Mailbox

A note on the compactness of the consequence relation for congruence varieties

G. CZÉDLI

A congruence variety is a lattice variety of the form $Con(U) = HSP\{Con(A) : A \in U\}$ where U is a variety of universal algebras. For a set Σ of lattice identities and a lattice identity ε let $\Sigma \models_{\varepsilon} \varepsilon$ stand for "whenever all the identities of Σ are satisfied in a congruence variety V then ε is also satisfied in V". Let mod and dist stand for the modular law and the distributive law, respectively.

In [4, Problem 3.18] Jónsson asked whether the consequence relation \models_c was compact. In Day and Freese [1] it is shown that if $\Sigma \models_c \mod$ then $\Sigma' \models_c \mod$ for some finite subset Σ' of Σ .

Our aim is to show the following

THEOREM. If $\Sigma \models_c$ dist, then there exists a finite subset Σ' of Σ such that $\Sigma' \models_c$ dist.

Proof. Suppose $\Sigma \models_c$ dist. By making use of the mentioned result of Day and Freese [1] we have $\Sigma_1 \models_c$ mod for some finite subset Σ_1 of Σ . Let P denote the set of prime numbers and $P_0 = P \cup \{0\}$. For $p \in P_0$ we denote the prime field of characteristic p by Q_p and let $M(Q_p)$ be the variety of all vector spaces over Q_p . Since $\mathbf{Con}(M(Q_p))$ is not distributive, for every $p \in P_0$ we can choose a λ_p in Σ such that λ_p is not satisfied in $\mathbf{Con}(M(Q_p))$. Let $D(m_p, n_p)$ denote the divisibility condition $(\exists x)(m_p \cdot x = n_p \cdot 1)$ corresponding to λ_p (see [3, Theorems 2 and 3]). Then we have

(1) For any $p, q \in P_0$, λ_p is satisfied in $Con(M(Q_q))$ iff $D(m_p, n_p)$ holds in Q_q .

Therefore $D(m_p, n_p)$ is not satisfied in Q_p , whence $m_0 = 0$ and $n = n_0 > 0$. Let P_1 be the set of the prime divisors of n and set $\Sigma' = \Sigma_1 \cup \{\lambda_p : p \in P_1 \cup \{0\}\}$. We claim

Presented by B. Jónsson. Received April 2, 1979. Accepted for publication in final form October 29, 1979.

that $\Sigma' \models_c$ dist. Suppose $\Sigma' \models_c$ dist is not true. Then Σ' is satisfied in some non-distributive modular congruence variety V. By Freese's result [2], $\mathbf{Con}(M(Q_q)) \subseteq V$ and so Σ' holds in $\mathbf{Con}(M(Q_q))$ for some $q \in P_0$. Since λ_0 is satisfied in $\mathbf{Con}(M(Q_q))$, from (1) we have that q divides n. Hence $q \in P_1$ and λ_q holds in $\mathbf{Con}(M(Q_q))$, which is a contradiction. Q.E.D.

REFERENCES

- [1] A. DAY and R. FREESE, A characterization of identities implying congruence modularity, Can. J. Math. (to appear).
- [2] R. Freese, Minimal modular congruence varieties, Abstract 76T-A14, Amer. Math. Soc. Notices 23 (1976), No. 1, A-4.
- [3] G. HUTCHINSON and G. CZÉDLI, A test for identities satisfied in lattices of submodules, Algebra Univ. 8 (1978), 269-309.
- [4] B. JÓNSSON, Congruence varieties, an appendix to G. Grätzer, Universal Algebra, 2nd edition.

József Attila University Szeged Hungary