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A note on the compactmess of the consequence relation for congru-
ence varieties

G. Czepul

A congruence variety is a lattice variety of the form Con(U)=HSP{Con
(A): Ae U} where U is a variety of universal algebras. For a set X of lattice
identities and a lattice identity e let 3 F_g stand for ‘“‘whenever all the identities
of X are satisfied in a congruence variety V then g is also satisfied in V"', Let mod
and dist stand for the modular law and the distributive law, respectively.

In [4, Problem 3.18] Jonsson asked whether the consequence relation F, was
compact. In Day and Freese [1] it is shown that if 3 F, mod then 2k, mod for
some finite subset X' of X.

Our aim is to show the following

THEOREM. If 3 k_ dist, then there exists a finite subset 3’ of X such that X'k,
dist.

Proof. Suppose X k_dist. By making use of the mentioned result of Day and
Freese [1] we have 3, k. mod for some finite subset 3, of 3. Let P denote the set
of prime numbers and P,=PU{0}. For peP, we denote the prime field of
characteristic p by Q, and let M(Q,) be the variety of all vector spaces over Q,.
Since Con(M(Q,)) is not distributive, for every pe P, we can choose a A, in ¥
such that A, is not satisfied in Con(M(Q,)). Let D(m,, n,) denote the divisibility
condition (x)(m, - x =n, - 1) corresponding to A,{see [3, Theorems 2 and 3]).
Then we have

(1) For any p, g € Py, A, is satisfied in Con(M(Q,)) iff D(m,, n,) holds in Q,.

Therefore D(m,, n,) is not satisfied in Q,, whence m;=0 and n = n,>0. Let P,
be the set of the prime divisors of n and set X' =3, U{A,:p e P, U{0}}. We claim
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that 3'F_dist. Suppose X'F_dist is not true. Then 3 is satisfied in some
non-distributive modular congruence variety V. By Freese’s result [2],
Con({M(Q,))c V and so X’ holds in Con(M(Q,)) for some g€ P,. Since A, is
satisfied in Com{M(Q,)), from (1) we have that q divides n. Hence g€ P, and A,
holds in Con(M(Q,)}, which is a contradiction. Q.E.D.
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