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A weak congruence on an algebra A is a symmetric and transitive subal-
gebra of A2, Weak congruences of A form an algebraic lattice Cy(A) with
respect to inclusion, cf. [4]. The diagonal relation A = {(z,x) : x € A} €
Cw(A) plays a special role. A is a codistributive element in Cy (A), i.e.,

(D) AN(aVB)=(ANa)V(AAND)

for all a, B € Cy(A). If the dual of condition (D) holds then A is said to sat-
isfy the congruence intersection property (CIP for short), cf. [1]. Notice that
the CIP simply means that A is a distributive element in Cy(A). The filter
|A) is just Con(A), the congruence lattice, while the ideal (A] is isomorphic
to Sub(A), the subalgebra lattice.

There are results stating that under reasonable conditions certain lattice
properties are inherited from Con(A) and Sub(A) to Cy(A), cf. [1, 2]. Our
goal is to strengthen a previous result while radically simplifying its proof
and to give a new result.

Recall that A has the congruence extension property (CEP for short), if
each congruence on every subalgebra of A is a restriction of a congruence on
A. Vojvodi¢ and Seselja [3] have shown that an algebra A satisfies the CEP
and the CIP if and only if the mapping f : Cy(A) — (A] x [A), given by
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fla) = (aANA,aV A) is an embedding. Since the composite of f with each
projection is clearly surjective, the following follows.

THEOREM 1 Let A be an algebra satisfying the CIP and the CEP. Then
Cw(A) is isomorphic to a subdirect product of lattices Sub(A) and Con(A).

Now, since Con(A) and Sub(A) are embedded in Cy(A), we obviously
obtain

COROLLARY 2 Suppose A satisfies the CIP and the CEP. Then an ar-
bitrary lattice quasi identity (i.e., Horn sentence) holds in Cy(A) if and only
if it holds in Con(A) and Sub(A).

This corollary strengthens Thm. 3 of [1] from identities to quasi identities.
A lattice L is called (upper) semimodular if for all a,b € L, a Ab < a implies
b < aVb. Here < stands for ”covered by or equal to”. Lower semimodularity
is defined dually.

PROPOSITION 3 If L is a subdirect product of semimodular lattices then
L is semimodular as well.

PRrROOF. For simplicity we prove the statement only for subdirect prod-
ucts of two factors, which will be used in the sequel; the general case is
similar. Let I C L; X Ly be a subdirect product and suppose that L; and
Ly are semimodular. Let a = (aj,as) and b = (by,by) be in L such that
aNb = a. (For elements in L, < is always understood in L, not in the direct
product.) First we show that for i = 1,2, a; A b; < @;. Suppose not and,
by symmetry, let ¢ = 1. Then a; A by < ¢; < a; for some ¢; € L;. Since
L is a subdirect product, there is a co € Ly with ¢ = (¢1,¢3) € L. Now
(c1, (a2 ANba) V(ag A ecg)) = (aAb)V (aAc)isin L and strictly between a A b
and a, a contradiction. We have seen that a; Ab; < aq and as Aby < as. Semi-
modularity gives b; < a; V b; for i = 1,2. Now let d = (dy, ds) be an arbitrary
element of L with b < d < aVb. Then d; € {b;,a; V b;} for i = 1,2. Since
a A\ d belongs to the prime interval [a A b, a] and a £ d, we have a Ad = a A b.
Hence if d; = a; V b; then we obtain a; = a; A (a; V b;) = a; ANd; = a; A\ b;,
which gives d; = a; Vb; = b;. Thusd =b, b < a Vb, and L is semimodular. H

Since Con(A) and Sub(A) are convex sublattices of Cy(A), we conclude
the following result from Theorem 1, Proposition 3 and its dual.



THEOREM 4 Let A satisfy the CIP and the CEP. Then Cy(A) is lower
resp. upper semimodular if and only if Con(A) and Sub(A) are lower resp.
upper semimodular.

The "upper” part of Theorem 4 (and in fact, a stronger statement) is
known, cf. Thm. 3 in [2]. To show an application, we remark that an arbitrary
unary algebra satisfies the CIP and the CEP, and its subalgebra lattice is
distributive. Therefore Theorem 4 implies

COROLLARY 5 The lattice of weak congruences of a unary algebra is
lower (upper) semimodular if and only if its congruence lattice is lower (up-
per) semimodular.
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