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Abstract. Let τ be a nonempty similarity type of algebras. A set H of τ -
algebras is called rigid with respect to embeddability, if whenever A, B ∈ H

and ϕ : A → B is an embedding, then A = B and ϕ is the identity map.
We prove that if τ is a nonempty similarity type and m is a cardinal such

that no inaccessible cardinal is smaller than or equal to m, then there exists
a set H of τ -algebras such that H is rigid with respect to embeddability

and |H | = m. This result strengthens a result proved by the second author
in 1980.

1. Introduction and our results

An infinite cardinal m is called inaccessible (cf. any standard textbook, e.g.,
Levy [9]) if the following three conditions hold:

• ℵ0 < m;
• for all cardinals n, if n < m, then 2n < m;
• m is a regular cardinal, that is, for every set I of cardinals, if |I| < m

and all members of I are smaller than m, then
∑

n∈I n < m.

Note that there exists a model of set theory in which there exists no inac-
cessible cardinal; see Kuratowski [8]. In this model, our theorems hold for all
cardinals m.

Before formulating our first theorem, we also need the following concept. Let
τ be a similarity type of algebras. (For example, if τ consists of a single binary
operation, then we speak about the similarity type of groupoids.)
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Definition 1.1. Let H be a set or a class of algebras of the similarity type τ .
Then H is said to be rigid with respect to embeddability (e-rigid, for short), if
whenever A,B ∈ H , ϕ : A → B is an embedding (that is, injective homomor-
phism), then A = B and ϕ is the identity map idA : A → A, x 7→ x. We say
that A is an e-rigid algebra if it is an algebra and {A} is an e-rigid set.

Let us remark that this is a very strong condition even if H is a singleton
set. Note also that category theorists would call an e-rigid H as a discrete full
subcategory of the category of τ -algebras with embeddings. Further, note that
the concept of e-rigidity is interesting not only for algebras; see Primavesi and
Thompson [10] for an example.

Our first goal is to prove the following statement.

Theorem 1.2. Let τ be a similarity type of algebras containing an at least unary

operation, and let m be a cardinal number. If there is no inaccessible cardinal

k such that k ≤ m, then there exists an e-rigid set H of τ -algebras such that

|H | = m.

If τ consists of a single unary operation f , then τ -algebras are called mo-

nounary algebras (for basic notions see [6]). A monounary algebra A = 〈A, f〉 is
connected, if for each 〈x, y〉 ∈ A2 there exists a pair 〈i, j〉 of nonnegative integers
such that f i(x) = fj(y). If a connected monounary algebra has an idempo-
tent element, that is, an element x ∈ A with f(x) = x, then this element is
uniquely determined and it is called the top of A. The top of A will be denoted
top(A). A monounary algebra of this form is said to be a root algebra (cf. [6]
and Jónsson [7]). For x ∈ A we denote f−1(x) = {y ∈ A : f(y) = x}.

We assert that

Theorem 1.3. Let m be a cardinal such that there is no inaccessible cardinal k

with k ≤ m. Then there exists an e-rigid set H of monounary algebras such that

|H | = m.

Actually, we prove slightly more in the sense that H will consist of root
monounary algebras. Note that both theorems strengthen [5] by the second
author, where smaller (but still very large) cardinals are considered.

2. Proofs and auxiliary statements

First of all, observe that Theorem 1.2 is a straightforward consequence of
Theorem 1.3 according to the following argument. Let m be as in Theorem 1.2,
and let g be an operation symbol in τ . Take an e-rigid set H provided by
Theorem 1.3. We can turn the monounary algebras 〈A, f〉 ∈ H to τ -algebras
by defining g(x1, x2, . . . ) = f(x1) and letting the rest of τ -operations act as the
first projection. This way H turns into an e-rigid set of τ -algebras.
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Armed with the observation above, in the rest of paper, it suffices to deal
with Theorem 1.3 and monounary algebras.

Replacing “embedding” by “isomorphism” in Definition 1.1, we obtain the
concept of rigidity (without the prefix “e-”). In connection with our results,
we mention that, by Comer and Le Tourneau [1], for every nonempty similarity
type τ and each cardinal m, there exists a rigid set of τ -algebras consisting of
m members. Equivalently, they proved that for each m, there is a τ -algebra
A such that |A| ≥ m and A has no nontrivial automorphism. Note, however,
that it is more difficult to find e-rigid sets than rigid ones, and that the theory
of monounary algebras in itself brings new interesting achievements, like [2],
Halušková [3], and Horváth, Kátai-Urbán, Pach, Pongrácz, Pluhár and Szabó [4].

The proof of Theorem 1.3 requires two constructions; they are illustrated in
Figures 1 and 2. Note that we depict our monounary algebras as Hasse diagrams;
the action of the operation to an element x is the unique upper cover of x if this
cover exists, and it is x otherwise.

Construction 2.1. Let X = 〈X, fX〉 and Y = 〈Y, fY 〉 be disjoint root algebras,
and let t, u1, u2, w1, w2, w3 be fixed elements. (Now we assume that distinct
symbols represent distinct elements and that they do not belong to X ∪ Y .)
We denote by U(X, Y ) = 〈U(X, Y ), g〉 the unique root monounary algebra that
satisfies the following four requirements:

(1) U(X, Y ) = X ∪ Y ∪ {t, u1, u2, w1, w2, w3};
(2) g(x) = fX(x), g(y) = fY (y) for each x ∈ X, x 6= top(X), y ∈ Y ,

y 6= top(Y );
(3) g(top(X)) = w1, g(top(Y )) = w2;
(4) top(U(X, Y )) = t = g(t) = g(u1) = g(u2), g(w1) = g(w3) = u1, g(w2) =

u2.

Figure 1. An example for U(X, Y )

We are only interested in algebras up to isomorphism. This allows us to apply
Constructions 2.1 and 2.4 even if the monounary algebras in question are not
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(pairwise) disjoint: first we take disjoint isomorphic copies, and the we apply
the constructions to these disjoint copies.

Lemma 2.2. Let X = 〈X, fX〉, Y = 〈Y, fY 〉 , X = 〈X, fX〉, and Y = 〈Y , fY 〉
be root algebras. Then ϕ is an embedding of U = 〈U, g〉 = U(X, Y ) into U =

〈U, g〉 = U(X, Y ) if and only if the restriction of ϕ to X, denoted by ϕeX , is an

embedding of X into X, ϕeY is an embedding of Y into Y , ϕ(top(X)) = top(X),
ϕ(top(Y )) = top(Y ), and ϕe{t,u1,u2,w1,w2,w3} is the identity map.

Proof. Suppose that ϕ is an embedding of U into U . The mapping ϕ is a ho-
momorphism, thus ϕ(t) = ϕ(g(t)) = g(ϕ(t)), and we obtain ϕ(t) = t. Next,
{u1, u2} ⊆ g−1(t) yields {ϕ(u1), ϕ(u2)} ⊆ g −1(ϕ(t)) = g −1(t) = {u1, u2, t},
and by injectivity, {ϕ(u1), ϕ(u2)} = {u1, u2}. From |g−1(u1)| = 2 = |g−1(u1)|,
|g−1(u2)| = 1 = |g −1(u2)| we get ϕ(u1) = u1, ϕ(u2) = u2. Similarly, {w1, w3} ⊆
g−1(u1) = g −1(ϕ(u1)) = {ϕ(w1), ϕ(w3)}, |g−1(w1)| = 1 = |g −1(w1)|, g−1(w3) =
∅ = g −1(w3), therefore ϕ(w1) = w1, ϕ(w3) = w3. Then it is clear that
ϕ(w2) = w2, ϕ(top(X)) = top(X) and ϕ(top(Y )) = top(Y ). Since X in U

is characterized by X = {x ∈ U : (∃n ∈ N0)(f
n
X(x) = top(X))} and similarly for

Y , X and Y , it follows that ϕ(X) ⊆ X and ϕ(Y ) ⊆ Y . Therefore ϕeX is an
embedding of X into X and ϕeY is an embedding of Y into Y .

The converse implication is obvious. �

From Lemma 2.2 we easily obtain

Corollary 2.3. If {Xi : i ∈ I} and {Yi : i ∈ I} are e-rigid sets of root mo-

nounary algebras, then {U(Xi, Yi) : i ∈ I} is also an e-rigid set. In particular,

if X and Y are e-rigid root monounary algebras, then so is U(X, Y ).

Construction 2.4. Let Xi = 〈Xi, fi〉, i ∈ I, be a set of pairwise disjoint root
algebras and let t be a fixed element belonging to none of them. We denote by
∑t

i∈I Xi the root algebra 〈X, f〉 defined by X =
⋃

i∈I Xi ∪ {t} and

f(x) =

{

fi(x) if x ∈ Xi \ {top(Xi)}, i ∈ I,

t otherwise.

Lemma 2.5. Let Xi = 〈Xi, fi〉, i ∈ I, and Yj = 〈Yj , fj〉, j ∈ J , be root algebras.

Then
∑t

i∈I Xi is embeddable into
∑t

j∈J Yj if and only if there exists an injective

map ψ : I → J such that, for all i ∈ I, Xi is embeddable into Yψ(i).

Proof. The straightforward proof is analogous to the proof of Lemma 2.2; in
fact, it is much easier. �

Corollary 2.6. Let {Xi = 〈Xi, fi〉 : i ∈ I} be a nonempty e-rigid set of root

algebras. Assume that K is an antichain in the powerset lattice 〈P (I),⊆〉. Then

{
∑t
i∈Z Xi : Z ∈ K} is an e-rigid set of root algebras.
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Figure 2. An example for the sum construct; here X1 = X

and X2 = Y are given in Figure 1

The following lemma is well-known; we only give its short proof for the
reader’s convenience.

Lemma 2.7. Let I be an infinite set. Then 〈P (I),⊆〉 contains an antichain of

size 2|I|.

Proof. Clearly, there are I1, I2 ⊆ I such that I1 ∩ I2 = ∅, I1 ∪ I2 = I and |I1| =
|I2|. Pick a bijection ψ : I1 → I2, and observe that {X∪(I2\ψ(X)) : X ∈ P (I1)}
is an antichain. �

Now we are ready to prove our theorem.

Proof of Theorem 1.3. Suppose, for a contradiction, that the theorem fails. Let
m be the smallest cardinal witnessing this failure.

There are many easy ways to construct a countable e-rigid set. E.g., for
2 < n ∈ N, take An = {0, 1, . . . , n} and put fn(x) = x−1 for x = 1, 2, . . . , n−1,
fn(0) = 0, fn(n) = n− 3. The An for the first few n are given in Figure 3. Note
that all monounary algebras in our figures are e-rigid.

Figure 3. A countably infinite e-rigid set

Therefore, ℵ0 < m. Since m witnesses a failure, m is not inaccessible. Hence,
there are two cases: m ≤ 2k for some cardinal k such that k < m, or there is a
set I of cardinals such that |I| < m, n < m for all n ∈ I, but m ≤

∑

n∈I n.
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First, assume that m ≤ 2k. By the assumption, there exists an e-rigid set
consisting of k root algebras. Combining Corollary 2.6 and Lemma 2.7, we obtain
an e-rigid set of size 2k. Since every subset of and e-rigid set is also e-rigid and
m ≤ 2k, we also have an e-rigid set of size m, which is a contradiction.

Second, assume that we have a set I of cardinals such that |I| < m, n < m for
each n ∈ I and m ≤

∑

n∈I n. Basic cardinal arithmetics yields that m =
∑

n∈I n.
Let Jn denote an (index) set of size n, for n ∈ I. In view of the minimality of m,

there exist e-rigid sets of root algebras F = {An : n ∈ I} and Gn = {B
(n)
j : j ∈

Jn} for each n ∈ I. We assert that

H = {U(An, B
(n)
j ) : n ∈ I, j ∈ Jn}

is an e-rigid set. To show this, assume that U(An, B
(n)
j ) is embeddable by ϕ into

U(An, B
(n)

j
). It follows from Lemma 2.1 that ϕeAn

is an An → An isomorphism.

Since F is e-rigid, n = n. Applying Lemma 2.1 again and using the e-rigidity of
Gn, we obtain that ϕ is the identity map. Hence, H is an e-rigid set. Finally,

|H | =
∑

n∈I

|Jn| =
∑

n∈I

n = m,

which contradicts the assumption that m is a failure. �

Concluding remarks. It remains an open problem whether all cardinals, includ-
ing the inaccessible ones, are the cardinalities of e-rigid sets of monounary al-
gebras. Although the e-rigid sets we have constructed consist of very special
(namely, connected root) monounary algebras, the methods presented in the pa-
per do not lead to inaccessible cardinals even if arbitrary monounary algebras
are considered.
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[3] HALUŠKOVÁ, E.: On inverse limits of monounary algebras, Mathematica Slovaca (to

appear).
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