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Weakly independent subsets in lattices

G. CzepLi, A. P. Hunn, and E. T. ScemMIDT

It is well-known that in a finite distributive lattice the set of join-irreducible
elements and any maximal chain have the same cardinality. In this note we give a
generalization of this theorem, using the following notions.

DEFINITION. A subset H of a lattice L is called weakly independent iff for
all h,hy,h,, ..., h,e H which satisfy h=<h,vh,v:--vh, there exists an i
(1=i=n) such that h=h,, A maximal weakly independent set is called a basis
of L.

Every subchain of L is a weakly independent subset and any maximal chain is
a basis. In this paper L denotes a finite distributive lattice and let Jo(L) denote the
set of all join-irreducible elements of L. By using Lemma 1 (cf. later) it is easy to
show that J,(L) is a basis of L.

THEOREM 1. Any two bases of a finite distributive lattice have the same
number of elements.

To characterize the bases we need the following concept: a sublattice K of L is

called a sublattice of maximal length iff K contains a maximal chain of L (i.e.,
every maximal chain of K is a maximal chain of L).

THEOREM 2. A subset H of a finite distributive lattice L is a basis if and only
if the sublattice K generated by H is a sublattice of maximal length and H = J(K).

The proof of Theorem 1 starts with the following well-known

LEMMA 1. Whenever xeJo(L) and x<y,v---vy, then x=<y; for some i
(1=i=n).
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From now on let U be a basis of L.
LEMMA 2. For every p e Jo(L) there exists a uc U such that p=<u.

Proof. By Lemma 1 it is sufficient to show that \/ U=1. If we had \V U#1
then UU{1} would be a weakly independent subset again, contradicting the
maximality of U. O

Now let p be an element of Jy(L). We define the element p=
A(u:ue U, p=u). By Lemma 2 p exists and p <p.

LEMMA 3. For every pe Jo(L) p belongs to U.

Proof. All we have to prove is that U U{p} is weakly independent. Firstly, we

consider the case p=u,v---vu, where u;,...,u,€U. From Lemma 1 and
p=p=u,v---vu, we obtain p =u; for some i. Hence p = u,. The second case is
u=pvu,v---vu, where u, u,..., u, € U. We can assume that u£u;v-:vu,.

For any v € U satisfying p=<v we have p=v, whence u=vvu,v: - vu, Since U
is weakly independent we conclude u=v. Therefore u<A (v:velU,p=v)=

p. O
LEMMA 4. The map ¢:Jo(L) — U, p+>p is onto.

Proof. Let u be an arbitrary element of U. Then u=p,v---vp, for suitable
P15 Pn €J(L). From p;=p; (i=1,...,n) we have u=<p,v- - -vp,. Since U is
weakly independent, u=<p; holds for some i. Finally, p,=u vyields p;=u, i.e.
u=p. O

The following lemma is not only to complete the proof of Theorem 1, it is
interesting in itself.

LEMMA 5. The map ¢ :Jo(L) — U, p— p is bijective.

Proof. Let us assume that although g, reJy(L) and q#r, we have g=7r. Put
x=V H where H={y:yeJy(L), =4, and q£vy}. Then x=V (y:ye H =q. By
Lemma 1 q# x. We claim that x¢ U. Indeed, r € H implies r<x, whence if xe U
then g =< = 7 = x contradicts g% x. Now we prove that U U{x} is weakly indepen-
dent. We have to discuss two cases. Firstly, x <u,v: - -vu, where uy,...,u,cU.
From Lemma 1 and r=x we have r=uy; for some i (1=<i=n), whence F =u,. We
have already seen that x=g=7 so x=u. Secondly, u=xvu,v:--vu,



196 G. CZEDLI, A. P. HUHN AND E. T. SCHMIDT

(u,u; € U). We can assume that ufu;v---vu, Then x=g implies u=
gvuyv- - -vu,. Since U is weakly independent, u=<g. We have u=p,v---vp;
for suitable p,, ..., p€Jo(L). H g u then, for all i, g% p; and p, =u =4, whence
peH and u=p;v- - vp, =V H=x Finally, if gsu, i.e. g=u, then Lemma 1
yields that either g=x or g=u;, for some i. But we have shown that q#£x.
Therefore u=uy; follows from §=<u; and u=<g. This proves Theorem 1.

Proof of Theorem 2. let H be a basis of L and let H"=
{hyn-+Ah,:1=n<w and h,,...,h,cH}. Further, let K be the sublattice
generated by H. Then every element of K has a representation as a join of
elements of H”. Now we prove that Hc J(K). Let z=xvy where ze€H,
x,yeK Then x=a,v ' va, y=a,.,VvV' ' Vva, with a4,..., a, € H". There-
fore a; = A, h;; for suitable h; € H. By distributivity, z is the meet of all possible
hy, V- - -V Ay, . If there existed an I, for each n (1=n=<m) such that z# h,_then
the weak independence of H would yield z#h;, v+ - Vvh,, , a contradiction.
Therefore there is a fixed n such that z <h,; holds for all j. Consequently z <a,,
which yields x =z (if 1=n=<k)or y=2z (if k <n=m). This proves z € J,(K), i.e.
H< Jy(K). Since J,(K) is weakly independent in K and therefore in L, we
conclude H = J(K).

Since all maximal chains in K have the same cardinality as Jy(K), it follows
from Theorem 1 and the above that K is a sublattice of maximal length in L.

Conversely, suppose K is a sublattice of maximal length and H = J(K). Since
H is a basis in K, it is weakly independent in L. For any maximal chain C in K,
|Cl=Jo(K)|=|H| and C is a basis in L. Now Theorem 1 yields that H is a
maximal weakly independent set in L. The proof of Theorem 2 is complete.

Finally we give a modular lattice M in which both Theorems fail:

Indeed, H=1{0, a, b, ¢} is a basis of four elements and every maximal chain is a
basis with six elements. Further, H# J,(H}) = Jo(M).
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