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ON THE WORD PROBLEM OF LATTICES
WITH THE HELP OF GRAPHS

G. CZEDLI* (Szeged)

1. The result

The aim of the present paper is to give a new algorithm for the word problem
of finitely presented lattices. Although there are known algorithms solving this
problem (cf. Dean [2], Evans {3] and McKinsey [5]), our approach is entirely different
and the result looks simpler.

The problem is to give an algorithm which decides whether an arbitrary (uni-
versally quantified) lattice Horn sentence holds in all lattices. Let us fix a Horn
sentence x as follows:

X:(Po<g&pn<q&. &p<@a)=>p<q

where po,...,pt, 90,---,qt, D, ¢ are lattice terms over a finite set X of variables.
Without loss of generality (similarly to Evans [3]) we may assume that x is of a
canonical form, i.e.,
" g€ X (i.e., q is a variable),

P, Do, - - -, Pt are join-free (i.e., they are variables or meets of variables),

go, - - -, §¢ are meet-free (i.e., variables or joins of variables).
Indeed, there is an obvious algorithm that associates a canonical Horn sentence with
a given Horn sentence such that these two Horn sentences are equivalent modulo
lattice theory. All we have to do is introducing new variables for subterms and
adding somenew relations to the premise. Instead of going into details this will be
illustrated by the well-known

SDA: (zAy<zAz&zAz<zAy) =zA(yV2)<zAy.

Now we consider new variables a, b, ¢ corresponding to z Ay, x Az and y V z,
respectively. Then SD is equivalent to

SD) : (a<b&bdb<a&a<z&a<y&kzAy<akb<z&
b<z&zAz<b&e<yVzky<ckz<c)=zAc<a.

(Note that this is not the shortest possibility. However, it indicates generality.)
Returning to the canonical x we have fixed, let X, M, M; and J; denote

the set of variables occuring in x, p, pi and ¢;, respectively. We define a mapping

T; : P(X) — P(X) via induction for each non-negative integer j where P(X) is the
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power set of X. We will write, for y € X, T;(y) rather than Tj({y}). Let Ty be the
identical P(X) — P(X) mapping. For A C X let

Tn(4) =Ti(agu  J N T(=)-

0<i<t,MiCT;(A) z€Ji

(Note that T; = T].) Since X is finite and, for any A C X, To(4) C Ti(4) C
T>(A) C ..., there is an n such that T, = Tp,yy. Then T =T, = T4y = Thy2 =
..»=Ty, = ... is a closure operator on X and T(A) can be determined by an easy
algorithm. Our main result is the following:

THEOREM.. x holds in all lattices if and only if ¢ € T(M).

For example, let us consider SD,. Then X = {z,y, z,a, b, ¢}. We do not have
to calculate T'(A) for every A C X and do not need to known n either. To determine
T(M) = T({z, c}) we need T(y) and T(z), which require T(c). Considering the first
few values of j we can see that

Ti(y) S {w,c}, Tj(2) C{z,c}, T(c) C {c},
which follows for all j via induction. This implies T;({z,c}) C {z,c}, whence

T({z,c}) C {z,c}. Consequently a ¢ T({z,c}) and we obtain the well-known fact:
SD, does not hold in all lattices.

2. The proof of the theorem

The original idea of the proof is to apply a slightly modified version of the
method described in [1] to the variety of sets when all the joins u Vv in gqq,..., ¢
are replaced by u o v o u o v, and to refer to the type 3 representability of lattices
by equivalences (Jonsson [4]). Yet, the present proof is much shorter and easier to
understand even if it does not reveal anything about the motivation.

Let P, denote the premise of x and let P*(X) = P(X)\{0}. We will prove
the following stronger version of the theorem.

Let £ € X and A € P*(X). Then the (canonical) Horn sentence

P, = /\yg:c
yEA

holds in all lattices if and only if z € T'(A).
To prove the sufficiency it sufficies to show that if certain elements of a lattice
satisfy P, then, for every j,

(VA € P*(X)) (Vz € T;(A) (A vy < 2).
yeA
Since this is obvious for j = 0 assume it for some j. Let z € Tj4+1(A)\T;(A). Then
there is an 7,0 < i < ¢, such that M; C T;(A) and

z € n T;(2).

z€J;
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By the induction hypothesis, z < z for z € J; and A 4 y < u for u € T;(A). Thus

/\-'/= A y< /\ y=pi<q= Vzgz.

y€EA y€T;(A) yEM; 2€J;

We have obtained A,y < zforallz € T,-.,,l(,;l), proving the sufficiency of the
theorem.

The neccesity part of the proof needs some preliminaries.

We fix an ordering on X, say X = {z,,23,...,Zw}, and adopt the notation
h(z : z € X) for any lattice term h(z,,23,...,2y).

For any A € P*(X) and 0 < j < w, where w is the least infinite ordinal,
we will define a graph G;j(A). Before starting the definition of the these graphs
it is reasonable to make some agreements. G;(A) will have neither loop edges
nor parallel edges. It will have two distinguished vertices, the so-called left and
right endpoints. They will be figured on the left-hand side and right-hand side,
respectively. The edges of G;(A) will be coloured by the elements of P+(X), but
we often write z instead of {z} € P*(X). The B-coloured edge connecting the
vertices a and b will be denoted by (a, B,b) or (a,.,b) if B is irrelevant. The edges
(a,.,b) and (b,.,a) are considered equal. Let G be one of the graphs occuring
in the sequel. Put E(G) = {(a,B,}) : (a, B,b) is an edge of G}. For technical
reasons, we will need the notation E'(G) = {(a, B,b) : (a, B,b) € E(G) and a <
b}. Here < means a fixed well-ordering on the vertex set V(G) of G. To avoid
extra technicalities this well-ordering will never be defined but we assume that left
endpoint < right endpoint. The edge (left endpoint,.right endpoint) will have a
particular role and will be called the initial edge of G. For B € P*(X) the smallest
equivalence relation on V(G) that includes {(a,b) : (a,C,b) € E(G) and B C C}
is denoted by e(B, G); we will write e(z, G) instead of e({z},G). If G and H are
graphs, V(G) C V(H), {(a,d) : (3, ,8) € E(G)) C {(a,b) : (a,,b) € E(H)} and
(a, B,b) € E(G), (a,C,b) € E(H) imply B C C then G is called a weak subgraph of
H. If, in addition, {(a,b) : (a, .,b) € E(G)} = {(a,d) : (a,.,b) € E(H), a,b € V(G)}
then G is called a subgraph of H. If G is a subgraph of H and each edge of G has
the same colour in H as in G then G is called a sirong subgraph of H. If G is a weak
subgraph of G.,(A) (to be defined later) then G* will denote the strong subgraph of
G, (A) for which V(G) = V(G*). By isomorphism we will mean a colour-preserving
graph isomorphism. :

If z; € X then let H(z;) be the graph consisting of an z-coloured initial edge
only (cf. Figure 1)., '

X1

r—0
Fig. 1
If 21,22,...,2, € X are pairwise distinct then H(z,,...,z,) is obtained via
a “serial connection” of two copies of H(z,...,Zn-1) alternating with two copies

of H(z,), cf. Figure 2.




52 CZEDLI: ON THE WORD PROBLEM OF LATTICES

Fig. 2
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H(X1, X2)
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Fig. 3

E.g., H(z1,z2) and H(z;,z5,23) are depicted on Figure 3. This defines
H(z,,...,z,) for all positive integers n.
If

Gi=z, V-V, (i‘e,,ng{zll,...,zt,‘})
then let H(g;) stand for
H(:ctl, ...,.‘Bln).

(To make H{g;) unique we suppose {1 < --- < £,.)

Now let Go(A) be the graph consisting of its A-coloured initial edge only. I.e.,
V(Go(A)) = {left endpoint, right endpoint} and E’'(Go(A)) = {(left endpoint, A,
right endpoint)}.

Suppose G;j(A) is alredy defined for some j < w. Then we obtain G;41(4)
from G;(A) in three steps. (These steps will be depicted on Figures 4-6 where the
special case t = 4, A = {z},

Py:z<y&kzAy<zvu&z<v&u<v&zAyAv<u

is considered).
Step (a). For each (a, B,b) € E'(G;(A)) we replace the colour B of this edge

Bu (U
|7:]=1,M.CB
The graph we obtain this way is denoted by G}(A4).
Step (b). For each (a,B,b) € E'(Gi(A)) and for each i such that
M; C B,|Ji| > 2 and (a,b) € qgi(e(z,G(A)) : £ € X) we také a copy of H(g;)

by




CZEDLE: ON THE WORD PROBLEM OF LATTICES 53

x {x. vy} {x. v}
O~ —_0
Gg (A) Gy (A) G (A) = Gy(A)

Fig. 4

Gy (A) =Gy (A) G,(A)

Fig. 5

(all these copies are pairwise distinct and they are distinct from G}(A), too) and
identify the left resp. right endpoint of H(g;) with a and b respectively. Motivated
by Pudlsk and Tuma [6], we call this step as “fermentation of G’(A) at (a,.,b) by
H(g;)”. Performing all the fermentations at the same time we obtain G} (A4).

Step (c). Changing the colour B of each (a,B,b) to {z : z € X and
(a,b) € e(z, G} (A))} on each edge (a, B,b) € E'(G}(A)) we obtain Gj41(A).

Now G;(A) is defined for all j < w, and G;(A) is a subgraph of G;j4+1(A). Let
G.(A) be the union of Gj(A),j < w. Le., V(Gu(4)) = Uj<uV(G;(4)),(a,.,b) €
E(Gu(4)) <= (3j < w)((a, 1) EE(G; (A))) and the colour of (a, ., b) € E(G.(A))
is the union of the colours of this edge in G;j(4), j<w.

Let G be a graph and (a, .,b) € E’'(G). We define a graph S(a, b; G), called the
strong subgraph of G spanned by the edge (a,.,b), as follows: let S(a, b; G) consist
of all vertices ¢ of G such that every path in G connecting c and either endpoint
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Gy(A)=Ga(A) = ... = G,(A)

Fig. 6

of G goes through at least one of a and b. (By definition, a path goes through its
endpoints.) The left and right endpoints of S(a, b; G) are a and b, respectively. Note
that S (left endpoint, right endpoint; G)=G.

We still need to define another kind of subgraphs. Assume that (q,.,b) €
E'(Gj-1(A4)) (j > 1) and when we obtained G;(4) from G;_1(4) then Gj_,(4)
was fermented by H(g;) at (a,.,b). The copy of this H(g;) whose endpoints where
identified with a and b constitutes a weak subgraph of G;(A). We denote this weak
subgraph by Q(a, b; ¢;; Gj(A)). If we add the edge (a,.,b) € E'(G;(A)) to this weak
subgraph then we obtain a strong subgraph of G;(A), which will be denoted by
Q(a, ., b; 4i; G;(A)).

The following lemma states that, roughly saying, certain subgraphs develop
independently from their neighbourhood when j — oo.

LEMMA 1.. Assumethat A€ P*(X),0< j<w, and (a,.b)€ E'(G;(A))\
E(Gj-1(A)). Let B denote the colour of (a,.,b) in G;(A). Then, for any k < w,
S(a,b; Gj4(A)) is isomorphic to Gi(B).

ProoF.. We may assume that k < w. The case k = 0 being trivial suppose
Lemma 1 is true for some ¥ < w. Then we have S(a,b; G} ;(4)) = G}(B). Let
@ : S(a,; G} 1 (4)) — G}(B) be an isomorphism. To prove that S(a, b; G7,;(A))
and G%(B) are 1somorph1c it sufficies to show that, for any i < ¢ and every
(u,.,v) € E(S(a, G 4(A)), (u,9) € a(e(s,Glyx(A)) : 2 € X) iff (up,vp) €
gi(e(z,G(B)) : z € X ). The “if” part being ev1dent assume that the “only if”
part is false Le., suppose (u,v) € gi(e(z,G}4(4)) : = € X) but (up,vp) ¢
gi(e(z, G (B)) z € X). Let us say that a path is a g;-path if the colour of any
of its edges is not disjoint from J;. Now there is a shortest ¢;-path a in G (4)
connecting u and v. This o cannot be entirely in S(a, b; G}, ,(4)) = G}.(4).

By the assumptions, there is a (g,.,h) € E'(G;- 1(A)) and an m < t such
that |[Jm| > 2 and (a, B,b) € E(Q(g, h; gm; Gj(A))). (Note that |B| = 1.) Since
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any ¢ € J,, occurs, as a colour, in H(gm) at least twice, there exists a (¢, B,d) €
E(Q(g,h am; Gj (A))) such that {a,0} N {c,d} = 0 (cf. Fxgure 7, where S, and S!
stand for S(a,b; G}, ;(A)) and S(c,d; G} 1:(A)), respectively).

——————

Gj.k(A) O~
AN
\
N\
D
D\
sl
d [ 4 \
%---M\ \
oo - o \\
c d \\\ \
Gj(A) g\ \\
S Yy Y R \X \\
NS
N

Fig. 7

Since S(a,b; Gj+:(A)) = Gr(B) = S(c,d; Gj++(A)) by the induction hypoth-
esis, we obtain S, = §’. In particular, (a,.,b) and (c, ., d) have the same colour D
in G +,¢(A)

Now the path a, as it is the shortest one and leaves S, must go through
both a and b. Further, D is disjoint from J; as otherwise a could be shortened.
Since a leaves S/, at one of its endpoints and returns to the other of its endpoint,
o must go through c and d. The segment of o from ¢ to d is a ¢;-path in S7. Since
S, = S!, there is a ¢;-path in S", connecting a and b. Replacing the segment of
going outside S, by a g¢;-path in S, we obtain a ¢;- path in S, from u to v. Since
S, = G}(B), up and vy can be connected by a ¢;-path in G/ (B) which contradicts
(ucp, v<p) & gi(e(z,G,(B)) : z € X). We have seen that S" = S(a,b; G, (4)) is
isomorphic to G} (B).

Let us call a path an z-path, z € X, if the colour of any of its edges contains
z. An argument similar to the above shows that if g, h € V(S7) can be connected
by an z-path in G}, ;(A) then they can be connected by an z-path alredy in Sy
Since S/ = G”(B) S(a b; Gj4+x+1(A)) = Gr41(B) can be concluded. This proves
Lemma 1. |

LEMMA 2.. For any A,Cy,C),...,Cr € PH(X) we have

[ e(Ct,Gu(A)) = ¢ (U c,,Gw(A)) )

<k t<k
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PROOF.. For B € P*(X), call a path a B-path if B is a subset of every colour
occuring on its edges. Let C = Ug<iCy, er = €(Ct, Gu(A)) and e = ¢(C,Gu(4)).
Since every C-path is a Cy-path, £ < k, the “ D ” part of Lemma 2 is obvious.

Before showing the converse inclusion let us observe the following property of
H(q;) when |J,'| Z 2:

(*) If a1,a2 € V(H(qi)) then either there exists an z-coloured edge between
a; and a; for each z € J; or for each z € J; there is an X-coloured edge in H(g;)
which is not between a; and a,.

(This property follows via an easy induction on |J;|.)

Now, to show the reverse inclusion, we have to prove that for all j < w

<k

(H;) (c,de V(Gi(4)) & (c,d) € ) e,) = (¢c,d) € e.

IF ¢ = d or (c,.,d) € E(G,(A)) then H; is evident. In particular, (Ho) is true.
Assume now that the induction hypothesis (H;_1) holds for some j,0 < j < w.
To show (Hj;), suppose (c,d) € Ne<rer, ¢,d € V(Gj(A)). We may assume that
¢ & V(Gj-1(A)). Then there is an edge (a,.,b) € E'(Gj-1(A)) and an i,i < ¢, such
that |J;| > 2 and ¢ is an inner (# endpoint) vertex of Q(a, b; ¢;; Gj(A)).

Case 1: d ¢ V(Q(a,b;qi;G;j(A))). Then, by (*) and the a — b symmetry,
we may assume that for each y € J; the weak subgraph Q(a, b; ¢;; Gj(A)) has a y-
coloured edge between ¢ and b. For £ < k, consider the shortest C¢-path « in G, (A)
that connects ¢ and d. Being the shortest, this path is in G;(A)" and, by Step (c) of
the construction, any edge of this path in S(a,b;G.(A)) is in Q(a, ., b;¢;; Gj(4))".

Consider the case « goes through b and avoids a. Since any two edges that have
the same colour in Q(a, b; ¢i; Gj(A4)) have the same colour in Q(a, b;¢;; G;(A))" by
Lemma 1, C is a subset of the colour of every edge in Q(a, b; ¢;; Gj(A))". Therefore
(a,b) € e;. Further, and this the observation we need in the sequel, the path between
a and c in Q(a, b; ¢i; Gj(A))" is an e,-path and, by transitivity, (d, a) € e;. The same
observation needs no proof in the other case when a goes through a and avoids b.
Since £ was arbitrary, we have (a,c) € e. Similarly, giving the role of (¢, d) to (d,a),
we can obtain a vertex a’ in G;_;(A) such that (a’,d) € e and (a’,a) € Ni<ree.
Now (a’, a) € e follows from the induction hypothesis (H;-;), and the transitivity
of e yields (c,d) € e.

Case 2: d € V(Q(a,bd;qi;Gj(A))). This case can be handled similarly to
Case 1.

The proof of Lemma-2 is complete. |

LEMMA 3.. For any-A'€ P*(X), the equivalence relations e(z, G,, (A)) satisfy
P, in the lattice of equivalences of V(G.(4)).

PRoOF.. Consider p; < ¢; from P,. From Lemma 2 we obtain that

pie(z,Gu(A) : 2 € X) = [ e(z,Gu(4)) = e( |J {2},Gu(4)) = e(M;, Gu(4)).
zEM; TEM;

Suppose (a,C,b) € E(G.(A)) and (a,b) € e(M;,G.(A)). Then, by Step (c) of the
construction, M; C C. Further, there is a j < w such that (a,C,b) € E(G;(A)). We
may assume that (a, C,b) € E'(Gj(A)). Then, by step (a) or (b) of the construction,
(a,8) € gi(e(z, Gj+1(4)) : = € X) C qile(z,Gu(4)) : z € X).
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We have shown that ¢;(e(z,Gu.(A4)) : z € X) includes {(a,b) : (a C, b) €
E(Gu(A)) and M; C C}. Therefore e(M,,G‘,,(A)) gi(e(z,Gu(A)) : z € X),
proving the lemma. |

For a graph G let C(G) denote the colour of its initial edge. Then we have

LEMMA 4.. If j <w and A € P*(X) then C(G;(A)) C T(4).
ProoF.. It sufficies to consider finite j only. If j = 0 then the statement is

trivial, for C(Go(A)) = A: To start an induction, let j be fixed and assume the
following hypothesis:

(Vu < j)(VB € P*(X))(C(Gu(B)) C T(B)).
Let A € P¥(X), T = T,, and compute:

C(G7(4)) = C(G;(4)) = C(G;(A) vV U J; C
M.CC(G,(A)il=1

Lau U NECT@u U ) Te =T =T(4),
MiCC(G;(A)) z€J; M,CTa(A)z€T:
ie., C(Gj(4)) C T(A).

Now assume that z € C(G;4+1(A))\C(G7(A)). Then, by Step (c) of the
construction, there is an z-path o of minimal length |a| in G;(A) connecting the
endpoints of G7(A). Since |a| > 1, a goes through all the vertices of an appropriate
weak subgraph Q(left endpoint, right endpoint; ¢;; Gir(A)) where 0 < k < j. (As
the notations indicate, G} _,(A) was fermented at its initial edge by H(g:), and o
goes through the vertices of this copy of H(g;).)

Let ag =left endpoint, a,, as, ..., a, =right endpoint be the vertices of Q(left
endpoint, right endpoint; ¢;; Gk(A)) such that {(am,.,am+1): m < s} = E(Q(left
endpoint, right endpoint; ¢;; Gx(A))), and let {ym } be the colour of (am, ., am+1) in
G”(A) Then {ym : m < 8} = J;. Since |J;| > 2, {ym} is the colour of (am, -, @m+1)
in Gi(A) as well.

From the fact that o is an z-path through ag,a;,as,...,a, we infer that
k < j. Further, it follows by Step (c) of the construction that z belongs to
the colour of (am,.,8m41) in Gj4+1(A) for any m < s. In other words, z €
C(S(am,am+1;Gj+1(A4))). But S(am,am+1;Gj+1(4)) = Gj41-k({ym}) by Lemma
1. Therefore z € C(Gj4+1-2({ym})), and the induction hypothesis yields z € T(ym ).
Since m was arbitrary, we obtain

z€ [ Tym) = [ T = [ Tn(®)-

m<s y€J; yeJ;

To achieve z € T(A) = Tp+1(A) it remains to show that M; C T,(A) = T(A). Since
G}_1(A) was fermented at its initial edge by ¢;, M; C C(G’ _1(4)) € C(Gr(4)),
whence the induction hypothesis yields M; C T(A). Therefore C(G;+1(4)) C T(A)
which completes the proof of Lemma 4.

Now the necessity part of the theorem follows easily. Assume that P, =
Ayea ¥ < z holds in all lattices. In particular, A ¢, ¥ < z holds for the e(z, Gu(A)),
z € X, by Lemma 3. Lemma 2 yields that (left endpoint, right endpoint) €
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(A, Gu(A)) = e(Uyea{y}, Gu(A)) = Nyeae(y, Gu(A)) C e(z, G, (A)). Hence there

is an z-path a in G,(A) connecting the endpoints. But o is an z-path in G;(A)
for som sufficiently large j < w. Therefore 2 € C(G;4+1(A)), by Step (c) of the
construction. Hence z € T(A) follows from Lemma 4. |
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