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Abstract. For a lattice L of finite length n, let RCSub(L) be the collection
consisting of the empty set and those sublattices of L that are closed under

taking relative complements. That is, a subset X of L belongs to RCSub(L)
if and only if X is join-closed, meet-closed, and whenever {a, x, b} ⊆ S, y ∈ L,

x ∧ y = a, and x ∨ y = b, then y ∈ S. We prove that (1) the poset RCSub(L)
with respect to set inclusion is lattice of length n + 1, (2) if RCSub(L) is a

ranked lattice and L is modular, then L is 2-distributive in András P. Huhn’s

sense, and (3) if L is distributive, then RCSub(L) is a ranked lattice.

1. Introduction

For a lattice L, RCSub(L) = (RCSub(L),⊆) will denote the lattice of sublat-
tices closed under taking relative complements; ∅ ∈ RCSub(L) by convention. We
only deal with lattices L of finite length. Our goal is to determine the length of
RCSub(L). Also, for a modular lattice L of finite length, we give a necessary con-
dition and also a sufficient condition that RCSub(L) is a ranked lattice; a lattice of
finite length is ranked if it satisfies the Jordan–Hölder chain condition. Finally, we
determine the size (that is, the number of elements) of RCSub(Bn) for the finite
Boolean lattice Bn of height n. We present the results in Section 2.

The reader is assumed to be familiar with the rudiments of lattice theory; then
the paper is self-contained. The rest of this introductory section is a mini-survey
of earlier results that motivate our work.

The importance of taking complements of lattice elements is well known; here
we only mention three facts to support this opinion. First, complementation plays
a crucial role in von Neumann [26], which still belongs to the deepest chapters of
lattice theory; see Birkhoff [3] for a laudation of von Neumann’s work. Second,
Grätzer in [14] surveys the two most famous problems that “shaped a century of
lattice theory”; one of these problems, solved by Dilworth [11], is about comple-
mentation. (The other problem highlighted in [14] is Dilworth’s congruence lattice
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2 G. CZÉDLI

problem, and it was solved by Wehrung [34].) Third, several generalizations of lat-
tices are based on modified versions of complementation; see, for example, Chajda,
Halaš and Kühr [4].

There are several papers on the lattices Sub(L) of sublattices of lattices L; in-
cluding, for example, Chen, Koh, and Teo [6], Czédli [7, 8], Filippov [12], Lakser
[25], and Takách [29, 30, 31, 32]. Some of these papers on Sub(L) might initiate
analogous investigations about RCSub(L) but this is not targeted in the present
paper. On the other hand, Theorem 2.1 (A) and Observation 2.2 are, in some vague
sense, counterparts of known results on Sub(L); see Chen and Koh [5], Koh [24], Ra-
mananda [28] (on convex sublattices) and Stephan [27]. Although 2-distributivity,
to be defined later, occurred previously in Czédli [7, 8] and it occurs in this paper
again, here the role of 2-distributivity is entirely different from that in [7, 8] and
now deeper tools are needed. We recall these tools in Section 3.

Chapter 10 of Grätzer [13] on R-generated sublattices of distributive and, mainly,
Boolean lattices also belongs to our motivations. Finally, there are several papers
on retracts of lattices and, by a trivial reason, the retracts of distributive lattices
are closed under taking relative complements; see Czédli [9].

2. Results

First, we recall some concepts. For elements u, x, v of a lattice L, let

rcL(u, x, v) := {y ∈ L : x ∧ y = u and x ∨ y = v}.

With this notation, a sublattice S of L is closed under taking relative complements
or, shortly saying, S is an RC-closed sublattice of L if rcL(u, x, v) ⊆ S holds for all
u, x, v ∈ S. So RCSub(L) consists of ∅ and the RC-closed sublattices of L. The
poset RCSub(L) =

(

RCSub(L),⊆
)

is an algebraic lattice, in which the meet is the

set theoretic intersection. For n ∈ N
+ := {1, 2, 3, . . .}, a lattice L is n-distributive

if for all x, y0, . . . , yn ∈ L,

x ∧
∨

{yi : 0 ≤ i ≤ n} =

n
∨

j=0

(

x ∧
∨

{yi : 0 ≤ i ≤ n and i 6= j}
)

; (2.1)

see Huhn [18, 19]. Every distributive (that is, 1-distributive) lattice is 2-distributive
but not conversely. The length len(L) of a lattice L is the supremum of the lengths
of its finite chains; for an n-element chain C, len(C) = n−1. For a technical reason,
we let len(∅) := −1. A ranked lattice of finite length is a lattice of finite length in
which any two maximal chains are of the same length. E.g., modular lattices of
finite length are such. Our aim is to prove the following theorem and some other
statements presented in this section; their proofs will be given in Section 4.

Theorem 2.1. For every lattice L of finite length, the following three assertions
hold.

(A) The lattice RCSub(L) is of finite length and len(RCSub(L)) = len(L) + 1.
(B) If L is modular and RCSub(L) is a ranked lattice, then L is 2-distributive.
(C) If L is distributive, then RCSub(L) is a ranked finite lattice.

In connection with part (C), (3.7) from Section 4 is worth mentioning. For
n ∈ N

+, let Bn denote the Boolean lattice of length n; note that |Bn| = 2n. The
n-th Bell number, that is, the number of partitions of an n-element set will be
denoted by bell(n). These numbers, named after Bell [1], are well studied; at the
time of writing, a MathSciNet search ”Title=(Bell number)” returns 170 matches.
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n 1 2 3 4 5
rn 4 11 38 152 675

n 6 7 8 9 10
rn 3 264 17 008 94 829 562 596 3 535 028

n 11 12 13 14 15
rn 23 430 841 163 254 886 1 192 059 224 9 097 183 603 72 384 727 658

Table 1. r(n) := |RCSub(Bn)| for n ∈ {1, . . . , 15}

Observation 2.2. For n ∈ N
+ and the Boolean lattice Bn of length n, RCSub(Bn)

is of size

|RCSub(Bn)| = 1 +

n
∑

k=0

(

(

n

k

)

·
n−k
∑

t=0

(

n − k

t

)

bell(t)

)

. (2.2)

For n ∈ {1, 2, . . . , n}, rn := |RCSub(Bn)| is given in Table 1. We used the
computer algebraic program Maple V Release 5 (of Nov. 27, 1997), in which bell(n)
is a built-in function. On a desktop computer with Intel(R) Core(TM) i5-4440
CPU, 3.10 GHz, the computation for Table 1 took less than a millisecond. As n
grows, more time is needed; e.g., it took five and a half minutes to obtain that

RCSub(B2022)| ≈ 9.600 407 373 025 643 058 974 662 646 652 852 523 · 104409.

For a lattice L and X ⊆ L, let rcgL(X) stand for the least RC-closed sublattice
of L that includes X as a subset; “g” in the acronym comes from “generated”.

Lemma 2.3 (Key Lemma). If L is a lattice of finite length, Y is an RC-closed
sublattice of L, X is a sublattice of Y , and len(X) = len(Y ), then Y = rcgL(X).

For the particular case where L is distributive, Lemma 2.3 could be extracted
from Section 10 of Grätzer [13]. Letting Y := L, the lemma trivially implies the
following.

Corollary 2.4. If X is a sublattice of a lattice L of finite length such that len(X) =
len(L), then L is RC-generated by X, that is, L = rcgL(X).

3. Some known results on n-distributivity

Two concepts introduced in Huhn [18, 19] have changed a little since their intro-
ductions. First, Huhn [18, 19] defined n-distributivity as the conjunction of (2.1)
and modularity, but later Huhn himself dropped the assumption that the lattice
should be modular; see [22]. Second, the n-diamonds defined by Huhn [18, 19]
correspond to the (n + 1)-frames of Herrmann and Huhn [17] and even to the
(n + 1)-diamonds in the terminology used by Day [10]; these concepts are equiva-
lent modulo the theory of modular lattices. Some of the relevant sources appeared
in conference proceedings or were written in German. These facts may cause diffi-
culty to some readers. This explains why we collect the results on n-distributivity
that are relevant here in this separate section. Note that even though I quote these
results from published papers, most of my knowledge goes back to the time when
András P. Huhn was my scientific leader.
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Following von Neumann [26] and going also after, say, Herrmann [16], a system

F = (ai, ci,j : i, j ∈ {1, . . . , n}, i 6= j) (3.1)

of elements of a modular lattice L is a non-trivial normalized (von Neumann) n-
frame or, briefly, a von Neumann n-frame if, with the notation 0F :=

∧n

i=1 ai and
1F :=

∨n

i=1 ai, we have that 0F 6= 1F , aj ∧
∨

t 6=j at = 0F = ai ∧ ci,j, ci,j = cj,i,

ai ∨ ci,j = ai ∨aj, and ci,k = (ai ∨ak)∧ (ci,j ∨ cj,k) for all {i, j, k} ⊆ {1, . . . , n} with
i 6= j 6= k 6= i. Here 2 ≤ n ∈ N

+. We know from Huhn [21, Proposition 1.2] that

for n ∈ N
+, a modular lattice is n-distributive if and only

if it does not contain a von Neumann (n + 1)-frame.

}

(3.2)

Subsection 1.4 ”Reduction of frames” together with Subsection 1.7 of Herrmann
and Huhn [17] prove that, for n ∈ N

+,

if F = (ai, ci,j : i, j ∈ {1, . . . , n}, i 6= j) is a von Neumann
n-frame in a modular lattice L and a′

1 ∈ L such that
0F < a′

1 < a1, then a′
1 belongs to a von Neumann n-

frame F = (a′
i, c

′
i,j : i, j ∈ {1, . . . , n}, i 6= j) such that

0F = 0F ′ < a′
i < ai for i ∈ {1, . . . , n}.



















(3.3)

The von Neumann n-frame F of L from (3.1) is said to be cover-preserving if
0F ≺L ai for all i ∈ {1, . . . , n}. Applying (3.3), repeatedly if necessary, we obtain
that, for 2 ≤ n ∈ N

+,

if a modular lattice of finite length contains a von
Neumann n-frame, then it also contains a cover-
preserving von Neumann n-frame.

(3.4)

Note that for n = 2, (3.4) was proved in Jakub́ık [23].
A projective space is irreducible (or, in another terminology, non-degenerate) if

each of its lines contains at least three points. It is known (and easy to see) that
in an irreducible projective plane (which is a projective geometry of dimension 2),
each point lies on at least three lines. By Huhn [20, Thm. 1.1],

for n ∈ N
+, a modular algebraic lattice is n-distributive if and

only if none of its sublattices is isomorphic to the subspace
lattice of an irreducible projective geometry of dimension n.







(3.5)

The proof of Theorem 2.1 will need two well-known facts, (3.6) and (3.7), about
distributive (that is, 1-distributive) lattices. Namely,

any atom q in a distributive lattice is join prime, (3.6)

that is, q ≤ x1 ∨ · · · ∨ xt implies that q ≤ xi for some i ∈ {1, . . . , t}, and

if L is a distributive lattice of finite length, then L is finite. (3.7)

For convenience and having no reference at hand, we give a short argument. To
verify (3.6), note that q ≤ x1 ∨ · · · ∨ xt gives that q = q ∧ (x1 ∨ · · · ∨ xt) =
(q ∧ xi) ∨ · · · ∨ (q ∧ xt), whence the join-irreducibility of q applies. To prove (3.7),
observe that L = {0} ∪

⋃

{↑a : 0 ≺ a}, whereby it suffices to show that L only
has at most len(L) many atoms; indeed, then (3.7) follows by induction on len(L).
For the sake of contradiction, suppose that there exist t > len(L) pairwise distinct
atoms a1, a2, . . . , at in L. Define b0 := 0 and bi := a1 ∨ · · · ∨ ai for i ∈ {1, . . . , t}.
Clearly, b0 < b1 ≤ b2 ≤ · · · ≤ bt. If bi−1 = bi for some i, then the join primeness
of ai and the inequality ai ≤ bi = bi−1 would give a j < i with ai ≤ aj, which is
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impossible since ai and aj are distinct atoms. Hence, b0 < b0 < · · · < bt. This
contradicts t > len(L) and proves (3.7).

4. Proofs

Proof of Lemma 2.3. We give a proof by contradiction. With S := rcgL(X), sup-
pose that S 6= Y . Since X ⊆ S ⊂ Y , len(Y ) = len(X) ≤ len(S) ≤ len(Y ) gives that
len(S) = len(Y ). Therefore, we can

fix a maximal chain T in S such that len(T ) = len(Y ). (4.1)

For a ∈ L, the principal ideal and the principal filter generated by a are denoted
by ↓L a := {x ∈ L : x ≤ a} and ↑L a := {x ∈ L : x ≥ a}, respectively. We write
↓a and ↑a if L is understood. If u ≤ v in Y , then the length of the interval [u, v],
understood in Y , will be denoted by lenY ([u, v]). For u ≤ v ∈ T , the notation
lenT ([u, v]) is analogously defined. It follows from (4.1) that for u ≤ v ∈ T , we have
that lenT ([u, v]) = lenY ([u, v]). For b ∈ Y , we define

b−T :=
∨

(T ∩ ↓Y b) and b+T :=
∧

(T ∩ ↑Y b).

Using that any lattice of finite length is complete, T is a sublattice, 0T = 0L, and
0L = 1L, we obtain that both b−T and b+T exist and they belong to T , provided that
b ∈ Y . Thus, for y ∈ Y \T , we have that y−T < y < y+T , whence lenT ([b−T , b+T ]) =
lenY ([b−T , b+T ]) ≥ 2. Next,

choose an element p ∈ Y \ S such that lenY ([p−T , p+T ]) is minimal. (4.2)

Since p /∈ S and so p /∈ T , we have that lenT ([p−T , p+T ]) ≥ 2. This allows us to
pick an element t ∈ T such that p−T < t < p+T . We claim that

p ∨ t ∈ S and p ∧ t ∈ S. (4.3)

By duality, it suffices to deal with the first part of (4.3). For the sake of contradic-
tion, suppose that p∨ t /∈ S. Since p, t ∈ ↓p+T , we have that r := p∨ t ≤ p+T . Note
that r belongs to Y as so do p and t. Using that T 3 t ≤ r ≤ p+T ∈ T , we obtain
that t ≤ r−T and r+T ≤ p+T . So p−T < t ≤ r−T ≤ r+T ≤ p+T , which yields that
lenY ([r−T , r+T ]) < lenY ([p−T , p+T ]). By the choice of p, see (4.2), this inequality
rules out that r ∈ Y \ S. Hence, p ∨ t = r ∈ S, proving (4.3).

Finally, as a consequence of (4.3), t ∈ T ⊆ S, and that S is RC-closed, we obtain
that p ∈ rcgL(p ∧ t, t, p ∨ t) ∈ S. This contradicts (4.2) and completes the proof of
Lemma 2.3. �

Proof of Theorem 2.1. Let n := len(L). Clearly, we can assume that n ≥ 2. Note
that, as always in lattice theory, “⊂” will denote the conjunction of “⊆” and “ 6=”.

To prove part (A), let 0 = c0 ≺ c1 · · · ≺ cn = 1 be a maximal chain in L.
Let X−1 := ∅ and, for i ∈ {0, . . . , n}, let Xi := ↓ci. Since all these Xi belong to
RCSub(L) and X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = L, we obtain that len(RCSub(L)) ≥
n + 1 = len(L) + 1.

To prove the reverse inequality, let Y−1 ⊂ Y0 ⊂ · · · ⊂ Yk = L be an arbitrary
chain in RCSub(L). Clearly, len(Yi−1) ≤ len(Yi) for all i ∈ {0, 1, . . . , k}. We
claim that len(Yi−1) < len(Yi) for all meaningful i. Suppose the contrary. Then
Yi−1 ⊂ Yi and len(Yi−1) = len(Yi) for some i. With reference to Lemma 2.3 at “=∗”,
Yi−1 = rcgL(Yi−1) =∗ Yi, which is a contradiction proving that len(Yi−1) < len(Yi)
for i ∈ {0, 1, . . . , k}. Therefore, since −1 = len(∅) ≤ len(Y−1), we obtain that
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k ≤ n + 1. Thus, len(RCSub(L)) ≤ n + 1 = len(L) + 1, completing the proof of
part (A).

To prove part (B) by contradiction, suppose that L is a modular lattice of finite
length such that RCSub(L) is a ranked lattice (of finite length by part (A)) but L is
not 2-distributive. By (3.2) and (3.4), L contains a cover-preserving von Neumann
3-frame F = (ai, ci,j : i 6= j, i, j ∈ {1, . . . , 3}). The definition of a 3-frame together
with, say, Grätzer [15, Theorem 360] imply that {a1, a2, a3} is an independent set
of atoms in the filter ↑0F ; the independence of {a1, a2, a3} means that this three
element set generates a Boolean sublattice. This fact together with modularity (in
fact, semimodularity) yield that 1F = a1 ∨ a2 ∨ a3 is of height 3 in ↑0F , that is,
lenL([0F , 1F ]) = 3. By (3.2), the interval I := [0F , 1F ] is not 2-distributive. Using
(3.5), we obtain that the subspace lattice S of a projective plane G is a sublattice
of I. Since len(I) = 3 = len(S), it follows that 0S = 0F = 0I , 1s = 1I, and
S is a cover-preserving sublattice of I and L, that is, for any x, y ∈ S, we have
that x ≺S y ⇐⇒ x ≺Y y ⇐⇒ x ≺L y. Let At(S) and Coat(S) denote the
set of atoms and that of coatoms of S, respectively. These two sets are disjoint,
S = {0S, 1S} ∪ At(S) ∪ Coat(S), At(S) = {a ∈ I : 0I ≺ a, a ∈ S}, and dually. A
trivial geometric argument shows that for ∀a ∈ At(S) and ∀b ∈ Coat(S),

1S =
∨

(

At(S) \ {a}
)

and 0S =
∧

(

Coat(S) \ {b}
)

. (4.4)

Define Z−1 := ∅, Z0 := {0S}, Z1 := {0S, 1S}, and Z2 := rcgL(S). We claim that

Z−1, Z0, Z1, Z2 = I ∈ RCSub(L) and Z−1 ≺ Z0 ≺ Z1 ≺ Z2 in RCSub(L). (4.5)

Clearly, I ∈ RCSub(L), whereby Lemma 2.3 gives that Z2 = rcgL(S) = I. Trivially,
Z−1 ≺ Z0 ≺ Z1 and Z1 ⊂ Z2. To verify that Z1 ≺ Z2 = I, assume that Z1 ⊂ X ⊆ I
for some X ∈ RCSub(L). Pick an element u ∈ X \ Z1. Then 0S < u < 1S . Since
len(S) = 3, either u is of height 1, or it is of height 2. First, assume that u is
of height 2, that is, u ≺ 1S in I (and in L). If we had that |At(S) \ ↓u| ≤ 1,
then (4.4) would give that 1S =

∨
(

At(S) ∩ ↓u
)

≤ u, contradicting that u < 1S .
Hence, |At(S) \ ↓u| ≥ 2, and we can pick two distinct elements, v and w, from
At(S) \ ↓u. Using that v 6≤ u, u, v ∈ [0S, 1S], 0S ≺ v, and u ≺ 1S , we obtain that
v ∈ rcL(0S , u, 1S). Hence, v ∈ X; we obtain similarly that w ∈ X.

By modularity (in fact, by semimodularity), v ≺ v ∨ w ∈ X. Since len(I) = 3,
0S = 0I ≺ v ≺ v ∨ w < 1S = 1I . This chain, being in X, shows that 3 ≤ len(X).
On the other hand, len(X) ≤ len(I) = 3. Using Lemma 2.3 at “=∗” and that
X ∈ RCSub(L), we have that X = rcgL(X) =∗ I = Z2. Thus, Z1 ≺ Z2, completing
the proof of (4.5).

By (4.5), Z−1 ≺ · · · ≺ Z2 extends to a maximal chain ~Z : Z−1 ≺ · · · ≺ Zk of
RCSub(L). Like in the proof of part (A), Lemma 2.3 applies and we obtain that
−1 ≤ len(Z−1) < len(Z0) < · · · < len(Zk) = len(L). But now we know more:

len(Z1) + 1 = 2 < 3 = len(Z2). Thus, the maximal chain ~Z consists of at most

len(L) + 1 elements, whence len(~Z) ≤ len(L). But RCSub(L) is a ranked lattice of

finite length, whereby len(RCSub(L)) = len(~Z) ≤ len(L), contradicting part (A) of
the theorem. This proves part (B).

To prove part (C), let L be a distributive lattice of finite length. By (3.7), L is
finite, whence so is RCSub(L). Since L is a ranked lattice, it suffices to show that
for any U, V ∈ RCSub(L),

U ≺ V in RCSub(L) ⇐⇒
(

U ⊂ V and len(V ) = len(U) + 1
)

. (4.6)



RC-CLOSED SUBLATTICES 7

To prove the ⇒ direction, assume that U ≺ V . Clearly, U ⊂ V and len(U) ≤
len(V ). If we had that len(U) = len(V ), then Lemma 2.3 would give that U =
rcgL(U) = V , a contradiction. Hence, len(U) < len(V ). We are going to show
by way of contradiction that len(V ) = len(U) + 1. Suppose the contrary; then
k := len(U) ≤ len(V ) − 2. Take a maximal chain C0 in U . Since len(C0) = k
and len(V ) ≥ k + 2, we can extend C0 to a chain C of V such that len(C) =
k + 1. Let W := rcgL(C). It follows from Lemma 2.3 that U = rcgL(C0). Hence,
U = rcgL(C0) ⊆ rcgL(C) = W . Since len(W ) ≥ len(C) > len(U), W 6= U . Thus,
U ⊂ W . The inclusion C ⊆ V gives that W = rcgL(C) ⊆ rcgL(V ) = V . Combining
U ⊂ W ⊆ V and U ≺ V , we obtain that W = V .

Next, we write C in the form C = {c0 < c1 < · · · < ck+1}. (Note that, say,
c0 ≺L c1 need not hold.) By Birkhoff [2], we can fix a finite Boolean lattice D such
that L is a sublattice of D. We define the elements bi ∈ D for i ∈ {1, . . . , k + 1}
by bi ∈ rcD(c0, ci−1, ci). Since D is a Boolean lattice, bi exists and it is uniquely
determined. We claim that, for i = 2, 3, . . . , k + 1,

c0 /∈ {b1, . . . , bi}, ci−1 = b1 ∨ · · · ∨ bi−1, and (b1 ∨ · · · ∨ bi−1) ∧ bi = c0. (4.7)

We show this by induction on i. Clearly, b1 = c1 6= c0. From b2 ∈ rcD(c0, c1, c2),
we obtain that b2 6= c0 since otherwise c2 = c1 ∨ b2 = c1 would be a contradiction.
Also, b2 ∈ rcD(c0, c1, c2) gives that b1 ∧ b2 = c1 ∧ b2 = c0. Hence, the base of the
induction holds, that is, (4.7) is satisfied for i = 2. Assume that 2 ≤ i < k + 1 and
(4.7) holds for this i. As before, bi+1 6= c0 since otherwise bi+1 ∈ rcD(c0, ci, ci+1)
would lead to ci+1 = bi+1 ∨ ci = ci, which is a contradiction. Using the definition
of bi and the induction hypothesis, we have that ci = ci−1∨ bi = b1 ∨ · · ·∨ bi−1∨ bi,
that is, the second equality of (4.7) holds for i + 1. Using this equality and the
definition of bi+1, we have that (b1∨· · ·∨bi)∧bi+1 = ci∧bi+1 = c0. This completes
the induction step and proves that (4.7) holds for i = 2, 3, . . . , k + 1.

By Grätzer [15, Theorem 360] and (4.7), {b1, b2, . . . , bk+1} is a (k+1)-element in-
dependent set in the filter ↑D c0, whereby this set generates a 2k+1-element Boolean
sublattice E. Using that any element in an interval of a distributive lattice has at
most one relative complement with respect to the interval in question and E as
a Boolean lattice is closed under taking relative complements, we obtain that E
is RC-closed. It is clear from (4.7) and bk+1 ∈ rcD(c0, ck, ck+1) that C ⊆ E.
Hence, rcgD(C) ⊆ rcgD(E) = E. Now let F be a maximal chain in W . Since
W = rcgL(C) ⊆ rcgD(C) ⊆ E, we have that F is a chain in E. But len(E) = k +1,
implying that len(F ) ≤ k + 1. So len(W ) = len(F ) ≤ k + 1. On the other hand,
k + 1 = len(C) ≤ len(W ). Thus, len(W ) = k + 1, which is a contradiction since
W = V and len(V ) = k + 2. This proves the ⇒ direction of (4.6).

To prove the ⇐ direction, assume that U ⊂ V and len(V ) = len(U)+1. Assume
also that H ∈ RCSub(L) such that U ⊆ H ⊆ V . Clearly, len(U) ≤ len(H) ≤
len(V ), whence len(H) ∈ {len(U), len(V )}. If len(H) = len(U), then Lemma 2.3
gives that H = rcgL(U) = U . Similarly, if len(H) = len(V ), then the same lemma
yields that H = rcgL(H) = V . Therefore, U ≺ V , completing the proof of part (C)
and that of the theorem. �

Proof of Observation 2.2. Apart from the empty set, we classify the members S of
RCSub(Bn) according to the height h(0S) of their bottoms, 0S . This justifies the
outer

∑

in (2.2). Since Bn is isomorphic to the powerset lattice over an n-element
set, 0S of height k can be chosen in

(

n

k

)

ways; this is where the first binomial
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coefficient in (2.2) comes from. After choosing 0S , we choose t := lenL([0S, 1S ])
from {0, 1, . . . , n − k}; this explains the second

∑

in (2.2). (Note that t can be
larger than len(S) since S need not be a cover-preserving sublattice of Bn.) The
filter ↑L 0S is a Boolean sublattice of Bn and this filter is of length n − k. Hence,
↑L 0S has exactly n− k atoms, and there is a bijective correspondence between the
set of elements of height t in ↑L 0S and the set of t-element subsets At(↑L 0S). Thus,
to obtain 1S such that lenL([0S, 1S ]) = t, we select t atoms of the Boolean lattice
↑L 0S and then we form their join to obtain 1S . The second binomial coefficient in
(2.2) tells us how many ways these t atoms, denoted by p1, . . . , pt, of ↑L 0S can be
chosen.

First, we assume that t > 0, the case t = 0 will be discussed later. We know
that 1S = p1 ∨ · · · ∨ pt. For an atom u of S, in notation for u ∈ At(S), we let
Hu := {i : 1 ≤ i ≤ t and pi ≤ u}. Let Eu := {Hu : u ∈ At(S)}. We claim that Eu is
a partition of {1, . . . , t}. Clearly, Hu 6= ∅ if u ∈ At(S). For distinct u, u′ ∈ At(S),
u∧u′ = 0S yields that Hu∩Hu′ = ∅. For i ∈ {1, . . . , t}, pi ≤ 1S =

∨

At(S). Hence
(3.6) gives that i ∈ Hu for some u ∈ At(S). Thus, Eu := {Hu : u ∈ At(S)} is a
partition of {1, . . . , t}. We claim that

for each u ∈ At(S), u =
∨

{pi : i ∈ Hu}. (4.8)

To show this, observe that u is certainly the join of some atoms of the Boolean lattice
↑L 0S , whence it suffices to show that for every atom v of ↑L 0S such that v ≤ u,
we have that v ∈ {p1, . . . , pt}. But if v ∈ At(↑L 0S)∩ ↓u then v ≤ 1S = p1 ∨ · · ·∨ pt

yields the required v ∈ {p1, . . . , pt} by (3.6) since any two comparable atoms of
↑L 0S coincide. Thus, (4.8) holds.

It follows from (4.8) that the partitions of {1, . . . , t} and the Boolean sublattices
S with fixed 0S and 1S such that 0S is of height k and lenL([0S , 1S]) = t mutually
determine each other. Thus, the number of these S is bell(t). This is also true for
t = 0, when there is only 1 = bell(0) such S. In this way, we have explained bell(t)
in (2.2), completing the proof of Observation 2.2. �

5. Odds and ends

We do not know whether parts (B) and (C) of Theorem 2.1 can be strengthened
in a reasonable way; this section only mentions some easy facts.

Remark 5.1. For a lattice L, RCSub(L) is Boolean if and only if L is a chain. If
L is not a chain, then the lattice RCSub(L) is not even semimodular.

Proof. For a chain L, RCSub(L) is the powerset lattice of L, whence it is Boolean.
Assume that L is not a chain, and pick a, b ∈ L such that these two elements are
incomparable. Let u := a∧ b. Then ∅, {a}, {b}, {b, u} ∈ RCSub(L) and {a}∨ {b} =
rcgL({a, b}) contains a, b, and u. Since ∅ ≺ {a} but ∅ ∨ {b} < {b, u} < {a} ∨ {b},
RCSub(L) is not semimodular. �

Remark 5.2. For the four element Boolean lattice B2, the lattice RCSub(B2) is
not lower semimodular.

Proof. With the notation B2 = {0, a, b, 1}, both {0, a} and {b, 1} are coatoms of
RCSub(B2) but their meet is ∅, the bottom element. Thus, if RCSub(B2) was lower
semimodular, then it would be of length 2, contradicting Theorem 2.1(A). �
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L len(RCSub(L)) is RCSub(L) is L is L
= len(L) + 1 ranked? ranked? modular?

N5 4 no no no
N6 4 yes yes no

M3 3 yes yes yes
F 4 no yes yes

Table 2. Examples

We conclude the paper with four examples given by Figure 1 and Table 2; note
that F is the subspace lattice of the Fano plane and the table is justified by a
straightforward argument and (4.5) (applied to S = L := F ).

Figure 1. Examples
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[30] Takách, G.: Notes on sublattice-lattices. Period. Math. Hungar. 35, 215–224 (1997)
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