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Dedicated to the memory of E. Tamás Schmidt

Abstract. We prove that every finite lattice L can be embedded in a three-
generated finite lattice K. We also prove that every algebraic lattice with

accessible cardinality is a complete sublattice of an appropriate algebraic lattice
K such that K is completely generated by three elements. Note that ZFC has

a model in which all cardinal numbers are accessible. Our results strengthen
P. Crawley and R. A. Dean’s 1959 results by adding finiteness, algebraicity,

and completeness.

Dedication to E. Tamás Schmidt’s two best papers in Acta
Scientiarum Mathematicarum (Szeged)

This section is a tribute to E. Tamás Schmidt (1936–2016). Note that there will
be a memorial issue dedicated to him in Algebra Universalis with more details. Note
also that his carefully edited website at http://www.math.bme.hu/~schmidt/ is
still available and will be available for a long time; it is the best source to keep his
memory alive.

On February 24, 2016, the Institute of Mathematics at the Budapest University
of Technology and Economics, jointly with the Alfréd Rényi Institute of Mathemat-
ics, celebrated Professor Emeritus E. Tamás Schmidt’s eightieth birthday. Besides
the honoree, many Hungarian algebraists and even some foreign colleagues took part
in this event. Professor Schmidt was an outstanding lattice theorist with many bril-
liant mathematical ideas and deep results, and he was also a kind, friendly person,
respected and liked by all of us. Soon after this celebration, we were shocked by
the sad news: on March 14, 2016, E. Tamás Schmidt passed away.

Professor Schmidt was my scientific advisor in 1984, when I obtained my CSc
(in today’s terminology, PhD) degree. From 1986 to 2000, he supported most Hun-
garian algebraists, including me, from his famous “mammoth OTKA” (Hungarian
Scientific Research Fund) projects. Not much later, Tamás became my most fre-
quent coauthor. Our collaboration was particularly fruitful in 2008–2013, when
twelve of our thirteen joint papers appeared.

Although Tamás lived in Budapest, he had good connections to the Bolyai
Institute and its mathematical journal, Acta Scientiarum Mathematicarum. In
2008, he was awarded the Béla Szőkefalvi-Nagy Medal of the Bolyai Institute; see
http://www.acta.hu/acta/. He has published eighteen papers in Acta Sci. Math..
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Below, I mention only two of these papers: in my view, the two most important
ones.

In 1963, Grätzer and Schmidt [11] proved that every algebraic lattice can be
represented as the congruence lattice Con(A) of an abstract algebra A. This very
important theorem, the Grätzer-Schmidt theorem, became well-known soon for all
universal algebraists and lattice theorists; now it belongs to the foundations of these
branches of mathematics. Note that even the present paper, whose topic seems to
be far from congruence lattices, uses the Grätzer-Schmidt theorem.

In 1981, Schmidt [21] proved that if D is a distributive algebraic lattice in which
the intersection of any two compact elements is compact, then D can be represented
as the congruence lattice Con(L) of a lattice L. For every lattice L, we know from a
1942 result of Funayama and Nakayama [8] that Con(L) is a distributive algebraic
lattice. The question whether every distributive algebraic lattice can be represented
in this way was (Dilworth’s) Congruence Lattice Problem, CLP in short. CLP was
one of the most significant problems on lattices for more than half a century; see
Grätzer [10] for an overview. Wehrung [24] provided a negative answer. However,
there are many positive results stating that certain distributive algebraic lattices
D can be represented; Schmidt [21] is the deepest of them. Note that Huhn [12]
published another positive result on CLP in Acta Sci. Math., which cannot be
sharpened by Růžička [20].

We will cherish E. Tamás Schmidt’s memory.

1. Introduction and result

A latticeK is three-generated if there are a, b, c ∈ K such that for every sublattice
S of K, {a, b, c} ⊆ S implies that S = K. We know from Crawley and Dean [2,
Theorem 7] that every at most countably infinite lattice is a sublattice of a three-
generated lattice. A complete lattice K is completely generated by a subset X if
the only complete sublattice of K including X is K itself. By [2, Theorem 7] again,
every lattice is a sublattice of a complete lattice completely generated by three
elements. Our aim is to strengthen these statements by proving that every finite
lattice is a sublattice of a finite three-generated lattice and every algebraic lattice
of accessible cardinality is a complete sublattice of a completely three-generated
algebraic lattice; see Corollaries 1.3 and 1.4 stated later in this section. Our method
is entirely different from the one used by Crawley and Dean [2]. Actually, we are
going to prove a theorem on equivalence lattices; our theorem combined with deep
results from the literature will easily imply the corollaries.

Next, we recall some well-known definitions. An element a in a complete lattice
L is compact if whenever a ≤

∨
X, then X has a finite subset Y with a ≤

∨
Y . A

complete lattice is algebraic if each of its elements is the join of (possibly, infinitely
many) compact elements. Most lattices related to algebraic and other mathematical
structures are algebraic lattices. A cardinal κ is inaccessible if

(i) κ > ℵ0,
(ii) for every cardinal λ, λ < κ implies that 2λ < κ, and
(iii) for every set I of cardinals, if |I| < κ and each member of I is less than κ,

then
∑

{λ : λ ∈ I} < κ.

For convenience, a cardinal λ will be called accessible if there is no inaccessible
cardinal κ such that κ ≤ λ. Our terminology is slightly different from the one
used in Keisler and Tarski [14], since finite cardinals are accessible here. Note that
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there can be cardinals that are neither accessible, nor inaccessible. Inaccessible
cardinals are also called strongly inaccessible. Inaccessible cardinals, if exist, are
extremely large; see, for example, Kanamori [13, page 18] or Levy [16, pages 138–

141]. The “everyday’s cardinals” like 0, 1, 2, 3,.. . , ℵ0, ℵ1, ℵ2, ℵ3, 2ℵ0 , 22ℵ0

, etc. are
accessible. We know from Kuratowski [15], see also [13, page 18] or [16], that ZFC
has a model without inaccessible cardinals. That is, in some model of ZFC, all
cardinals are accessible and belong to the scope of our results. Given a set A, the
lattice of all equivalence relations on A with respect to set inclusion is denoted by
Equ(A) = 〈Equ(A);⊆〉; it is called the equivalence lattice over A. Now, we are in
the position to formulate the main result of the paper.

Theorem 1.1. For every set A of accessible cardinality |A| ≥ 3, there exist a

set B and a complete sublattice K of Equ(B) such that K is completely generated

by three of its elements and Equ(A) is isomorphic to a complete sublattice of K.

Furthermore, we can choose a finite B if A is finite, and we can let B = A otherwise.

The role of |A| ≥ 3 in Theorem 1.1 is to ensure that |Equ(A)| ≥ 3. Note that
a finite lattice is completely generated by three elements if and only if it is three-
generated in the usual sense. Note also thatK in the theorem is necessarily a proper
complete sublattice of Equ(B) if |B| > 3, because Equ(B) cannot be completely
generated by three elements; see Strietz [23] or Zádori [25] for the finite case, and
see the paragraph following the theorem in [3] for the infinite case. For the sake
of another terminology, we rephrase Theorem 1.1 as follows. A complete lattice

embedding is an injective map preserving arbitrary (possibly infinite) meets and
joins.

Proposition 1.2. If A is a set and |A| ≥ 3 is an accessible cardinal, then Equ(A)
has a complete lattice embedding in a complete sublattice K of some Equ(B) such

that K is completely generated by only three elements. We can let B = A if A is

infinite, and we can choose a finite B if A is finite.

Corollary 1.3. Every finite lattice is the sublattice of some three-generated finite
lattice.

To point out the difference between this corollary and the afore-mentioned Craw-
ley and Dean [2, Theorem 7], note that Corollary 1.3 refers to a construction that
preserves finiteness. On the other hand, as opposed to [2, Theorem 7], our corollary
does not include the case when the original lattice is countably infinite.

Proof of Corollary 1.3. By Pudlák and Tůma [19], we can embed our lattice in
some Equ(A) such that A is finite. Thus, Theorem 1.1 is applicable. �

Corollary 1.4. Every algebraic lattice of accessible cardinality is a complete sub-

lattice of an algebraic lattice K that is completely generated by three elements.

Theorem 7 for complete lattices in Crawley and Dean [2] considers the “degree” of
completeness, so it is more involved than its simplified form given at the beginning
of this section. However, Corollary 1.4 adds two new features even to the original
[2, Theorem 7]: here the sublattice is a complete sublattice and K is an algebraic

lattice. Note that we can easily derive the simplified form of [2, Theorem 7] for a
lattice L with accessible cardinality from Corollary 1.4 as follows: embed L in its
ideal lattice I(L) and apply Corollary 1.4 to I(L); in this way, we obtain that L is
(isomorphic to) a sublattice of K, where K is from Corollary 1.4.
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Conversely, we do not see any straightforward way to derive Corollary 1.4 directly
from [2, Theorem 7]. In particular, if K is a complete lattice completely generated
by {x, y, z}, then there seems to be no reason why the algebraic lattice I(K) should
be completely generated by the set {↓x, ↓y, ↓z} of principal ideals, because a =∨
{bi : i ∈ I} in K need not imply that ↓a equals

∨
{↓bi : i ∈ I} =

⋃
{
∨
{↓bj : j ∈

J} : J ⊆ I and J is finite}.

Proof of Corollary 1.4. By the Grätzer–Schmidt theorem, see [11], we can assume
that our lattice L is the congruence lattice of an algebra A. So L is a complete
sublattice of Equ(A). Since |L| is accessible, the construction in [11] shows that
|A| is also accessible. (This is not surprising, since the class of sets with accessible
cardinalities is closed under “reasonable” constructions.) Hence, Theorem 1.1 yields
that L is a complete sublattice of a complete sublattice K of some Equ(B) such
that K is completely generated by three elements. It is well known, see Grätzer
and Schmidt [11, Theorem 8] or Nation [18, Exercise 3.6], that complete sublattices
of algebraic lattices are algebraic. Therefore, since Equ(B) is an algebraic lattice,
so is K, as required. �

1.1. Outline, prerequisite, and method. The rest of the paper is devoted to
the proof of Theorem 1.1.

Only basic knowledge of lattice theory is assumed. For example, a small part of
each of the books Burris and Sankappanavar [1], Davey and Priestley [7], Grätzer [9],
McKenzie, McNulty, and Taylor [17], and Nation [18] is sufficient.

Our approach towards Theorem 1.1 has three main ingredients but two of them
are not explicitly stated. First, we need the fact that Equ(A) is completely gen-
erated by four elements if |A| is accessible; see [3] and [4] for the infinite case and
Strietz [23] and Zádori [25] for the finite case. Second, [5] and [6] give the vague
idea that we need some auxiliary graphs. Third, the appropriate graphs given in
Figure 1 are taken from Skublics [22]. His graphs are symmetric; this explains why
they are more appropriate for our plan than those in [5]. (Actually, we have not
checked whether the graphs from [5] could be used here.) Note that we cannot use
the statements of [5], [6], and [22] in the present setting, because [5] and [22] are
related only to the particular case |A0| = 2 of Lemma 2.2. Hence, we borrow only
the ideas and some methods from these sources without explicit further reference.

2. Auxiliary statements and the proof

2.1. An easy lemma. The least equivalence and the largest equivalence on a
set X are denoted by ∆X and ∇X , respectively. For Y ⊆ X and an equivalence
Θ ∈ Equ(X), the restriction Θ ∩ Y 2 of Θ to Y will be denoted by ΘeY .

Lemma 2.1. For a non-empty subset A of a set B, let Θ ∈ Equ(B) be such that

ΘeA = ∆A. Then the map g : Equ(A) → Equ(B), defined by µ 7→ (µ ∪ ∆B) ∨ Θ,

where the join is taken in Equ(B), is a complete lattice embedding.

Proof. Let εi ∈ Equ(B) for i ∈ I. For u, v ∈ B, by a (
⋃

i∈I εi)-sequence of length
n from u to v we mean a sequence x0 = u, x1, . . . , xn−1, xn = v of elements of
B such that 〈xj−1, xj〉 ∈

⋃
i∈I εi for all j ∈ {1, . . . , n}. For µ ∈ Equ(A), since

(µ∪∆B) \µ ⊆ Θ, 〈u, v〉 ∈ g(µ) iff there is a (Θ∪µ)-sequence from u to v. In order
to show that g preserves joins, assume that µi ∈ Equ(A) for i ∈ I. We need to show
that g(

∨
i∈I µi) =

∨
i∈I g(µi). Actually, since g is clearly order-preserving, it suffices
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to show that g(
∨

i∈I µi) ≤
∨

i∈I g(µi). Let 〈u, v〉 ∈ g(
∨

i∈I µi). This is witnessed by
a (Θ∪

∨
i∈I µi)-sequence from u to v. By the description of joins in Equ(A), there is

a (usually longer) (Θ∪
⋃

i∈I µi)-sequence from u to v, which is also a (
⋃

i∈I(Θ∪µi))-
sequence and, thus, a (

⋃
i∈I g(µi))-sequence. Hence, 〈u, v〉 ∈

∨
i∈I g(µi), and we

conclude that g preserves joins.
For µ ∈ Equ(A), instead of using long (µ ∪ Θ)-sequences, we can describe g(µ)

as follows. Namely, we claim that for distinct u, v ∈ B, we have that 〈u, v〉 ∈ g(µ)
if and only if one of the following five possibilities holds:

(2.1)






u ∈ A, v ∈ A, and 〈u, v〉 ∈ µ;

u /∈ A, v ∈ A, and (∃x ∈ A) (〈u, x〉 ∈ Θ and 〈x, v〉 ∈ µ);

u ∈ A, v /∈ A, and (∃y ∈ A) (〈u, y〉 ∈ µ and 〈y, v〉 ∈ Θ);

u /∈ A, v /∈ A, and (∃〈x, y〉 ∈ µ) (〈u, x〉 ∈ Θ and 〈y, v〉 ∈ Θ);

u /∈ A, v /∈ A, and 〈u, v〉 ∈ Θ.

The “if part” is trivial. In order to prove the “only if” part, assume that u 6= v
are elements of B and 〈u, v〉 ∈ g(µ). Take a shortest (µ ∪ Θ)-sequence P : x0 = u,
x1, . . . , xn−1, xn = v from u to v. Since u 6= v, this sequence is repetition-free,
that is, |{x0, . . . , xn}| = n+ 1. Hence, by µ ∩ Θ = µ ∩ ΘeA = µ ∩ ∆A = ∆A, each
pair 〈xi−1, xi〉 of two consecutive elements belongs either to µ, or to Θ, but not
to both. Let πi = µ if 〈xi−1, xi〉 ∈ µ, and let πi = Θ otherwise. The sequence
~π := 〈π1, π2, . . . , πn〉 is the pattern of P . Since P is a shortest sequence from u to
v, neither 〈µ, µ〉, nor 〈Θ,Θ〉 is a subsequence of ~π. If a pair belongs to Θ \ ∆B,
then at least one of its components is outside A. This gives that 〈µ,Θ, µ〉 is not a
subsequence of ~π. Hence, ~π is one of the patterns 〈µ〉, 〈Θ, µ〉, 〈µ,Θ〉, 〈Θ, µ,Θ〉, and
〈Θ〉. These patterns correspond to the possibilities (that is, lines) in (2.1). This
proves (2.1). Observe that, by the transitivity of Θ and the assumption ΘeA = ∆A,

(2.2) for each b ∈ B \A, there is at most one a ∈ A such that 〈b, a〉 ∈ Θ.

Next, in order to show that g preserves meets, let µi ∈ Equ(A) for i ∈ I.
It suffices to show that

∧
i∈I g(µi) ≤ g(

∧
i∈I µi), because the converse inequality

follows from the fact that g is order-preserving. So let 〈u, v〉 ∈
∧

i∈I g(µi). We can
assume that 〈u, v〉 /∈ Θ, since otherwise 〈u, v〉 ∈ g(

∧
i∈I µi) is trivial. According

to (2.1), there are four possibilities; we deal only with the case u /∈ A and v /∈ A
since the rest of the cases are even more simple. For each i ∈ I, (2.1) gives a pair
〈xi, yi〉 ∈ µi such that 〈u, xi〉 ∈ Θ and 〈yi, v〉 ∈ Θ. (2.2) yields that neither xi,
nor yi depends on i. Hence, there is a common member 〈x, y〉 of all µi such that
〈u, x〉 and 〈y, v〉 are in Θ. Thus, 〈x, y〉 ∈

∧
i∈I µi, implying that 〈u, v〉 ∈ g(

∧
i∈I µi).

Therefore, g preserves the meets.
Finally, for µ ∈ Equ(A), (2.1) yields that g(µ)eA = µ. Hence, g is injective,

completing the proof of Lemma 2.1. �

Note that an earlier version of this paper proved essentially the same lemma
but with a different approach. Namely, an isomorphism (which turns out to be
g−1 : g(Equ(A)) → Equ(A) in the present setting) was constructed as the composite
of the usual isomorphism given by the folkloric Correspondence Theorem from, say,
Burris and Sankappanavar [1, Theorem 6.20] and another isomorphism. Although
the present elementary proof is not shorter, it seems to be easier to follow.
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Figure 1. The auxiliary graphs

2.2. Blowing equivalence lattices up with auxiliary graphs. The graphs
S(α), . . . , S(δ) given in Figure 1 (but here we consider them without the super-
scripts uv) will be called auxiliary graphs; they are the key gadgets in our construc-
tion. Vertices distinct from u and v in these graphs are called internal vertices while
u and v are said to be side vertices. Before formulating a lemma on these graphs,
we need some easy definitions. Let A0 be a set and let α0, β0, γ0, δ0 ∈ Equ(A0). We
define a larger set A1 and equivalences ξ1, ψ1, ζ1 ∈ Equ(A1) as follows. First, we
fix a well-ordering on A0 for convenience. A pair 〈u, v〉 ∈ A2

0 is a nontrivial pair if
u 6= v. If 〈u, v〉 ∈ A2

0 is a nontrivial pair such that u precedes v with respect to the
fixed well-ordering, then 〈u, v〉 ∈ A2

0 is said to be an eligible pair. For each eligible
pair 〈u, v〉 ∈ α0, we insert a copy of S(α) such that its black-filled left vertex is
identified with u while its black-filled right vertex with v. The vertices of S(α) are
a0, a1, . . . , a25.

After inserting a copy of this graph for 〈u, v〉, its vertices are denoted by auv
0 =

u, auv
1 , . . . , auv

24 , a
uv
25 = v. The vertices auv

1 , . . . , auv
24 are new elements; they are nei-

ther in A0, nor in any other copy of an auxiliary graph that we add to A0. Note
that the superscript uv is indicated at some vertices like auv

1 in Figure 1 but, in
absence of space, not always. If we drop the superscripts uv, then the figure gives
S(α); if we add these superscripts, then we obtain the actual copy Suv(α) of S(α)
that we have inserted for 〈u, v〉. Similarly, for ε ∈ {β, γ, δ} and each eligible pair
〈u, v〉 ∈ ε0, we insert a copy Suv(ε) of S(ε) such that the left and right black-filled
vertices are identified with u and v, respectively. Again, the superscripts ensure
that, apart possibly from the black-filled vertices, we insert disjoint copies. After
all these insertions, we obtain A1, which is a superset of A0. The edges of our
auxiliary graphs are colored by ξ, ψ, and ζ. These edges and their colors are also
added to A0. So A1 becomes a graph whose edges are colored by ξ, ψ, and ζ.
This graph is denoted by A1, in the same way as its vertex set. Note at this point
that whenever the membership relation “∈” or the inclusion relation “⊆” is used in
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connection with a graph, we always mean the vertex set of the graph in question.
Multiple edges between two vertices of A1 may occur, and each edge has a unique
color in {ξ, ψ, ζ}. We define ξ1 ∈ Equ(A1) by the rule 〈x, y〉 ∈ ξ1 iff there is a path
connecting x and y in the graph A1 such that every edge of this path is ξ-colored.
We define ψ1 ∈ Equ(A1) and ζ1 ∈ Equ(A1) analogously by using ψ-colored paths
and ζ-colored paths, respectively. Consider the ternary lattice terms

(2.3)

α̂ =
(
ξ ∧ (ψ ∨ ζ)

)
∨

(
ψ ∧ (ξ ∨ ζ)

)
,

β̂ =
(
ξ ∧ (ζ ∨ ψ)) ∨

(
ζ ∧ (ξ ∨ ψ)

)
,

γ̂ =
(
ξ ∨ (ψ ∧ ζ)

)
∧

(
ψ ∨ (ξ ∧ ζ)

)
, and

δ̂ =
(
ξ ∨ (ζ ∧ ψ)

)
∧

(
ζ ∨ (ξ ∧ ψ)

)
.

Observe at this point that if we interchange ψ and ζ in our setting, then

〈α̂, β̂, γ̂, δ̂, S(α), S(β), S(γ), S(δ)〉 and 〈β̂, α̂, δ̂, γ̂, S(β), S(α), S(δ), S(γ)〉

are also interchanged. We will frequently rely on this fact, called ψ–ζ-symmetry.
Now, we are in the position to formulate the key lemma towards Theorem 1.1.

Lemma 2.2. Let A0 be a set with at least two elements and let α0, β0, γ0, δ0 ∈
Equ(A0) be such that α0 ≤ γ0 ∨ δ0 and β0 ≤ γ0 ∨ δ0. Let L0 be the complete

sublattice of Equ(A0) completely generated by {α0, β0, γ0, δ0}. Consider the graph

A1 and the equivalences ξ1, ψ1, ζ1 ∈ Equ(A1) defined above. For ε ∈ {α, β, γ, δ}, let

ε̂1 := ε̂(ξ1, ψ1, ζ1) and ε̂2 := ε̂1 ∧ (γ̂1 ∨ δ̂1). Denote by L2 the complete sublattice

of Equ(A1) completely generated by {α̂2, β̂2, γ̂2, δ̂2}. Then L0 is isomorphic to L2.

Actually, there is a unique isomorphism f : L0 → L2 such that, for ε ∈ {α, β, γ, δ},
f(ε0) = ε̂2.

Proof. Let {ρ, τ} be a two-element subset of {ξ, ψ, ζ}. By a (ρ∪ τ )-path we mean a
path P in the graph A1 such that each edge of P is ρ-colored or τ -colored. By the
description of join in Equ(A1) and the definition of ξ1, ψ1, and ζ1, we have that,
for x, y ∈ A1,

(2.4)
〈x, y〉 ∈ ρ1 iff there is a ρ-colored path connecting the vertices x and
y, and 〈x, y〉 ∈ ρ1 ∨ τ1 iff there is a (ρ ∪ τ )-path between x and y.

As Figure 1 shows, none of the four auxiliary graphs has a “monochromatic” path
from u to v. Thus, there is a monochromatic path from u to v neither within
a single auxiliary graph Suv(ε), nor as a “detour path” through other auxiliary
graphs. Therefore, (2.4) implies that

(2.5) ξ1eA0
= ψ1eA0

= ζ1eA0
= ∆A0

.

For µ ∈ Equ(A1) and X ⊆ A1, we say that X is a µ-closed subset of A1 if
the µeX -blocks are also µ-blocks. Equivalently, X is µ-closed if for all x ∈ X and
y ∈ A1, 〈x, y〉 ∈ µ implies that y ∈ X. For µ ∈ Equ(A1), ε ∈ {α, β, γ, δ}, and an
eligible pair 〈u, v〉 ∈ ε0, we say that µ perfectly restricts to Suv(ε) if whenever B is
a block of µeSuv(ε) such that B∩{u, v} = ∅, then B is also a µ-block; equivalently,
if every µeSuv(ε)-block that is disjoint from {u, v} is µ-closed. In this case, if µ and
ε are clear from the context, the blocks of µeSuv(ε) are simply called the restricted

blocks. A restricted block B is called a (restricted) internal block if B ∩{u, v} = ∅,
and B is a (restricted) side block otherwise. Let us emphasize that whenever µ
perfectly restricts to Suv(ε), then the restricted internal blocks are also µ-blocks
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but the restricted side blocks need not be µ-blocks. Note that, usually, we do not
list the singleton µeSuv(ε)-blocks in this case. We will often use the following trivial
fact.

(2.6)
If B1 ⊆ B2 ⊆ Suv(ε), µ ≤ µ′ ∈ Equ(A1), B1 is a block
of µeSuv(ε), {u, v} ∩ B2 = ∅, and B2 is µ′-closed, then
B1 is µ-closed and so it is a µ-block.

Let 〈u, v〉 ∈ α0 be an eligible pair. By (2.4), the (ψ1 ∨ ζ1)eSuv(α)-blocks are
{auv

1+5j, a
uv
2+5j} and {auv

3+5j, a
uv
4+5j} for j ∈ {0, 2, 4} and {u = auv

0 , auv
5 , auv

6 , auv
7 ,

auv
8 , auv

9 , auv
10 , auv

15 , auv
16 , auv

17 , auv
18 , auv

19 , auv
20 , auv

25 = v}. (2.4) also yields that ψ1 ∨ ζ1
perfectly restricts to Suv(α). Let

σ(1) := ξ1 ∧ (ψ1 ∨ ζ1).

The description of the (ψ1 ∨ ζ1)eSuv(α)-blocks, (2.4) applied to ξ1, and (2.5) give

that σ(1)eSuv(α) has only two non-singleton blocks, {auv
5 , auv

10} and {auv
15 , a

uv
20}. We

obtain from (2.4) that, for j ∈ {1, 3}, the set {auv
5j−1, a

uv
5j , a

uv
5j+5, a

uv
5j+6} is ξ1-

closed. Therefore, (2.6) yields that {auv
5 , auv

10} and {auv
15 , a

uv
20} are σ(1)-closed. For

j ∈ {0, 2, 4}, {auv
1+5j, a

uv
2+5j} and {auv

3+5j, a
uv
4+5j} are (ψ1∨ζ1)-closed, because they are

internal (ψ1 ∨ ζ1)eSuv -blocks and ψ1∨ ζ1 perfectly restricts to Suv(α). Hence, (2.6)

yields that the singleton σ(1)eSuv(α)-block {auv
i+5j} is σ(1)-closed for i ∈ {1, 2, 3, 4}

and j ∈ {0, 2, 4}. Similarly, since {auv
i+5j} is ξ1-closed for i ∈ {1, 2, 3, 4} and

j ∈ {1, 3} by (2.4), it is a σ(1)eSuv(α)-block, whence it is σ(1)-closed by (2.6).
Consequently,

(2.7)
σ(1) perfectly restricts to Suv(α) and the restricted
non-singleton blocks are {auv

5 , auv
10} and {auv

15 , a
uv
20}.

Clearly, for an eligible pair 〈u, v〉 ∈ β0, ψ–ζ-symmetry turns (2.7) into

(2.8)
σ(1) perfectly restricts to Suv(β) and the restricted
non-singleton blocks are {buv

5 , buv
10} and {buv

15 , b
uv
20}.

Next, let 〈u, v〉 ∈ γ0 be an eligible pair. By (2.4), the (ψ1 ∨ ζ1)eSuv(γ)-blocks
are {ĉ uv

2 , ĉ uv
3 } and Suv(γ) \ {ĉ uv

2 , ĉ uv
3 }. Hence, applying (2.4) and (2.5) to ξ1,

we obtain that the non-singleton σ(1)eSuv(γ)-blocks are {u, c̆uv
1 }, {c̆uv

2 , c̆uv
3 }, and

{c̆uv
4 , v}. Since {c̆uv

2 , c̆uv
3 } is ξ1-closed by (2.4), it is also σ(1)-closed by (2.6). In

what follows, in order to ease formulation, (2.4) will not always be mentioned when

its first part is used. If x ∈ Suv(γ) and {x} is a singleton σ(1)eSuv(γ)-block, then
x ∈ {ĉ uv

1 , ĉ uv
2 , ĉ uv

3 , ĉ uv
3 }. Since this four-element set is ξ1-closed, (2.6) gives that

{x} is σ(1)-closed. Thus, we conclude that

(2.9)
σ(1) perfectly restricts to Suv(γ) and the non-singleton
restricted blocks are {u, c̆uv

1 }, {c̆uv
2 , c̆uv

3 }, and {c̆uv
4 , v}.

By ψ–ζ-symmetry, (2.9) implies that for every eligible pair 〈u, v〉 ∈ δ0,

(2.10)
σ(1) perfectly restricts to Suv(δ) and the non-singleton re-

stricted blocks are {u, d̆uv
1 }, {d̆uv

2 , d̆uv
3 }, and {d̆uv

4 , v}.

Next, let

σ(2) := ψ1 ∧ (ξ1 ∨ ζ1),

and let 〈u, v〉 ∈ α0 be an eligible pair. By (2.4), the (ξ1 ∨ ζ1)eSuv(α)-blocks are
{auv

1+5j, a
uv
2+5j} and {auv

3+5j, a
uv
4+5j} for j ∈ {1, 3}, and {u, auv

1 , auv
2 , auv

3 , auv
4 , auv

5 ,
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auv
10 , auv

11 , auv
12 , auv

13 , auv
14 , auv

15 , auv
20 , auv

21 , auv
22 , auv

23 , auv
24 , v}. Thus, it follows from (2.4)

that ξ1 ∨ ζ1 perfectly restricts to Suv(α). We claim that

(2.11)
σ(2) perfectly restricts to Suv(α) and the non-singleton
restricted blocks are {u, auv

5 }, {auv
10 , a

uv
15}, and {auv

20 , v}.

The description of (ξ1 ∨ ζ1)eSuv(α)-blocks, (2.4), and (2.5) imply that (2.11) de-

scribes the σ(2)eSuv(α)-blocks correctly. Since {auv
9 , auv

10 , a
uv
15 , a

uv
16} is ψ1-closed, (2.6)

yields that {auv
10 , a

uv
15} is σ(2)-closed. Since ξ1 ∨ ζ1 perfectly restricts to Suv(α),

the two-element sets {auv
1+5j, a

uv
2+5j} and {auv

3+5j, a
uv
4+5j} are (ξ1 ∨ ζ1)-closed for j ∈

{1, 3}. Hence, by (2.6), the singleton σ(2)eSuv(α)-block {x} is σ(2)-closed when-
ever x belongs to these two-element (ξ1 ∨ ζ1)eSuv(α)-blocks. If x belongs to the set
{auv

1+5j, a
uv
2+5j, a

uv
3+5j, a

uv
4+5j} for some j ∈ {0, 2, 4}, then {x} is ψ1-closed and so it is

σ(2)-closed by (2.6). This proves (2.11).
Next, for an eligible pair 〈u, v〉 ∈ β0, (2.4) yields that the (ξ1 ∨ ζ1)eSuv(β)-blocks

are {buv
2+5j, b

uv
3+5j} for j ∈ {0, 1, 2, 3, 4} and {u, buv

1 , buv
4 , buv

5 , buv
6 , buv

9 , buv
10 , buv

11 ,

buv
14 , buv

15 , buv
16 , buv

19 , buv
20 , buv

21 , buv
24 , v}. Therefore, using (2.4) and (2.5), we ob-

tain that all the σ(2)eSuv(β)-blocks are singletons. For j ∈ {0, 1, 2, 3, 4}, the set
{buv

1+5j, b
uv
2+5j, b

uv
3+5j, b

uv
4+5j} is ψ1-closed. Hence, if x belongs to some of these four-

element sets, then {x} is σ(2)-closed by (2.6). Similarly, the singletons {buv
5 }, {buv

10},
{buv

15}, {b
uv
20} are also σ(2)-closed by (2.6), because they are ψ1-closed. Thus,

(2.12)
σ(2) perfectly restricts to Suv(β) and
all restricted blocks are singletons.

Next, let 〈u, v〉 ∈ γ0 be an eligible pair. Using (2.4), we obtain that the
(ξ1 ∨ ζ1)eSuv(γ)-blocks are {c̆uv

2 , c̆uv
3 } and Suv(γ) \ {c̆uv

2 , c̆uv
3 }, and ξ1 ∨ ζ1 perfectly

restricts to Suv(γ). Hence, (2.4) and (2.5) imply that the non-singleton σ(2)eSuv(γ)-
blocks are {u, ĉ uv

1 }, {ĉ uv
2 , ĉ uv

3 }, and {ĉ uv
4 , v}. Since {ĉ uv

2 , ĉ uv
3 } is ψ1-closed, it is

σ(2)-closed by (2.6). Similarly, since {c̆uv
1 , c̆uv

2 , c̆uv
3 , c̆uv

4 } is ψ1-closed, (2.6) yields
that {x} is σ(2)-closed for x ∈ {c̆uv

1 , c̆uv
2 , c̆uv

3 , c̆uv
4 }. Therefore,

(2.13)
σ(2) perfectly restricts to Suv(γ) and the non-singleton re-
stricted blocks are {u, ĉ uv

1 }, {ĉ uv
2 , ĉ uv

3 }, and {ĉ uv
4 , v}.

As usual, we say that µ ∈ Equ(A1) collapses a subset X of A1 if X × X ⊆ µ.
Let 〈u, v〉 ∈ δ0 be an eligible pair. Clearly, ξ1∨ζ1 collapses the whole Suv(δ). Thus,

σ(2)eSuv(δ) = ψ1eSuv(δ). Since {d̆uv
2 , d̆uv

3 } and {d̂ uv
2 , d̂ uv

3 } are ψ1-closed, they are

σ(2)-closed by (2.6). This fact and (2.5) give that

(2.14)
σ(2) perfectly restricts to Suv(δ) and the restricted blocks are

{u, d̆uv
1 , d̂ uv

1 }, {d̆uv
2 , d̆uv

3 }, {d̂ uv
2 , d̂ uv

3 }, and {d̆uv
4 , d̂ uv

4 , v}.

Now, we are ready to prove several observations on the restrictions of α̂1, β̂1,

γ̂1, and δ̂1 to the auxiliary graphs. For ε, µ ∈ {α, β, γ, δ} and an eligible pair
〈u, v〉 ∈ µ0, if µ0 is the only member of {α0, β0, γ0, δ0} that contains 〈u, v〉, then
our forthcoming observations are conveniently visualized by Figure 2. In this case,
the meaning of the edges in the figure is that for x, y ∈ Suv(µ),

(2.15)
〈x, y〉 ∈ ε̂1eSuv(µ) iff there is an ε̂1-colored path
in Suv(µ) connecting x and y in the figure.

However, if more than one of α0, β0, γ0, and δ0 contains 〈u, v〉, then some additional
edges connecting u and v should be added to Figure 2 in order to make (2.15) valid;
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this situation will be clarified by (2.33) and (2.34). Note that, for µ ∈ {α, β, γ, δ},
Figure 2 gives only the vertex set of Suv(µ) but not the original edges.

We know that α̂1 = σ(1) ∨ σ(2). We claim that, for an eligible pair 〈u, v〉 ∈ α0,

(2.16)
α̂1 perfectly restricts to Suv(α) and the only restricted
non-singleton block is {u, auv

5 , auv
10 , a

uv
15 , a

uv
20 , v}.

We derive (2.16) from (2.7) and (2.11) as follows. Clearly, α̂1 collapses {u, auv
5 , auv

10 ,

auv
15 , auv

20 , v}. If x does not belong to this six-element subset, then {x} is σ(1)-closed
by (2.7) and it is σ(2)-closed by (2.11). Hence, by the well-known description of join
in Equ(A1), {x} is α̂1-closed. This yields (2.16). Next, for an eligible 〈u, v〉 ∈ β0,
we claim that

(2.17)
α̂1 perfectly restricts to Suv(β). The subsets are {buv

5 , buv
10} and

{buv
15 , b

uv
20} are restricted blocks, and {u, v} is a restricted block if and

only if 〈u, v〉 ∈ α0. The rest of the restricted blocks are singletons.

It follows from (2.8), (2.12), and the description of join in Equ(A1) that {buv
5 , buv

10},
{buv

15 , b
uv
20}, and {buv

i } for 5 - i (non-divisible) are α̂1eSuv(β)-blocks and they are α̂1-
closed. The “if” part is a trivial consequence of (2.16) and the construction of A1.
Thus, (2.17) without its “only if part” holds. In order to show the “only if part”
of (2.17), it suffices to show that

(2.18) α̂1eA0
= α0.

The elements of A0 and those of A1 \ A0 will be called old elements and new

elements, respectively. Note that the new elements are exactly the internal vertices
of the auxiliary graphs used in the construction. We obtain from (2.16) and the
construction of A1 that α̂1eA0

⊇ α0. In order to show the converse inclusion,
it suffices to prove by induction on n that whenever u′ and v′ are old elements
connected by a (σ(1) ∪ σ(2))-sequence T : x0 = u′, x1, . . . , xn−1, xn = v′ of length
n, then 〈u′, v′〉 ∈ α0. The base of the induction is the case of n = 0, which trivially
holds by reflexivity. So, we assume that n ≥ 1. We can assume also that

(2.19) T is a repetition-free sequence, that is, xi 6= xj for 0 ≤ i < j ≤ n,

because the repetition-free case trivially implies the general case. Transitivity com-
bined with the induction hypothesis allows us to assume that

(2.20) if 〈xi−1, xi〉 ∈ σ(k), then 〈xi, xi+1〉 ∈ σ(3−k) \ σ(k),

for i ∈ {1, . . . , n− 1} and k ∈ {1, 2}. By (2.7)–(2.14), x1 is a new element. Hence,
there is an ε ∈ {α, β, γ, δ} and there exists either an eligible pair 〈u′, w〉 ∈ ε0

such that x1 is an internal vertex of the auxiliary graph Su′w(ε), or an eligible pair

〈w, u′〉 ∈ ε0 such that x1 is an internal vertex of Swu′

(ε). By left-right symmetry,

we can disregard the second alternative; that is, x1 is an internal vertex of Su′w(ε).
It follows from (2.8) and (2.12) that ε 6= β. Since xn = v′ is an old element, there
exists a smallest i such that i > 1 and xi is an old element. If ε = γ, then (2.9) and

(2.13) yield that x1 ∈ {ĉ u′w
1 , c̆u′w

1 }. Actually, either 〈u′, x1〉 = 〈u′, c̆u′w
1 〉 ∈ σ(1), or

〈u′, x1〉 = 〈u′, ĉ u′w
1 〉 ∈ σ(2). Since xi is an old element, i > 1. However, we know

from (the perfectness part of) (2.9) and (2.13) that {c̆u′w
1 } is σ(2)-closed while

{ĉ u′w
1 } is σ(1)-closed. Hence, (2.19) and (2.20) give a contradiction, which excludes

that ε = γ. Next, assume that ε = δ. We obtain from (2.10) and (2.14) that the

internal vertex x1 belongs to {d̂ u′w
1 , d̆u′w

1 }. If x1 = d̂ u′w
1 , then 〈u′, x1〉 /∈ σ(1) by
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(2.10), whence (2.20) gives that 〈x1, x2〉 ∈ σ(1). Since {x1} = {d̂ u′w
1 } is σ(1)-closed

by (2.10), we obtain that x2 = x1, contradicting (2.19). Hence, x1 = d̆u′w
1 . There

is a k ∈ {1, 2} such that 〈x1, x2〉 ∈ σ(k). Since 〈u′, x1〉 is also in σ(k) by (2.10)
and (2.14), transitivity yields that 〈u′, x2〉 ∈ σ(k). So u′, x2, . . . , xn−1, xn = v′

is a shorter sequence, and the required 〈u′, v′〉 ∈ α0 follows from the induction

hypothesis. We are left with the case ε = α. By (2.7) and x1 ∈ Su′w(α) \ {u′},
we have that 〈u′, x1〉 /∈ σ(1). Hence, 〈u′, x1〉 ∈ σ(2), (2.11), and (2.19) give that

x1 = au′w
5 . We know from (2.20) that 〈x1, x2〉 ∈ σ(1) \ σ(2). Combining this with

(2.7) and (2.19), we obtain that 〈x1, x2〉 = 〈au′w
5 , au′w

10 〉 ∈ σ(1). Similarly, successive

applications of (2.7), (2.11), (2.19), and (2.20) give that 〈x2, x3〉 = 〈au′w
10 , au′w

15 〉 ∈

σ(2)\σ(1), 〈x3, x4〉 = 〈au′w
15 , au′w

20 〉 ∈ σ(1)\σ(2), and 〈x4, x5〉 = 〈au′w
20 , x5〉 ∈ σ(2)\σ(1).

However, 〈w, au′w
20 〉 ∈ σ(2) also holds by (2.11). By transitivity, 〈w, x5〉 ∈ σ(2). Thus,

w, x5, . . . , xn = v′ is a (σ(1) ∪ σ(2))-sequence of length n − 4 connecting the old
elements w and v′. Hence, 〈w, v′〉 ∈ α0 follows from the induction hypothesis. Since
〈u′, w〉 ∈ ε0 = α0, transitivity implies that 〈u′, v′〉 ∈ α0. This yields (2.18). Now,
(2.18) completes the proof of (2.17).

Next, for an eligible 〈u, v〉 ∈ γ0, (2.9), (2.13), and (2.18) imply the following.

(2.21)

α̂1 perfectly restricts to Suv(γ). There is no singleton
restricted block, and {ĉ uv

2 , ĉ uv
3 } and {c̆uv

2 , c̆uv
3 } are the

only restricted blocks disjoint from {u, v}. The subsets
{u, ĉ uv

1 , c̆uv
1 } and {v, ĉ uv

4 , c̆uv
4 } are collapsed by α̂1eSuv(γ).

Similarly, for an eligible 〈u, v〉 ∈ δ0, (2.10), (2.14), and (2.18) give that

(2.22)

α̂1 perfectly restricts to Suv(δ). There is no singleton

restricted block, and {d̂ uv
2 , d̂ uv

3 } and {d̆uv
2 , d̆uv

3 } are the
only restricted blocks disjoint from {u, v}. The subsets

{u, d̂ uv
1 , d̆uv

1 } and {v, d̂ uv
4 , d̆uv

4 } are collapsed by α̂1eSuv(δ).

Observe that (2.16), (2.17), (2.21), and (2.22) are satisfactorily visualized by
Figure 2, provided (2.18) is taken into account. Hence, any reference to (the thick
dotted α̂1-edges) of Figure 2 will be understood as a reference to (2.16), (2.17),

(2.18), (2.21), and (2.22). By the ψ–ζ-symmetry mentioned before Lemma 2.2, β̂1

is perfectly restricted to each auxiliary graph,

(2.23) β̂1eA0
= β0,

and any reference to (the thick solid β̂1-edges) of Figure 2 will be understood
analogously as in case of α̂1-edges. Namely, the thick solid edges precisely describe
the internal restricted blocks; if two side blocks are depicted, then they are collapsed
iff (2.23) requires so.

The outer operation in γ̂ is a meet rather than a join. Hence, the analysis of
γ̂1 is easier than that of α̂1; this is why we are going to give less details below.
It follows easily from (2.4) and the description of joins in Equ(A1) that, for every
eligible pair 〈u, v〉,

(2.24)

If 〈u, v〉 belongs to γ0 (resp., to δ0), then ξ1 ∨ (ψ1∧ ζ1) per-
fectly restricts to Suv(γ) with restricted blocks {c̆uv

2 , c̆uv
3 }

and Suv(γ) \ {c̆uv
2 , c̆uv

3 } (resp., to Suv(δ) with restricted

blocks {d̆uv
2 , d̆uv

3 } and Suv(δ) \ {d̆uv
2 , d̆uv

3 }).
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Using (2.24), the assumptions α0 ≤ γ0 ∨ δ0 and β0 ≤ γ0 ∨ δ0 of Lemma 2.2, and
γ0 ∪ δ0 sequences in A0, we conclude that 〈u, v〉 ∈ α0 ∪ β0 implies that 〈u, v〉 ∈
ξ1 ∨ (ψ1 ∧ ζ1). Furthermore, if ε ∈ {α, β}, then ψ1eSuv(ε) ∧ ζ1eSuv(ε) = ∆Suv(ε),
the least equivalence on Suv(ε). Hence, using (2.4), we obtain easily that, for every
eligible 〈u, v〉 ∈ A2

0,

(2.25)

If 〈u, v〉 belongs to α0 (resp., to β0), then ξ1∨(ψ1∧ζ1) perfectly
restricts to Suv(α) with restricted blocks {u, v, auv

1 , auv
24} and

the internal blocks of ξ1eSuv(α) (resp., to Suv(β) with restricted
blocks {u, v, buv

1 , buv
24} and the internal blocks of ξ1eSuv(β)).

Note that the internal ξ1-blocks above are satisfactorily described by (2.4). It
follows easily from (2.4) that each non-singleton (ξ1∧ζ1)-block is either of the form
{c̆uv

2 , c̆uv
3 }, or it includes one of {u, c̆uv

1 } and {c̆uv
4 , v} for some eligible 〈u, v〉 ∈ γ0.

Hence, similarly to our method yielding (2.18), a straightforward argument based
on (ψ1 ∪ (ξ1 ∧ ζ1))-sequences gives that

(2.26) for every u, v ∈ A0, 〈u, v〉 ∈ ψ1 ∨ (ξ1 ∧ ζ1) iff 〈u, v〉 ∈ γ0.

Armed with (2.4) and (2.26) and still using (ψ1 ∪ (ξ1 ∧ ζ1))-sequences, we obtain
that, for any eligible pair 〈u, v〉,

(2.27)

if 〈u, v〉 belongs to α0 (resp., to β0), then ψ1∨(ξ1∧ζ1) perfectly
restricts to Suv(α) and its restricted blocks are the ψ1eSuv(α)-
blocks except that the side blocks are collapsed iff 〈u, v〉 ∈ γ0

(resp., to Suv(β) and its restricted blocks are the ψ1eSuv(β)-
blocks except that the side blocks are collapsed iff 〈u, v〉 ∈ γ0);

and

(2.28)

if 〈u, v〉 belongs to γ0 (resp., to δ0), then ψ1 ∨ (ξ1 ∧ ζ1) per-
fectly restricts to Suv(γ) with restricted blocks Suv(γ)\{ĉ uv

2 , ĉ uv
3 }

and {ĉ uv
2 , ĉ uv

3 } (resp., to Suv(δ) with restricted blocks {d̂ uv
2 , d̂ uv

3 },

{d̆uv
2 , d̆uv

3 }, {u, d̂ uv
1 , d̆uv

1 }, and {v, d̂ uv
4 , d̆uv

4 }, but the last two col-
lapse iff 〈u, v〉 ∈ γ0).

We know from (2.24) that γ0 ⊆ ξ1 ∨ (ψ1 ∧ ζ1). Hence, (2.26) gives that

(2.29) for every u, v ∈ A0, 〈u, v〉 ∈ γ̂1 iff 〈u, v〉 ∈ γ0.

We obtain from (2.6), (2.25) and (2.27) that, for every eligible pair 〈u, v〉,

(2.30)
if ε ∈ {α, β} and 〈u, v〉 ∈ ε0, then γ̂1 perfectly restricts to
Suv(ε) with singleton restricted blocks except that 〈u, v〉 ∈
γ̂1 ⇐⇒ 〈u, v〉 ∈ γ0 can yield a two-element restricted block.

Similarly, (2.6), (2.24), (2.28), and (2.29) yield that for every eligible pair 〈u, v〉,

(2.31)
γ̂1 perfectly restricts to Suv(γ) and the restricted blocks are
{u, v, ĉ uv

1 , c̆uv
1 , ĉ uv

4 , c̆uv
4 }, {ĉ uv

2 , ĉ uv
3 }, and {c̆uv

2 , c̆uv
3 }; and

(2.32)

γ̂1 perfectly restricts to Suv(δ) and the restricted blocks are

{u, d̂ uv
1 , d̆uv

1 }, {v, d̂ uv
4 , d̆uv

4 }, {d̂ uv
2 , d̂ uv

3 }, and {d̆uv
2 , d̆uv

3 }, but
the two side blocks collapse iff 〈u, v〉 ∈ γ0.

Now, (2.18), (2.23), (2.29), and ψ–ζ-symmetry give that

(2.33) for u, v ∈ A0 and ε ∈ {α, β, γ, δ}, 〈u, v〉 ∈ ε̂1 ⇐⇒ 〈u, v〉 ∈ ε0.
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Note that (2.30)–(2.32) are visualized by Figure 2, provided (2.33) is taken into
account. Therefore, by ψ–ζ-symmetry and the paragraph containing (2.23), for
any ε, µ ∈ {α, β, γ, δ} and every eligible pair 〈u, v〉 ∈ µ0,

(2.34)
ε̂1 perfectly restricts to Suv(µ) and the restricted blocks
are given by Figure 2 in the spirit of (2.15) so that an
ε̂1-colored 〈u, v〉 edge has to be added iff 〈u, v〉 ∈ ε0.

Figure 2. The restrictions of α̂1, β̂1, γ̂1, and δ̂1 to the auxiliary
graphs; add an 〈u, v〉 edge if (2.34) requires so

Next, we turn our attention to α̂2, β̂2, γ̂2 , and δ̂2 . Clearly γ̂2 = γ̂1 and δ̂2 = δ̂1.
Similarly to (2.34) and Figure 2, we need to explore how these equivalences are
related to the auxiliary graphs. The situation is given by Figure 3. We claim that

(2.35) for u, v ∈ A0 and ε ∈ {α, β, γ, δ}, 〈u, v〉 ∈ ε̂2 ⇐⇒ 〈u, v〉 ∈ ε0,

For ε ∈ {α, β}, let 〈u, v〉 ∈ ε0. Since ε0 ≤ γ0∨δ0 by the assumptions of Lemma 2.2,
there exists a (γ0∪δ0)-sequence from u to v. By (2.33), any two consecutive elements

of this sequence is collapsed by γ̂1∪ δ̂1. By transitivity, 〈u, v〉 ∈ γ̂1 ∨ δ̂1. Thus, using

(2.33) again, we obtain that 〈u, v〉 ∈ ε̂1 ∧ (γ̂1 ∨ δ̂1) = ε̂2. Conversely, if 〈u, v〉 ∈ ε̂2,
then ε̂2 ≤ ε̂1 and (2.33) give that 〈u, v〉 ∈ ε0. Hence, (2.35) holds for ε ∈ {α, β}.

Therefore, (2.35) follows from (2.33), γ̂1 = γ̂2, and δ̂1 = δ̂2. Next, we claim that
for any ε, µ ∈ {α, β, γ, δ} and every eligible pair 〈u, v〉 ∈ µ0,

(2.36)
ε̂2 perfectly restricts to Suv(µ) and the restricted blocks
are given by Figure 3 in the spirit of (2.15) so that an
ε-colored 〈u, v〉 edge has to be added iff 〈u, v〉 ∈ ε0.
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In order to prove this, first we let µ ∈ {α, β}. If x ∈ Suv(µ)\ {u, v}, then {x} is γ̂1-

closed and δ̂1-closed by (2.34); so {x} is (γ̂1 ∨ δ̂1)-closed. By (2.6), {x} is ε̂2-closed.
Thus, for µ ∈ {α, β}, (2.36) follows from (2.35). Second, we let µ ∈ {γ, δ}. Observe

that the α̂1-edges and the β̂1-edges in the Suv(µ) part of Figure 2 are parallel to

γ̂1-edges (and also to δ̂1-edges). Therefore, for ε ∈ {α, β, γ, δ}, the ε̂2eSuv(µ)-blocks
are exactly the ε̂1eSuv(µ)-blocks. Hence, the internal ε̂2eSuv(µ)-blocks are ε̂2-closed,
because they are ε̂1-closed by (2.34) and ε̂2 ≤ ε̂1; see also (2.6). This means that
ε̂2 perfectly restricts to Suv(µ). Thus, (2.36) follows from (2.35).

Figure 3. The restrictions of α̂2, β̂2, γ̂2, and δ̂2 to the auxiliary
graphs; add an 〈u, v〉 edge if (2.35) requires so
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Let Θ denote the smallest equivalence relation on A1 collapsing each of the sets
{u, c̆uv

1 , ĉ uv
1 }, {v, c̆uv

4 , ĉ uv
4 }, {c̆uv

2 , c̆uv
3 }, {ĉ uv

2 , ĉ uv
3 } for eligible pairs 〈u, v〉 ∈ γ0 and

{u, d̆uv
1 , d̂ uv

1 }, {v, d̆uv
4 , d̂ uv

4 }, {d̆uv
2 , d̆uv

3 }, and {d̂ uv
2 , d̂ uv

3 }, for eligible 〈u, v〉 ∈ δ0. The
two-element sets here are obviously Θ-blocks; they are the two-element Θ-blocks.
Clearly, Θ is the join

∨
m∈M Θm of those equivalences Θm that correspond to the

two-element and three-element sets listed above. For example, if 〈u, v〉 ∈ γ0 is an
eligible pair, then the least equivalence collapsing {u, c̆uv

1 , ĉ uv
1 } is one of these Θm.

Since ε̂2 collapses the Θ-blocks by (2.36), it follows trivially that

(2.37) Θ ≤ ε̂2 for all ε ∈ {α, β, γ, δ}, and ΘeA0
= ∆A0

.

Next, we claim that

(2.38) for ε ∈ {α, β, γ, δ}, ε̂2 = (ε0 ∪ ∆A1
) ∨ Θ.

Since ε̂2 ⊇ ε0 by (2.35), the inclusion ε̂2 ⊇ (ε0 ∪ ∆A1
) ∨ Θ is clear by (2.37). In

order to show the converse inclusion, assume that 〈x, y〉 ∈ ε̂2. We assume also
that 〈x, y〉 belongs neither to ε0, nor to Θ, because otherwise the containment
〈x, y〉 ∈ (ε0 ∪ ∆A1

) ∨ Θ would be evident. It follows from (2.36) that x neither
belongs to a two-element Θ-block, which is ε̂2-closed, nor it is an internal element
of some Suv(α) or Suv(β), which forms an ε̂2-closed singleton. Hence, again by
(2.36), there is an x′ ∈ A0 such that 〈x′, x〉 ∈ Θ. Similarly, there is a y′ ∈ A0

such that 〈y, y′〉 ∈ Θ. By (2.37), 〈x′, x〉 ∈ ε̂2 and 〈y, y′〉 ∈ ε̂2. By the transitivity
of ε̂2 and (2.35), we have that 〈x′, y′〉 ∈ ε0. This containment, 〈x, x′〉 ∈ Θ, and
〈y′, y〉 ∈ Θ give the required containment 〈x, y〉 ∈ (ε0 ∪ ∆A1

) ∨ Θ, proving (2.38).
Combining Lemma 2.1 and the second half of (2.37), we obtain that the map

g : Equ(A0) → Equ(A1), defined by µ 7→ (µ∪∆A1
)∨Θ, is a complete lattice embed-

ding. Let f = geL0
be the restriction of g to L0. Since L0 is a complete sublattice

of Equ(A0), f is also a complete embedding. Clearly, with the temporary notation
L′

2 := f(L0), we have that f : L0 → L′
2 is a (complete) lattice isomorphism and L′

2

is a complete sublattice of Equ(A1). We know from (2.38) that, for ε ∈ {α, β, γ, δ},

f(ε0) = ε̂2. Hence, {α̂2, β̂2, γ̂2, δ̂2} ⊆ L′
2. This gives that L2 ⊆ L′

2, because L2

is the smallest complete sublattice of Equ(A1) that includes {α̂2, β̂2, γ̂2, δ̂2}. In
order to show the converse inclusion, observe that f−1(L2) is a complete sub-
lattice of Equ(A0), because it is a complete sublattice of L0 and L0 is a com-

plete sublattice of Equ(A0). Since f−1(L2) includes {f−1(α̂2), f
−1(β̂2), f

−1(γ̂2),

f−1(δ̂2)} = {α0, β0, γ0, δ0} and L0 is the smallest complete sublattice of Equ(A0)
including {α0, β0, γ0, δ0}, L0 ⊆ f−1(L2). Hence, L′

2 = f(L0) ⊆ f(f−1(L2)) = L2.
Consequently, L′

2 = L2 and f is an L0 → L2 isomorphism required by Lemma 2.2.
Finally, in order to see the uniqueness of f , let h : L0 → L2 be an isomorphism

such that, for all ε ∈ {α, β, γ, δ}, h(ε0) = ε̂2. The “equalizer set” E := {µ ∈ L0 :
f(µ) = h(µ)} of f and h is a complete sublattice of L0, since both f and h, like
any isomorphism, preserve arbitrary meets and joins. Since {α0, β0, γ0, δ0} ⊆ E,
we obtain that E = L0. Hence, f = h, completing the proof of Lemma 2.2. �

2.3. The rest of the proof. Now, armed with Lemma 2.2 and some earlier results,
we are in the position to complete the proof of Theorem 1.1 in a short way.

Proof of Theorem 1.1. Assume that A is a set with accessible cardinality at least 3.
For convenience, we can also assume that |A| is not an even natural number, because
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otherwise we would construct a larger set A′ from A by adding a new element and
then we would use that Equ(A) is isomorphic to a sublattice of Equ(A′).

For a finite A, it was first proved by Strietz [23] that Equ(A) is four-generated;
however, we will use the four generators constructed by Zádori [25]. Note that these
generators for |A| = 33 are reproduced in [3, Figure 1], and 33 is sufficiently large to
indicate the general case for |A| odd. Therefore, in order to be in harmony with the
infinite case, we use fα[3],

fβ[3],
fγ[3], and fδ[3] to denote Zádori’s generators; see [3].

The superscript “f” indicates that we are dealing with the finite case. Alternatively,
we can use a different system of generators from Zádori [25], which are also given
for |A| = 59 in [4]; these generators will be denoted by fα[4],

fβ[4],
fγ[4], and fδ[4].

Whichever of the two systems is considered, the join of two appropriately chosen
generators is clearly ∇A. Namely,

fα[3] ∨
fβ[3] = fα[3] ∨

fγ[3] = fα[3] ∨
fδ[3] = fβ[3] ∨

fγ[3] = ∇A

and fα[4] ∨
fβ[4] = fα[4] ∨

fγ[4] = fβ[4] ∨
fγ[4] = ∇A.

Thus, we have many choices to fulfill the conditions α0 ≤ γ0 ∨ δ0 and β0 ≤ γ0 ∨ δ0
of Lemma 2.2; let, say, 〈α0, β0, γ0, δ0〉 = 〈fγ[3],

fδ[3],
fα[3],

fβ[3]〉.
If A is infinite but |A| is accessible, then we know from [3] and [4] that Equ(A)

is completely generated by four elements. Let {iα[3],
iβ[3],

iγ[3],
iδ[3]} and {iα[4],

iβ[4],
iγ[4],

iδ[4]} denote the complete generating sets constructed in [3] and [4],
respectively. Here the superscript “i” comes from “infinite”. Again, we can pick
two generators whose join is ∇A. Actually, we have the following equalities, but it
suffices to see that one of the following six joins equals ∇A:

iα[3] ∨
iβ[3] = iα[3] ∨

iγ[3] = iα[3] ∨
iδ[3] = ∇A and

iα[4] ∨
iβ[4] = iα[4] ∨

iγ[4] = iβ[4] ∨
iγ[4] = ∇A.

Let, say, 〈α0, β0, γ0, δ0〉 = 〈iγ[3],
iδ[3],

iα[3],
iβ[3]〉.

Next, if A is infinite, then let A0 = A, and consider the set A1 constructed
before Lemma 2.2. Clearly, |A1| = |A|. Let L0 stand for the complete sublattice
of Equ(A0) completely generated by {α0, β0, γ0, δ0}. Denote by K′ the complete
sublattice of Equ(A1) completely generated by its three-element subset {ξ1, ψ1, ζ1}.
Since L0 = Equ(A0) = Equ(A) and L2 from Lemma 2.2 is clearly a complete
sublattice of K′, Lemma 2.2 gives that

(2.39) Equ(A) is isomorphic to a complete sublattice of K′.

Now, let B = A. Since |A1| = |A| = |B|, we have a (complete) lattice isomorphism
h : Equ(A1) → Equ(B). Clearly, K := h(K′) is isomorphic to K′ and it is a
complete sublattice of Equ(B). Also, K is completely generated by the three-
element set {h(ξ1), h(ψ1), h(ζ1)}, and Equ(A) is isomorphic to a complete sublattice
of K. This proves the theorem for A infinite.

If A is finite, then we can drop “complete” from the consideration above. Let
B = A1; it is finite by construction. By (2.39), Equ(A) is isomorphic to a sublattice
of the three-generated K′ and K′ is a sublattice of Equ(B). Hence, we can let
K = K′, which completes the proof of the theorem. �
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