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Abstract. A lattice is (1+1+2)-generated if it has a four-element generating

set such that exactly two of the four generators are comparable. We prove that
the lattice Quo(n) of all quasiorders (also known as preorders) of an n-element

set is (1 + 1 + 2)-generated for n = 3 (trivially), n = 6 (when Quo(6) consists
of 209 527 elements), n = 11, and for every natural number n ≥ 13. In 2017,

the second author and J. Kulin proved that Quo(n) is (1 + 1 + 2)-generated if
either n is odd and at least 13 or n is even and at least 56. Compared to the

2017 result, this paper presents twenty-four new numbers n such that Quo(n)
is (1 + 1 + 2)-generated. Except for Quo(6), an extension of Zádori’s method

is used.

1. Introduction

Postponing the basic but well-known definitions to Subsection 1.2, we are going
to prove that for n ∈ {3, 6, 11} and also for any natural number n ≥ 13, the lattice
Quo(n) of quasiorders of an n-element set has a four-element generating set of order
type 1 + 1 + 2. Shortly saying, if n ∈ {3, 6, 11}∪ {n ∈ N

+ : n ≥ 13}, then Quo(n)
is (1 + 1 + 2)-generated.

1.1. Outline. Subsection 1.2 of the present section contains the basic concepts
used in the paper. Subsection 1.3 gives a short historical survey. Subsection 1.4
is a comment on the joint authorship. Sections 2, the longest section, proves that
Quo(n) is (1 + 1 + 2)-generated for n ∈ {3, 6}. Finally, Section 3 proves the same
for n ∈ {11}∪ {n ∈ N

+ : n ≥ 13}. At the end of Section 3, Remark 3.4 summarizes
which Quo(n) are known to be (1 + 1 + 2)-generated and which are not.

1.2. Basic concepts. Given a set A, a relation ρ ⊆ A2 is a quasiorder (also known
as a preorder) if ρ is reflexive and transitive. With respect to set inclusion, the set
of all quasiorders of A form a lattice Quo(A) = 〈Quo(A),⊆〉, the quasiorder lattice

of A. The meet and the join of two elements in this lattice are the intersection and
the transitive closure of the union of the two elements, respectively. Symmetric
quasiorders are equivalences (also known as equivalence relations). The equivalences
of A also form a lattice, the equivalence lattice Equ(A) of A, which is a sublattice of
Quo(A). Since we are only interested in these lattices up to isomorphism, we will
often write Equ(|A|) and Quo(|A|) instead of Equ(A) and Quo(A), respectively.

A four-element subset X of a poset (partially ordered set) Y is a (1+1+2)-subset
of Y if exactly two elements of X are comparable. A subset X of a lattice L is a
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n 1 2 3 4 5 6 7

|Equ(n)| 1 2 5 15 52 203 877

|Quo(n)| 1 4 29 355 6 942 209 527 9 535 241

Table 1. |Equ(n)| and |Quo(n)| for n ∈ {1, 2, . . . , 7}

(1+1+2)-generating set of L if X is a (1+1+2)-subset of L that generates L. If a
lattice L has a (1+1+2)-generating set, then we say that L is (1+1+2)-generated.
Lattices having a four-element generating set are said to be four-generated.

1.3. Earlier results that motivate the present paper. In the seventies, Strietz
[13] and [14] proved that Equ(n) is four-generated for 3 ≤ n ∈ N

+ and it is (1+1+2)-
generated for 10 ≤ n ∈ N

+. In 1983, Zádori [16] gave an entirely new method to
find four-element generating sets of Equ(n) and extended Strietz’s result by proving
that Equ(n) is (1 + 1 + 2)-generated even for 7 ≤ n ∈ N

+.
Except for a (1+1+2)-generating set of Equ(6) given by Czédli and Oluoch [9],

Zádori’s method was the basis of all the more involved methods that were used
to find small generating sets of Equ(A) and Quo(A) in the last three and a half
decades; see Chajda and Czédli [1], Czédli [2], [3], and [4], Czédli [6], Czédli and
Kulin [8], and Takách [15] . Even the methods used by Dolgos [10] and Kulin [11]
show lots of similarity with Zádori’s method.

Four-generated quasiorder lattices were first given in Czédli [6]. Not much later,
Czédli and Kulin [8] proved even more: for an odd natural number n ≥ 13 and
also for an even number n ≥ 56, Quo(n) is (1 + 1 + 2)-generated. (Generating
sets of infinite complete quasiorder lattices have also been considered in [8] and in
some of the previously mentioned papers, but these details are not relevant here.)
Compared to Czédli and Kulin [8], the construction for a large n in this paper is
simpler (even for all n ≥ 13 odd an n ≥ 56 even), and we give twenty-four new
values of n such that Quo(n) is (1 + 1 + 2)-generated; see Remark 3.4.

While the argument showing that Quo(3) is (1+1+2)-generated is almost trivial,
see Corollary 2.5, the case of Quo(6) is different. The analogous problem for Equ(6)
was raised by Zádori [16], and it took thirty-seven years to prove that Equ(6) is
(1 + 1 + 2)-generated; see Czédli and Oluoch [9]. These thirty-seven years and
Table 1 explain that the lion’s share of the paper is Section 2, where we prove that
Quo(6) is (1 + 1 + 2)-generated.

1.4. Joint authorship. Sections 1 and 2 are joint work of the two authors. The
contribution of the first author to Section 2 is about sixty percent. Section 3 is due
to the second author.

2. A (1 + 1 + 2)-generating set of Quo(6)

For a set A and x, y ∈ A, we let ∆ = ∆A := {〈x, x〉 : x ∈ A} ∈ Quo(A),

q(x, y) := {〈x, y〉} ∪ ∆ and e(x, y) = e(y, x) := {〈x, y〉, 〈y, x〉} ∪ ∆. (2.1)

The atoms of Quo(A) and those of Equ(A) are exactly the q(x, y) and the e(x, y)
with x 6= y ∈ A. These two lattices are atomistic, that is, for every ρ ∈ Quo(A)
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and θ ∈ Equ(A),

ρ =
∨

{q(x, y) : 〈x, y〉 ∈ ρ} and θ =
∨

{e(x, y) : 〈x, y〉 ∈ θ}. (2.2)

Next, let A = {a, b, c, d, f, g}. We define the following quasiorders of A:

α := e(d, f) ∨ e(f, g), β := α ∨ e(b, c) ∨ q(b, a)

γ := e(a, b) ∨ e(a, d) ∨ e(c, f), δ := e(b, c) ∨ e(c, g) ∨ e(a, f).
(2.3)

Remark 2.1. We know from Czédli and Oluoch [9] that {α, β ∨ q(a, b), γ, δ} is a
(1 + 1 + 2)-generating set of Equ(6); see Proposition 2.1 and Figure 1 in [9] with
〈u1, u2, u3, u4, u5, u6〉 := 〈b, a, c, d, f, g〉.

While only six equations were necessary in [9] to prove this remark above, we
need twenty-five equations, (2.8)–(2.32), to prove the following theorem.

Theorem 2.2. The quasiorder lattice Quo(6) is (1 + 1 + 2)-generated. The set

{α, β, γ, δ}, see (2.3), is a (1+1+2)-generating set of Quo(6) = Quo({a, b, c, d, f, g}).

Proof. For ρ ∈ Quo(A), let Θ(ρ) := ρ ∩ ρ−1 = {〈x, y〉 : 〈x, y〉 ∈ ρ and 〈y, x〉 ∈ ρ} ∈
Equ(A). On the quotient set A/Θ(ρ), we define a relation ρ/Θ(ρ) as follows: for
Θ(ρ)-blocks x/Θ(ρ) and y/Θ(ρ) in A/Θ(ρ), we let

〈x/Θ(ρ), y/Θ(ρ)〉 ∈ ρ/Θ(ρ)
def
⇐⇒ 〈x, y〉 ∈ ρ. (2.4)

We know from the folklore that A/Θ(ρ) = 〈A/Θ(ρ), ρ/Θ(ρ)〉 is a poset. For several
choices of ρ, we will frequently draw the Hasse diagram of this poset in order to
give a visual description of ρ. In such a diagram, the Θ(ρ)-blocks are indicated by
rectangles. However, we adopt the following convention:

if (∀y ∈ A)
(

{〈x, y〉, 〈y, x〉} ∩ ρ 6= ∅ =⇒ x = y
)

,
then the singleton Θ(ρ)-block {x} is omitted from
the Hasse diagram of A/Θ(ρ).

(2.5)

A diagram reduced in the sense of (2.5) still determines ρ by (2.4). For example,
the quasiorders defined in (2.3) are visualized by diagrams as follows.

α : d, f, g , β :

a d, f, g

|

b, c

, γ : a, b, d c, f , δ : b, c, g a, f . (2.6)

The following observation is quite easy to prove.

Observation 2.3 (Disjoint Paths Principle). For k, s ∈ N
+ and a set B, let

x, y, u0 = x, u1, . . . , uk−1, uk = y, v0 = x, v1, . . . , vs−1, vs = y be elements of
B such that {u1, . . . , uk−1} ∩ {v1, . . . , vs−1} = ∅, |{u1, . . . , uk−1}| = k − 1, and
|{v1, . . . , vs−1}| = s − 1. For i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, let pi ∈ {e, q} and
rj ∈ {e, q}; see (2.1). Assume that there is an i′ ∈ {1, . . . , k} such that pi′ = q or
there is a j′ ∈ {1, . . . , s} such that rj′ = q. Then

q(x, y) =
(

k
∨

i=1

p(ui−1, ui)
)

∧
(

s
∨

j=1

r(vj−1, vj)
)

. (2.7)
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Similar observations have previously been formulated in Czédli [2], [6, Lemma
2.1], Czédli and Kulin [4, Lemma 2.5], and Kulin [11, Lemma 2.2], but Obser-
vation 2.3 is slightly stronger than its precursors. To prove it, let ρ denote the
quasiorder given on the right of the equality sign in (2.7). Since q(x, y) ≤ ρ ≤
(
∨k

i=1 e(ui−1, ui)
)

∧
(
∨s

j=1 e(vj−1, vj)
)

= e(x, y) and 〈y, x〉 /∈ ρ by the existence of

i′ or j′ if x 6= y, we obtain (2.7) and the validity of Observation 2.3. Note that, for
brevity, we will often reference (2.7) rather than Observation 2.3.

Next, resuming the proof of Theorem 2.2, let S denote the sublattice generated
by {α, β, γ, δ} in Quo(6) = Quo({a, b, c, d, f, g}). To see that (2.8)–(2.32) below give
quasiorders belonging to S, we are going to reference the relevant earlier members
of S except possibly (2.6). The equalities in (2.8)–(2.32) will follow either from
(2.7) or by using the diagrams of the meetands.

e(b, c) = β ∧ δ by (2.6);

a d, f, g

|

b, c

∧ b, c, g a, f . (2.8)

q(b, a) = β ∧ γ by (2.6);

a d, f, g

|

b, c

∧ a, b, d c, f . (2.9)

e(d, f) = α ∧ (γ ∨ e(b, c)) by
(2.6) and (2.8);

d, f, g ∧ a, b, d, c, f . (2.10)

q(g, f) = α ∧ (δ ∨ q(b, a)) by
(2.6) and (2.9);

d, f, g ∧

a, f

|

b, c, g

. (2.11)

e(a, d) = γ ∧ (e(d, f) ∨ δ) by
(2.6) and (2.10);

a, b, d c, f ∧ b, c, g a, f, d . (2.12)

q(g, c) = δ ∧ (q(g, f) ∨ γ) by
(2.6) and (2.11);

b, c, g a, f ∧

a, b, d c, f

|
g

. (2.13)

e(a, f) = δ∧ (e(a, d)∨e(d, f))
by (2.6), (2.12), and (2.10);

b, c, g a, f ∧ a, d, f . (2.14)

q(g, a) = (q(g, f) ∨ e(f, a)) ∧
(q(g, c) ∨ e(c, b) ∨ q(b, a))

by (2.7), (2.11), (2.14), (2.13),
(2.8), and (2.9).

(2.15)

q(g, d) = (q(g, f) ∨ e(f, d)) ∧
(q(g, a) ∨ e(a, d))

by (2.7), (2.11), (2.10), (2.15),
and (2.12).

(2.16)

q(b, d) = (q(b, a) ∨ e(a, d)) ∧
(δ ∨ q(g, d)) by (2.9), (2.12),
and (2.16);

a, d

|

b

∧
d
|

b, c, g a, f

. (2.17)
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q(g, b) = (q(g, c) ∨ e(c, b)) ∧
(q(g, d) ∨ γ) by (2.13), (2.8),
and (2.16);

c, b

|
g

∧

a, b, d c, f

|
g

. (2.18)

q(b, f) = (q(b, a) ∨ e(a, f)) ∧
(q(b, d) ∨ e(d, f))

by (2.7), (2.9), (2.14), (2.17),
and (2.10).

(2.19)

q(c, f) = (e(c, b)∨ q(b, f))∧ γ
by (2.8) and (2.19);

f

|

c, b

∧ a, b, d c, f . (2.20)

q(b, c) = e(b, c) ∧ (q(b, f) ∨ γ)
by (2.8) and (2.19);

b, c ∧

c, f

|

a, b, d

. (2.21)

q(d, f) = e(d, f)∧(q(b, f)∨γ)
by (2.10) and (2.19);

d, f ∧

c, f

|

a, b, d

. (2.22)

q(a, f) = e(a, f)∧(q(b, f)∨γ)
by (2.14) and (2.19);

a, f ∧

c, f

|

a, b, d

. (2.23)

q(d, a) = e(d, a) ∧ (q(d, f) ∨
e(f, a))

by (2.7), (2.12), (2.22), and
(2.14).

(2.24)

q(f, a) = e(f, a) ∧ (e(f, d) ∨
q(d, a))

by (2.7), (2.14), (2.10), and
(2.24).

(2.25)

q(b, g) = (q(b, f) ∨ α) ∧ δ by
(2.19);

d, f, g

|

b

∧ b, c, g a, f . (2.26)

q(a, d) = e(a, d) ∧ (q(a, f) ∨
e(f, d))

by (2.7), (2.12), (2.23), and
(2.10).

(2.27)

q(f, d) = e(f, d) ∧ (q(f, a) ∨
q(a, d))

by (2.7), (2.10), (2.25), and
(2.27).

(2.28)

q(c, g) = (e(c, b) ∨ q(b, g)) ∧
(q(c, f) ∨ α) by (2.8), (2.26),
and (2.20);

g

|

c, b

∧
d, f, g

|
c

. (2.29)

q(c, b) = (q(c, g) ∨ q(g, b)) ∧
e(c, b)

by (2.7), (2.29), (2.18), and
(2.8).

(2.30)

q(f, g) = α ∧ (γ ∨ q(c, g)) by
(2.29);

d, f, g ∧

g

|

a, b, d c, f

. (2.31)
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q(a, b) = (q(a, f) ∨ q(f, g) ∨
q(g, b)) ∧ γ by (2.23), (2.31),
and (2.18);

b
|
g

|

f

|
a

∧ a, b, d c, f . (2.32)

Since the twelve atoms of Quo(6) = Quo(A) that are indicated in Figure 1 belong
to S, (2.7) yields that q(x, y) ∈ S for all x, y ∈ A. Hence, S = Quo(A) by (2.2).
Since {α, β, γ, δ} is a (1 + 1 + 2)-subset, the proof of Theorem 2.2 is complete. �

Figure 1. Twelve atoms of Quo(A)

The following lemma is implicit in Kulin [11, proof of Thm. 2.1(i)]. For a 6= b,
Equ({a, b})∪ {q(a, b)} does not generate Quo({a, b}); so |A| ≥ 3 will be essential.

Lemma 2.4 (Kulin [11]). If A is a set consisting of at least three elements and ρ
belongs to Quo(A) \ Equ(A), then Equ(A) ∪ {ρ} generates the lattice Quo(A).

Based on Observation 2.3, we give a slightly new proof for the particular case
when A is finite.

Proof of Lemma 2.4. We can assume that A consists of the vertices a0, a1, . . . , an−1,
listed counterclockwise, of a regular n-gon such that 〈a0, a1〉 ∈ ρ but 〈a1, a0〉 /∈ ρ. If
i, j ∈ {0, . . . , n−1} and j ≡ i+1 (mod n), then e(ai, aj), q(ai, aj), and q(aj , ai) are
called an undirected edge, a counterclockwise edge, and a clockwise edge of the n-
gon, respectively. Let S be denote sublattice of Quo(A) generated by Equ(A)∪{ρ}.
Then all the undirected edges of the n-gon are in S. (2.7) yields that if all the
counterclockwise edges and all the clockwise edges of the n-gon are in S, then all
the atoms of Quo(A) are in S and so S = Quo(A) by (2.2). Also, (2.7) implies
that if the counterclockwise version of an (undirected) edge belongs to S, then
the clockwise versions of all other edges are in S. Similarly with “clockwise” and
”counterclockwise” interchanged. Consequently, if at least one directed edge is in S,
then all directed edges are in S and S = Quo(A). Thus, q(a0, a1) = e(a0, a1)∧ρ ∈ S
completes the proof. �
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Corollary 2.5. Quo(3) is (1 + 1 + 2)-generated.

Proof. Since Equ(3) = Equ({a, b, c}) is generated by the set {e(a, b), e(b, c), e(c, a)}
of its atoms, {q(a, b), e(a, b), e(b, c), e(c, a)} is a (1 + 1 + 2)-generating set of the
lattice Quo(3) = Quo({a, b, c}) by Lemma 2.4. �

3. (1 + 1 + 2)-generating sets of Quo(n) for n = 11 and n ≥ 13

Definition 3.1 (Zádori configuration). For 2 ≤ k ∈ N
+, let a0, a1, . . . , ak, b0, b1,

. . . , bk−1 be pairwise distinct elements of a finite set B. Using (2.1), let

α =

k
∨

i=1

e(ai−1, ai) ∨
k−1
∨

i=1

e(bi−1, bi), β =

k−1
∨

i=0

e(ai, bi)

γ =

k
∨

i=1

e(ai, bi−1), ε0 = e(a0, b0), and η = e(ak, bk−1);

(3.1)

they are members of Equ(B). The system of these 2k + 1 elements and five equiv-
alences of B is called a Zádori configuration of (odd) size 2k + 1 in B. The set

A := {a0, . . . , ak, b0, . . . , bk−1} (3.2)

is the support of this configuration.

A Zádori configuration is easy to visualize; following Zádori’s original drawing,
we do this with the help of a graph in the following way. We say that a path in a
graph is horizontal, is of slope 1, and is of slope −1 if all of the edges constituting
the path are such. For vertices x and y in the graph,

〈x, y〉 ∈ α
def
⇐⇒ there is a horizontal path from x to y;

〈x, y〉 ∈ β
def
⇐⇒ there is a path of slope −1 from x to y;

〈x, y〉 ∈ γ
def
⇐⇒ there is a path of slope 1 from x to y;

(3.3)

note that a path of length 0 is simultaneously of slope 1 and of slope −1, and it is
also horizontal. Also, note that (3.3) complies with (3.1).

For example, a Zádori configuration of size 11 is given in Figure 2; disregard the
dashed curved edges for a while. Some of the horizontal edges are labeled by α but,
to avoid crowdedness, not all. The same convention applies for edges of slope −1
and β, and edges of slope 1 and γ.

Given a Zádori configuration in B with support set A, see (3.1)–(3.2), we define

Equ(BeA) := {θ ∈ Equ(B) : if 〈x, y〉 ∈ θ and {x, y} 6⊆ A, then x = y}. (3.4)

In Zádori [16], this configuration and the following lemma assumed that B = A.
However, this assumption is not a real restriction since we have an isomorphism

Equ(BeA) → Equ(A) defined by θ 7→ θ ∩ (A × A). (3.5)

Hence, the following lemma follows from its original version proved in Zádori [16].

Lemma 3.2 (Zádori [16]). Assume that a Zádori configuration of size 2k + 1
with support A is given in B; see (3.1) and (3.2). Then {α, β, γ, ε0, ηk} gener-

ates Equ(BeA).

Note that this lemma is explicitly stated in Czédli [7] and Czédli and Kulin [8].
The aim of the present section is to prove the following theorem.
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Theorem 3.3. Let n ∈ N
+ be a natural number. If n = 11 or n ≥ 13, then the

quasiorder lattice Quo(n) is (1 + 1 + 2)-generated.

Figure 2. {α, β, γ, δ} is a (1 + 1 + 2)-generating set of Quo(11)

Proof. First, to prove the statement for an odd number n. Assume that n =
2k+1 ≥ 11. Take a Zádori configuration of size 2k+1 as described in Definition 3.1.
Similarly to (3.4), we let

Quo(BeA) := {ρ ∈ Quo(B) : if 〈x, y〉 ∈ ρ and {x, y} 6⊆ A, then x = y}. (3.6)

Since the map

Quo(BeA) → Quo(A) defined by ρ 7→ ρ ∩ (A × A) (3.7)

is an isomorphism and |A| = 2k + 1 = n, it suffices to show that Quo(BeA) is
(1 + 1 + 2)-generated. Define the following members of Quo(BeA):

δ∗ := e(a0, ak) ∨ e(b0, bk−1), δ := δ∗ ∨ q(b1, bk−2), and

δ+ := δ∗ ∨ e(b1, bk−2) = δ ∨ q(bk−2, b1).
(3.8)

The quasiorders δ∗ and δ+ are equivalences but δ is not. For n = 11, δ is visualized
by dashed curved edges in Figure 2. In addition to (3.3) and complying with (3.8),
our convention for δ in Figure 2 (and later in Figure 3) is that

〈x, y〉 ∈ δ
def
⇐⇒ there is a directed path

of curved dashed edges from x to y;
(3.9)

the edges without arrow are directed in both ways. Again, paths of length zero are
permitted. By the peculiarities of δ, the path in (3.9) has to be of length 1 or 0.

Letting S denote the sublattice generated by {α, β, γ, δ} in Quo(BeA), we are
going to show that S = Quo(BeA). Observe that

the blocks of (δ+ ∨ γ) are {a0, a1, ak, b0, bk−1},
{a2, ak−1, b1, bk−2}, and the two-element sets
{ai, bi−1} such that 3 ≤ i ≤ k − 2.

(3.10)

Hence, we obtain that β ∧ (δ+ ∨ γ) = e(a0, b0). Using that the lattice operations
are isotone and 〈a0, b0〉 belongs to the equivalence β ∧ (δ∗ ∨ γ), it follows from

e(a0, b0) ≤ β ∧ (δ∗ ∨ γ) ≤ β ∧ (δ ∨ γ) ≤ β ∧ (δ+ ∨ γ) = e(a0, b0) (3.11)

that ε0 := e(a0, b0) = β ∧ (δ ∨ γ) ∈ S.
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If we disregard δ (but keep δ∗ and δ+), then β and γ play a symmetric role.
This corresponds to the symmetry of Figure 2 across a vertical axis, if the arrow is
disregarded. Hence, γ ∧ (δ+∨β) = e(ak, bk−1) and e(ak, bk−1) ≤ γ ∧ (δ∗ ∨ δ). Thus,

e(ak, bk−1) ≤ γ ∧ (δ∗ ∨ β) ≤ γ ∧ (δ ∨ β) ≤ γ ∧ (δ+ ∨ β) = e(ak, bk−1). (3.12)

This implies that

ηk := e(ak, bk−1) = γ ∧ (δ ∨ β) ∈ S.

Therefore, Equ(BeA) ⊆ S by Lemma 3.2. Since the restriction of the isomor-
phism given in (3.7) to Equ(BeA) is the isomorphism given in (3.5), it follows from
Lemma 2.4, Equ(BeA) ⊆ S, and δ ∈ Quo(BeA) \ Equ(BeA) that S = Quo(BeA).
Furthermore, δ < α and {α, β, γ, δ} is a (1 + 1 + 2)-subset of Quo(BeA). Thus,

{α, β, γ, δ} is a (1 + 1 + 2)-generating set of Quo(BeA). (3.13)

Finally, using that Quo(BeA) ∼= Quo(A) by (3.7), or letting B := A when Quo(BeA) =
Quo(A), the theorem for n odd follows from (3.13).

Figure 3. {α, β], γ], δ} is a (1 + 1 + 2)-generating set of Quo(14)

Next, we assume that n ≥ 14 is an even number. We let k := (n−2)/2 ≥ 6. With
this k, we use the same Zádori configuration as in the first part of the proof (where
n was odd), but now we specify that B = A∪{c} where c is a new element outside
A. So |B| = |A| + 1 = 2k + 2 = n. We still need α, β, γ, δ∗, δ, δ+ ∈ Quo(BeA)
defined in (3.1) and (3.8). Furthermore, we define the following two members of
Quo(B):

β] := β ∨ e(b1, c) and γ] := γ ∨ e(bk−3, c). (3.14)

The assumption k ≥ 6 guarantees that (3.14) makes sense. As opposed to the
previously defined quasiorders of Quo(BeA), now β] and γ] are not in Quo(BeA).
Note that the “distance” (k − 2) − 1 between the members of the two-element
δ+-block {b1, bk−2} as well as that between the “suspension points” b1 and bk−3

of c are at least 2 and the δ-block bk−3/δ is a singleton; this is why we had to
assume that n ≥ 14, that is, k ≥ 6. For the smallest value, n = 14, the situation
is visualized by Figure 3, where the conventions formulated in (3.3) and (3.9) are
valid for 〈α, β], γ], δ〉 instead of 〈α, β, γ, δ〉.

Let S be the sublattice generated by the (1+1+2)-subset {α, β], γ], δ} of Quo(B).
We are going to show that S = Quo(B). Similarly to (3.10), we observe that

the blocks of (δ+ ∨ γ]) are {a0, a1, ak, b0, bk−1},
{a2, ak−1, b1, bk−2}, {ak−2, bk−3, c}, and the two-
element sets {ai, bi−1} such that 3 ≤ i ≤ k − 3.

(3.15)
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Hence, similarly to the three sentences containing (3.10) and (3.11), we have that
β] ∧ (δ+ ∨ γ]) = e(a0, b0). Thus,

e(a0, b0) ≤ β] ∧ (δ∗ ∨ γ]) ≤ β] ∧ (δ ∨ γ]) ≤ β] ∧ (δ+ ∨ γ]) = e(a0, b0), (3.16)

implying that ε0 := e(a0, b0) = β]∧ (δ∨γ]) ∈ S. Observe that β = (ε0∨α)∧β] ∈ S
and γ = (ε0 ∨ α) ∧ γ] ∈ S. Thus, {α, β, γ, δ} ⊆ S, and it follows from (3.13) that

Quo(BeA) ⊆ S. (3.17)

In particular, e(b1, bk−3) ∈ S. Hence, using that the only (e(b1, bk−3)∨γ)-block that
is not a γ-block is {a2, ak−2, b1, bk−3, c}, we obtain that e(b1, c) = β ∧ (e(b1, bk−3)∨
γ) ∈ S. Similarly, using that e(b1, bk−3) ∈ S by (3.17) and the only (e(b1, bk−3)∨β)-
block that is not a β-block is {a1, ak−3, b1, bk−3, c}, we obtain that e(bk−3, c) =
γ ∧ (e(b1, bk−3) ∨ β) ∈ S. If x ∈ A \ {b1, bk−3}, then

e(x, c) =
(

e(x, b1) ∨ e(b1, c)
)

∧
(

e(x, bk−3) ∨ e(bk−3, c)
)

∈ S (3.18)

by (3.17), e(b1, c) ∈ S, and e(bk−3, c) ∈ S. We obtain from e(b1, c) ∈ S, e(bk−3, c) ∈
S, and (3.18) that e(x, c) ∈ S for all x ∈ A. This fact and (3.17) yield that
S contains all atoms of Equ(B). Hence, (2.2) gives that Equ(B) ⊆ S. Finally,
δ ∈ S\Equ(B) and Lemma 2.4 (applied to B instead of A) imply that S = Quo(B).
So Quo(B) is generated by its (1+1+2)-subset {α, β], γ], δ} and |B| = 2k +2 = n,
completing the proof of Theorem 3.3. �

Remark 3.4. Now, at the end of this writing, the following is known on the
existence of (1 + 1 + 2)-generating sets of Quo(n) for n ∈ N

+. As new results, this
paper proves that Quo(n) is (1 + 1 + 2)-generated for

n ∈ {3, 6, 11}∪ {14, 16, 18, 20, 22, . . . , 50, 52, 54}; (3.19)

that is, for twenty-four new values of n; see Theorems 2.2 and 3.3 and Corollary 2.5.
We know that, trivially, Quo(1) and Quo(2) are not (1+1+2)-generated. In addition
to (3.19), Quo(n) is (1 + 1 + 2)-generated for all n ≥ 13; see Theorem 3.3. For

n ∈ {4, 5, 7, 8, 9, 10, 12}, (3.20)

we do not know whether Quo(n) is (1 + 1 + 2)-generated.
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