-homomorphism, and (B) is proved.

The arguments for (A) resp. (C) are quite analogous: we have to use x-
homomorphisms resp. monotone homomorphisms, and A, B,C, D, E, F will be
arbitrary structures resp. arbitrary ordered algebras, not necessarily in . [

The amalgamation property we are going to consider first appeared in Freese
and Jénsson [12], and played a central role in Freese, Herrmann and Huhn [11].

Definition. A class C of lattices is said to satisfy the Freese—Jdénsson amalgama-
tion property, in short FJAP, if for each L € C and a € L there exists an M € C
and embeddings ¢, @9 of L in M such that

(a) ¢1(x) = @o(x) for all z > a in L,
(b) ¢1(x) V p2(x) = p1(a) for all z < a in L, and
() @i(y) V (p1(z) Np2(2)) = pi(z) forally <z in L and i = 1,2.

Lemma 2. Let C be one of the following classes:

(A) Con™(K) where K is a Q3-closed class of structures;
(B) Con"(K) where K is a class of structures closed under P and Q°;
(C) Con=(K) where K is a Q°-closed class of ordered algebras.

Then C satisfies FJAP.

Proof. The construction needed by the proof of this lemma is the same as that for a
()*-closed class of algebras (cf. Freese and Jénsson [12] or Hagemann and Herrmann
[13]). We give the details in case (B) only. Suppose C € K and a € Con™(C). Let
A = {{z,y) € C?% zay}. Since A is a subdirect square of C, it belongs to K.
Let ¢ denote the embedding C' — A, z — (z,z), and denote +(C) by B. Then
t: C' — B is an isomorphism, which induces an isomorphism, also denoted by ¢,
from Con"(C) to Con"(B). Let v; be the retraction A — B, (x1,z2) — (x;, x;).
Then t;: Con™(B) — Con®(A) is an embedding by Lemma 1. Therefore t; o
1: Con™(C) — Con™(4), 0 — 0, := {{{z1,22), (y1,92)) € A% 2;0y;} is a lattice
embedding for i = 1,2. For © > a, ©; = O5 is obvious. For O < « it is easy to see
that ©1005 D a1 = ao, thus we obtain that oy C 1009 C O1 VKOs C ay Ve =
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ay, showing (b) in the definition of FJAP. (Here Vi stands for the join taken in
Con™(A).) Now let i € {1,2} and © C ¥ € Con™(C). Then ¥; C 0;0(¥; NT¥y)00;
where 0 denotes the smallest (relative) congruence of C. Indeed, e.g. for i = 1, if
(x1,22)¥1(y1,y2) then (z1,29)01{x1,21)¥1 N Yo(y1,y1)01(y1,y2). Therefore ¥; C
0;0(W1NPy)00; C 0;Vic (U1 AW2) C O;Vic (W1 AWy) C U Vi (U;AW;) = Uy, proving
(c) in the definition of FJAP. This completes the proof of (B). The arguments
for (A) resp. (C) are analogous, for ¥; becomes a *-retraction resp. monotone
retraction. [

Given a ring R with 1, let HL(R) denote the class of homomorphic images of
lattices embeddable in the submodule lattice of (unitary left) R-modules. HL(R)
is just the congruence variety HSP(Con(R-Mod)). For integers m > 0 and n > 1
let D(m,n) denote the ring sentence (3r)(m-r =n-1). (Here 1 is the ring unit and
k-z=x+x+... 4+, k times.) D(m,n) is called a divisibility condition. In [1§]
an algorithm is given which associates a pair (m.,n.) of integers, m. > 0, n. > 1,
with an arbitrary lattice identity € such that for any R we have

Theorem A. ¢ holds in HC(R) iff D(me,n.) holds in R.

Let V(0) := HL(Q), i.e., the lattice variety generated by the rational projective
geometries. For k > 0 let V(k) := HL(Zy,) where Zj, is the factor ring of integers
modulo k. For a nonnegative integer k and a prime p let expt(k,p) denote the
largest integer i > 0 for which p° | k; by expt(0, p) we mean the smallest infinite
ordinal co. From [18, Prop. 1] we invoke

Theorem B. D(m,n) holds in a ring R iff for any prime p with expt(m,p) >
exp(n,p) R satisfies D(peXpt(”’p)+1,peXpt(”’p)) and, in addition, m = 0 implies
that the characteristic of R is not 0. In case the the characteristic of R is k > 0
then D(m,n) holds in R iff (m, k) | n.

For technical reasons, in connection with Theorem B, we define G(m,n) :=
{p*T1: p prime, i = expt(n,p) < expt(m,p)}U{i: i=0=m}, m>0,n>1.
Note that {i: i=0=m} is {0} or 0, and G(m,n) = 0 if m divides n.

For n > 2, an n-diamond in a modular lattice L is defined to be an (n+ 1)-tuple
a = (ag,a1,...,a,) € L™ satisfying \/S;; a; = 1z and ap A V?;Zg,e a; = 0z for
all 7 and all k£ # ¢, where 15 = \/g" a; and Oz = /\?’n a;. This concept is due to
Andras Huhn [16], [15] (who calls it an (n — 1)-diamond.) Let A: p(z1,...,2:) =
q(x1,...,x¢) be a lattice identity. We call A\ a diamond identity, cf. [3] and
[4], if A implies modularity an , in addition, there are (n + 1)-ary lattice terms
1Yoy Y1y s Yn)s -+ sct(Yo, Y1, - - - ,Yn) for some n > 2 such that for an arbitrary
modular lattice L if p(c1(@), ... , (@) = q(c1(@), ... ,ci(a@)) for every n-diamond @
in L then A holds in L. Some examples are listed in [3, p. 291].

Our main result is the following

Theorem 1. Let X be a set of lattice identities with ¥ = modularity and let \ be
a diamond identity. Then the following five conditions are equivalent

>|<, S)
YAk

<Q
} C{me: € € B}, and for any prime p if expt(my, p) > expt(ny, p)
(mx

then expt(ny,p) > expt(ne, p) < expt(me,p) holds for some ¢ € X.
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The equivalence of (i) and (v) was established in [3]. To unify the treatment for
several kinds of congruences, another consequence relation is worth introducing.
Let T be a “set” of lattice varieties. We say that ¥ =7 ) if for every U € T if
Y holds in U then so does A\. Now, in virtue of Lemma 2, Theorem 1 will clearly
follow from

Theorem 2. Let ¥ be a set of lattice identities with ¥ = modularity and let
be a diamond identity. Letl' be a set of lattice varieties such that each U in T is
generated by a class satisfying FJAP and V (k) € T for all k > 0. Then ¥ =1 X\ if
and only if (v) of Theorem 1 holds.

The key to this theorem is the following generalization of Freese [10] (when A
is the distributive law, cf. also Freese, Herrmann and Huhn [11, Cor. 14]) and (3,
Thm. 1].

Theorem 3. Let 1" be as in Theorem 2, and let U € T'. Suppose that a diamond
identity A does not hold in U and U consists of modular lattices. Then there is an
h in G(my,ny) such that V(h) is a subvariety of U.

3. FURTHER TOOLS AND PROVING THE MAIN RESULTS

For a prime power p* let R(p, k) denote Z,x, the factor ring of integers modulo
p*. Let R(p,00) denote the ring of rational numbers whose denominator is not
divisible by p, and let R(0,1) := Q, the ring of rational numbers. For any of these
rings R(u,v), let L(u,v,n) be the lattice of submodules of gy ) R(u, v)". One of

the main tools we need is taken from Herrmann [14]:

Theorem C. Fvery subdirectly irreducible modular lattice which is generated by
an n-diamond is isomorphic or dually isomorphic to one of the following lattices:
L(p, k,n) for a prime power p*, L(p,00,n) for a prime p, or L(0,1,n).

Note that an important particular case of this theorem was proved in Herrmann
and Huhn [15], which also could be used for our purposes in virtue of Freese,
Herrmann and Huhn [11, Prop. 12].

Proof of Theorem 3. Suppose the assumptions of the Theorem hold, and let Uy be
a class of lattices which satisfies FJAP and generates the variety U. For a lattice
identity ¢ let €% denote the dual of . For a prime p let V(p>) := HL(R(p, 00)-
Mod). Then V(p*) = HL(R(p, k)-Mod) for every p € {0} U {primes} and 1 <
k < oo. Since A fails in U, there is an integer f > 1, an M = M; € Uy, and
an f-diamond @ in M such that X fails in the sublattice L = Ly generated by
(the elements ag,a,...,ay of) @. By Freese, Herrmann and Huhn [11, Lemma
11], by the equivalence of n-diamonds with dual n-diamonds (cf. Huhn [17]) and
by the equivalence of von Neumann n-frames with n-diamonds (cf. Herrmann and
Huhn [15, (1.7)]) we obtain that for any integer g > f there is a lattice M, € Uy, a
sublattice L, generated by a g-diamond in M, and an embedding ¢: M — M, such
that the restriction ¢|z, of ¢ is an L — L, embedding. Clearly, for every g > f,
A fails in Ly and L, € U. Decomposing L, as a subdirect product of subdirectly
irreducible lattices, every factor will be generated by a g-diamond, namely by the
image of the original diamond under the natural projection. These subdirect factors
belong to U and at least one them fails A. Therefore (up to notational changes) we
may assume that the L, € U are subdirectly irreducible.
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By Hutchinson’s duality result [18, Thm. 7] the congruence varieties HL(R) are
selfdual lattice varieties. Therefore, thanks to congruence permutability and strong
Mal’cev conditions associated with an arbitrary lattice identity ¢ and its dual (cf.
Wille [26] or Pixley [24], or for a more explicit form [18, Thm. 1]),

(1) there is an integer r(¢) such that, for any ring R, € holds in HL(R) iff €
holds in Con(gR™) for some n > r(g) iff €4 holds in Con(zR™) for some
n > r(e).
Forb € {0,1,2,...}U{p>™: pprime} and a € {0,1,2,...} we define the “generalized
greatest common divisor” as follows:

(0, ifb=0and a =0
1, ifb=0and a>0
(a,0) :={ (a,b), ifbe{1,2,3,...}
peXPt@p)  if hp=p>® and a > 0
L P, if b=p*> and a = 0.
Note that (—,—)" is not a commutative operation, and p>° divides no positive

integer. Combining (1) and Theorems A and B we obtain for any p € {0}U{primes}
and any 1 < k < oo

(2) Suppose n > r(g). Then ¢ holds in V (p¥) iff € holds in L(p, k,n) iff ¢ holds
in the dual of L(p, k,n) iff D(m.,n.) holds in R(p, k) iff (m.,p*)" | n..

By Theorem C, each of the L, € U (g > f) is of the form L(pg, kg, g)"
where p, € {0} U {primes}, 1 < k, < 00, uy € {0,1}, and k; = 1 when p, = 0.
Here L(py, kg, 9)' := L(pg, kg, g) and L(pg, kg, 9)° = L(pg, kg, )%, the dual of
L(pg, kg, g). Since A fails in Ly, we conclude from (2) that

(3) For g > f we have (mA,ng)’ does not divide ny.

For ¢ € {0} U {primes} let J, := {g: g > f and p, = ¢}. Now the proof ramifies
depending on m.

Assume first that m, = 0. Suppose Jy is infinite, and let € be an identity which
holds in U. Then ¢ holds in L(0,1,g)"s for infinitely many g. (2) yields that
me > 0, whence € holds in V(0) by (2). Thus V(0) C U, and 0 € G(my,ny).

Suppose J; is infinite for some ¢ > 0 and let i := expt(ny,q). Then k; > ¢ for
g € J, and ¢! € G(my,ny) by (3). Suppose an identity € holds in U. Taking
a sufficiently large g € J, we conclude from (2) that ¢ holds in V(¢*s). But
(me,q") | n. implies (m., ¢"*t!) | n., whence ¢ holds in V(¢'*1) by (2). This
shows that V(¢**!') C U.

Suppose now that J, is finite for every ¢ € {0} U {primes}. Then {p,: g > f}
is an infinite set of primes. By (2), no divisibility condition of the form D(0,t)
can hold in each of the rings R(pg,ky) (g9 > f). Consequently, if m. = 0 for a
lattice identity € then € does not hold in U. Thus m,. > 0 for all € that hold in U,
and these € hold in V(0) by (2). We have obtained that V(0) C U and, of course,
0e G(m)\, n>\).

Now let us assume that my > 0. First observe by Theorem B that for distinct
primes p, ¢ and any 0 < k < oo the divisibility condition D(¢**!, ¢*) holds in R(p, k)
for all £ € {0,1,2,...}. Hence, by (3), (2) and Theorem B, we conclude that, for

pEXpt(m,pg)H , pgxm(m,pg >)

every g > f, expt(mx,pg) > expt(ny,py) but D( fails
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in R(pg, ky). Hence, by Theorem B, we conclude i := expt(p,y,ny) < k4 for all
g > f. On the other hand, expt(my,p) > expt(ny,p) can hold for finitely many
primes p only, whence there is a prime ¢ such that J, is infinite. Le., U contains
L(q, kg, g)*¢ for infinitely many g. Suppose € holds in U and choose a g € J, with
g > r(g). From (2) we obtain (m., ¢®¢)" | n., whence (m., ¢"*')" | n., implying that
e holds in V(¢"*!). We have obtained V(¢*T!) C U, and evidently ¢**! belongs to
G(m)\, y n)\). Il

Proof of Theorem 2. Let us assume that ¥ =7 X and the conditions of the theorem
are fulfilled. If my = 0 but m. > 0 for all ¢ € ¥ then, by Theorems A and B, X
would hold but A would fail in V(0) € T'. This is not the case and we conclude that
{0} n{my} C {m.: ¢ € Z}. If expt(my,p) > expt(ny,p) = i then, by Theorems
A and B, ) and therefore ¥ fails in V(p**!) € T. Therefore, again by Theorems
A and B, there exists an ¢ € ¥ with expt(ny,p) =i > expt(n., p) < expt(me,p),
proving (v).

Now assume that (v) holds but ¥ 7" X fails. Therefore there is a U € T
such that A fails in U but X holds in U. By Theorem 3, V(h) C U for some
h € G(mx,ny). Clearly, ¥ holds in V(h). If h = 0 = my then m. = 0 for some
e € ¥ by (v). Hence, by Theorems A and B, e cannot hold in V(h). Therefore
h = p'™ where i = expt(ny, p) < expt(my, p) for some p. By (v) there is an € € ¥
with i > expt(n.,p) < expt(me,p). Consequently, by Theorems A and B, & cannot
hold in V'(h); a contradiction again. [

4. THE REST OF THE RESULTS

Most of the ¥ |=. A statements in the scope of Proposition 1 are settled by
Theorem 1; there are only two exceptions, up to the author’s present knowledge.
It is shown in Freese and Jénsson [12] that mod |, Arguesian law. In Freese,
Herrmann and Huhn [11], some identities 7, y,(wg) (n odd, n > 1, k > 1), even
stronger than the Arguesian law, are constructed and it is shown that mod =,
Yn,m(wg). Fortunately, the proof of these results is based on FJAP. Therefore
Proposition 1 holds for these cases, too.
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