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Abstract. The Swing Lemma, due to G. Grätzer for slim semimodular lat-
tices and extended by G. Czédli, G. Grätzer, and H. Lakser for all planar

semimodular lattices, describes the congruence generated by a prime interval
in an efficient way. Here we present a new, direct proof of this lemma, which

is shorter than the earlier ones. Also, motivated by the Swing Lemma and

mechanical pinball games with flippers, we construct an online game called
Swing Lattice Game.

1. Introduction

The last decade has witnessed a rapid development of the theory of planar semi-
modular lattices; see the bibliographic section in the present paper and the many
additional papers referenced in the book chapter Czédli and Grätzer [7]. Since every
planar semimodular lattice can be obtained from a slim semimodular lattice, par-
ticular attention was paid to slim (hence necessarily planar) semimodular lattices;
definitions will be given later.

First target: the Swing Lemma. A finite lattice L is planar if it has a planar
Hasse-diagram. We will assume that a planar diagram of our lattice is fixed some-
how. The edges of a planar semimodular lattice divide its diagram into quadrangles,
which we call 4-cells. For a prime interval p = [a, b] of L, that is, for an edge of the
diagram, we denote a and b by 0p and 1p, respectively. The least congruence col-
lapsing (the two elements of) a prime interval p is denoted by con(p) or con(0p, 1p).
In order to characterize whether con(p) collapses another prime interval q or not,
we need the following definition.

Definition 1.1. Let r and s be distinct prime intervals of a 4-cell S of a planar
semimodular lattice.

(i) If r and s are opposite sides of S then r is cell-perspective to s.
(ii) If 1r has at least three lover covers, 1r = 1s, and 0s is neither the leftmost,

nor the rightmost lower cover of 1r, then r swings to s.
(iii) If 0r has at least three covers, 0r = 0s, and 1s is neither the leftmost, nor

the rightmost cover of 0r, then r tilts to s.
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Figure 1. A GS-sequence from p to q in a planar semimodular lattice

For n ∈ {0, 1, 2, . . .}, a sequence

(1.1) ~r : r0, r1, . . . , rn

of prime intervals is called a GS-sequence if for each i ∈ {1, . . . , n}, ri−1 is cell-
perspective to, swings to, or tilts to ri. (“GS” is an acronym for “General Swing”;
see Lemma 1.2 later.) In (1.1), r0 and rn play a distinguished role, and we will say
that ~r is a GS-sequence from r0 to rn. It is cyclic if r0 = rn.

While (i) describes a symmetric relation, (ii) and (iii) do not. To see some
examples, consider the planar semimodular lattice in Figure 1. Then r11 and r12

are cell-perspective to each other, r2 and r3 swing to each other, so do r16 and r17;
r8 tilts to r9, and r6 swings to r7. However, r9 does not tilt to r8 and r7 does not
swing to r6. The sequence r0, r1, . . . , r24 is a GS-sequence from p to q, and it
remains a GS-sequence if we omit r7 and r8. In Figure 2, the sequence r0, r1, . . . ,
r14 = r0 is a cyclic GS-sequence in M6.

The following result was proved in Czédli, Grätzer, and Lakser [8].

General Swing Lemma 1.2 (Czédli, Grätzer, and Lakser [8]). Let L be a planar

semimodular lattice, and let p and q be prime intervals of L. Then 〈0q, 1q〉 ∈ con(p)
if and only if there is a GS-sequence from p to q.

As a bit stronger but more technical variant of the General Swing Lemma, we
will formulate and prove Theorem 2.2. Although the proof of the General Swing
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Figure 2. Cyclic SL-sequences in M3 and M6

Lemma in Grätzer, Czédli, and Lakser [8] is short, it relies on a particular case,
which we will call Swing Lemma without the adjective “general”; see Section 3.
The Swing Lemma is due to Grätzer [15] and there is another proof in Czédli [6],
but both these papers give long and complicated proofs. Furthermore, the proof
in [8] uses a nontrivial lemma from Czédli [3]. So, if [15] (or the relevant part of
[6]) and the three pages from [3] are also counted, the proof of the General Swing
Lemma is quite long. Our main goal is to give a direct and shorter proof.

Second target: the Swing Lattice Game. Section 5 describes our online game
called Swing Lattice Game; it is available from the authors’ websites. In addition to
the General Swing Lemma, the game is also motivated by mechanical pinball games
with flippers. This paper is dedicated to Professor Emeritus Béla Csákány, who
is not only a highly appreciated algebraist and the scientific father or grandfather
of almost all algebraists in Szeged, but has interest in mathematical games. This
interest is witnessed by Csákány [2] and Csákány and Juhász [1].

2. Preliminaries and a short survey

This section gives a short survey of planar semimodular lattices; see Czédli and
Grätzer [7] for a more extensive survey. For a recent general introduction to lattices,
the reader can turn to the “A Brief Introduction to Lattices” part of Grätzer [16].

A lattice L is semimodular if x � y ⇒ x∨z � y∨z for all x, y, z ∈ L. A sublattice
S of L is a cover-preserving sublattice if for any a, b ∈ S such that a ≺S b, we have
that a ≺L b. A diamond is an M3 (sub)lattice; see Figure 2. A lattice L is slim

if it contains no cover-preserving diamond and it is planar. This concept is due to
Grätzer and Knapp [17]. It is motivated by Czédli and Schmidt [10] and Czédli
and Grätzer [7, Lemma 3-4.1] that, as opposed to [17], we include planarity in the
definition of slimness. For example, by Czédli and Grätzer [7, Theorem 3-4.3] or
by Proposition 2.3, Figure 3 is a slim semimodular lattice. Also, if we omit the
four black-filled elements from the planar semimodular lattice given in Figure 1,
then we obtain a slim semimodular lattice. Note that planar lattices are finite by
definition, and so are slim lattices.

In a planar semimodular lattice L, let a < b but a ⊀ b. If C1 and C2 are maximal
chains in the interval [a, b] such that C1∩C2 = {a, b} and every element of C2\{a, b}
is on the right of C1, then the elements of [a, b] that are simultaneously on the right
of C1 and on the left of C2 form a region of L. (Remember, the planar diagram of
L is always fixed.) Note that C1 ∪ C2 is a subset of this region. For example, the
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Figure 3. An (i&ii)-sequence from p to q in a slim semimodular
(actually, a slim rectangular) lattice

elements belonging to the grey area in the second lattice of Figure 5 form a region
denoted by R. We know from Kelly and Rival [20, Prop. 1.4 and Lemma 1.5] that,
in a planar lattice,

(2.1)
every interval is a region and every region
is a cover-preserving sublattice.

If we drop the condition C1 ∩ C2 = {a, b} above, then we obtain a union (actually,
a so-called glued sum) of regions, which also is a sublattice. More precisely, for
elements a < b in a planar lattice L,

(2.2)

if C1 and C2 are maximal chains in [a, b] such that
every element of C2 is on the right of C1, then
{x ∈ [a, b] : x is on the right of C1 and on the left
of C2} is a cover-preserving sublattice of L.

For more about planar lattice diagrams (of planar semimodular lattices), see Kelly
and Rival [20] (or Czédli and Grätzer [7]). Minimal regions are called cells. For
example, the grey areas in Figure 3 and in the first lattice of Figure 5 are cells;
actually, they are 4-cells since they are formed by four vertices and four edges.
In a planar semimodular lattice, every cell is a 4-cell; see Grätzer and Knapp [17,
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Lemma 4]. Hence, by Czédli and Schmidt [11, Lemma 13],

(2.3)
If x and y are neighboring lower covers of an element z in a
planar semimodular lattice, then {x∧ y, x, y, z} is a 4-cell.

A 4-cell can be turned into a diamond by adding a new element into its interior.
The new element is called an eye and we refer to this step as adding an eye. Note
that after adding an eye, one “old” 4-cell is replaced with two new 4-cells. We know
from Czédli and Grätzer [7, Cor. 3-4.10] that

(2.4)
every planar semimodular L lattice is obtained from
a slim semimodular lattice L0 by adding eyes.

Note that L0 is a sublattice of L. Although L0 is not unique as a sublattice, it is
unique up to isomorphism; see [7, Lemma 3-4.8]. We call L0 the full slimming of
L, while L is an antislimming of L0. Note that we can obtain the full slimming
of L by omitting all of its eyes. For example, we obtain the full slimming L0 of
the planar semimodular lattice L given in Figure 1 by omitting the four black-filled
elements. Conversely, we obtain L from L0 by adding an eye, four times. Based
on, say, Grätzer and Knapp [17, Lemma 8], eyes are easy to recognize: an element
x of a planar semimodular lattice is an eye if and only if x is doubly irreducible, its
unique lower cover, denoted by x∗, has at least three covers, and x is neither the
leftmost, nor the rightmost cover of x∗.

Figure 4. Inserting a fork

Definition 2.1. Let r and s be distinct edges of the same 4-cell in a planar semi-
modular lattice L, and let Eyes(L) denote the set of eyes of L.

(ii)′ r strongly swings to s if r swings to s and, in addition, the implication
0r ∈ Eyes(L) =⇒ 0s ∈ Eyes(L) holds.

The sequence ~r in (1.1) will be called an SL-sequence if for each i ∈ {1, . . . , n}, the
edge ri−1 is cell-perspective to or tilts to or strongly swings to ri. (The acronym
“SL” comes from “Strong Swing Lemma”; this is how Theorem 2.2 could be called.)

In a planar semimodular lattice,

(2.5) every SL-sequence is a GS-sequence,

but not conversely. For example, in Figure 1, the two-element sequence r18, [x, y]
is a GS-sequence but not an SL-sequence. Now, we are in the position to formulate
the following theorem, which is a stronger variant of Czédli, Grätzer, and Lakser [8].
By (2.5), this theorem implies Lemma 1.2, the General Swing Lemma.
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Theorem 2.2. If L is a planar semimodular lattice and p and q are prime intervals

of L, then the following two implications hold.

(i) If there exists a GS-sequence from p to q (in particular, if there is an SL-

sequence from p to q), then 〈0q, 1q〉 ∈ con(p).
(ii) Conversely, if 〈0q, 1q〉 ∈ con(p), then there exists an SL-sequence from p

to q.

By (2.4), in order to have a satisfactory insight into planar semimodular lattices,
it suffices to describe the slim ones. In order to do so, we need the following
concepts.

Based on Czédli and Schmidt [11], Figure 4 shows how we insert a fork into a
4-cell S of a slim semimodular lattice L in order to obtain a new slim semimodular
lattice L′. First, we add a new element s into the interior of S. Next, we add two
lower covers of s that will be on the lower boundary of S as indicated in the figure.
Finally, we do a series of steps: as long as there is a chain u ≺ v ≺ w such that
T = {x = z∧u, z, u, w = z∨u} is a 4-cell in the original L and x ≺ z at the present
stage, then we insert a new element y such that x ≺ y ≺ z and y ≺ v; see on the
right of the figure. The new elements of L′, that is, the elements of L′ \ L, are the
black-filled ones in Figure 4.

A doubly irreducible element x on the boundary of a slim semimodular lattice
is called a corner if it has a unique upper cover x∗ and a unique lower cover x∗,
x∗ covers exactly two elements, and x∗ is covered by exactly two elements. For
example, after omitting the black-filled elements from Figure 1, there are exactly
two corners, u and v. Note that there is no corner in the slim semimodular lattice
given by Figure 3. A grid is the (usual diagram of the) direct product of two finite
non-singleton chains.

Proposition 2.3 (Czédli and Schmidt [11]). Every slim semimodular lattice with

at least three elements can be obtained from a grid such that

(i) first we add finitely many forks,

(ii) and then we remove some corners, possibly no corner.

Furthermore, all lattices obtained in this way are slim and semimodular.

Note that by Czédli and Schmidt [12, Prop. 2.3], the lattices we obtain by (i)
but without (ii) are exactly the slim rectangular lattices introduced by Grätzer and
Knapp [18]; see Figure 3 for an example. We can add eyes to these lattices to obtain
the so-called rectangular lattices; see [12, Prop. 2.3] and Grätzer and Knapp [18].

3. Swing Lemma

Definition 3.1. The sequence r from (1.1) is an (i&ii)-sequence if for each i ∈
{1, . . . , n}, the edge ri−1 is cell-perspective to or swings to ri.

For example, the edges r0, r1, . . . , r16 in Figure 3 form an (i&ii)-sequence. In a
planar semimodular lattice, every (i&ii)-sequence is a GS-sequence but, in general,
not conversely. Since every element of a slim semimodular lattice has at most two
covers by Grätzer and Knapp [17, Lemma 8], there are no tilts in slim semimodular
lattices. That is,

(3.1)
In a slim semimodular lattice, GS-sequences, SL-
sequences, and (i&ii)-sequences are the same.

Therefore, the following statement is a particular case of Lemma 1.2.
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Swing Lemma 3.2 (Grätzer [15]). Let L be a slim semimodular lattice, and let

p and q be prime intervals of L. Then 〈0q, 1q〉 ∈ con(p) if and only if there is an

(i&ii)-sequence from p to q.

Note that Grätzer [15] states this lemma in another way. In order to see that our
version implies his version, we will make two easy observations. For prime intervals
p and q, if 1p ∨ 0q = 1q and 1p ∧ 0q = 0p, then p is up-perspective to q and q

is down-perspective to p. Perspectivity is the disjunction of up-perspectivity and
down-perspectivity. As an important property of (i&ii)-sequences, we claim that,
for prime intervals p and q in a finite semimodular lattice L,

(3.2)

If p is up-perspective to q, then there is an (i&ii)-sequence
~r = 〈r0, . . . , rn〉 from p to q such that ri−1 is upward cell-
perspective to ri for all i ∈ {1, . . . , n}. Conversely, if there
is such an ~r, then p is up-perspective to q.

The second part of (3.2) is trivial. In order to see its first part, assume that p is
up-perspective to q, and pick a maximal chain 0p = x0 ≺ x1 ≺ · · · ≺ xn = 0q.
For i ∈ {1, . . . , n}, the set {xi−1, xi, 1p ∨ xi−1, 1p ∨ xi} is a covering square by
semimodularity. (For more details, if necessary, see the argument justifying Figure
1 in Czédli and Schmidt [9].) Covering squares are 4-cells by Czédli and Grätzer [7,
Thm. 3-4.3(v)], whence there is an (i&ii)-sequence ~r from p to q with the required
property. This proves (3.2).

It is clear from Czédli and Schmidt [10, Lemma 2.8], and we can also derive it
from Proposition 2.3 by induction, that in a slim semimodular lattice,

(3.3)
For a repetition-free (i&ii)-sequence ~r from (1.1) in a
slim semimodular lattice, if ri−1 is up-perspective to ri,
then rj−1 is up-perspective to rj for all j ∈ {1, 2, . . . , i}.

Now it is clear that, by (3.2) and (3.3), Lemma 3.2 and its original version in
Grätzer [15] imply each other easily.

Figure 5. Illustration for (4.2)

4. A shorter, direct proof

Proof of Theorem 2.2. Part (i) follows easily from known results and (2.5). For
example, it follows from Czédli [5, Theorems 3.7 and 5.5 (or 7.3)] and Czédli [6,
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Thm. 2.2, Cor. 2.3, and Prop. 5.10]; however, the reader will certainly find it more
convenient to observe that both con(w`, t) and con(wr, t) collapse the pairs 〈si, t〉

of S
(n)
7

in [5, Fig. 1].
Before proving part (ii), some preparation is needed. For n ∈ {3, 4, 5, . . .}, let

Mn be the (n+2)-element modular lattice of length 2. For example, M3 and M6 are
given in Figure 2. As this figure suggests, it is easy to see that, for n ∈ {3, 4, 5, . . .},

(4.1) Mn has a cyclic SL-sequence that contains all edges.

For a prime interval r and elements u ≤ v of a planar semimodular lattice L, we
will say that r SSL-spans (respectively, r (i&ii)-spans) the interval [u, v] if there is
an n ∈ {0, 1, 2, . . .} and there exists a maximal chain u = w0 ≺ w1 ≺ · · · ≺ wn = v
in [u, v] such that, for each i ∈ {1, . . . , n}, there is an SL-sequence (respectively, an
(i&ii)-sequence) from r to [wi−1, wi]. First, we focus on (i&ii)-spanning. We claim
the following; see Figure 5.

(4.2)
If a, b, c are elements of a slim semimodular lattice K
such that a ≺ b, then [a, b] (i&ii)-spans [a ∧ c, b∧ c].

We prove (4.2) by induction on |K|. The base of the induction, |K| ≤ 4, is obvious.
We can assume that c ≤ b, because otherwise we can replace c with b∧ c. Actually,
we assume that c < b but c � a, since otherwise (4.2) is trivial. Pick an element d
such that c ≤ d ≺ b; see Figure 5. Since c � a and a ≺ b, the elements a and d are
distinct lower covers of b. By left-right symmetry, we assume that a is to the left
of d. There are two cases to consider.

First, assume that among the lower covers of b, the element a is immediately to
the left of d; see the first lattice of Figure 5. Let a′ = a ∧ d. By (2.3), {a′, a, d, b}
is a 4-cell. Hence, there is a “one-step” (i&ii)-sequence from [a, b] to [a′, d], which
consists of a downwards cell-perspectivity. Observe that

a ∧ c = a ∧ (d ∧ c) = (a ∧ d) ∧ c = a′ ∧ c

and the principal ideal ↓d does not contain a. Hence, |↓d| < |K|. Thus, the
induction hypotheses yields that [a′, d] (i&ii)-spans [a′ ∧ c, c] = [a ∧ c, b ∧ c]. This
is witnessed by some (i&ii)-sequences; combining them with the one-step (i&ii)-
sequence mentioned above, we conclude that [a, b] (i&ii)-spans [a ∧ c, b ∧ c], as
required.

Second, assume that there is a lower cover of b strictly to the right of a and
to the left of d. Let e denote the rightmost one of these lower covers and let
a′ := e ∧ d; see the second lattice in Figure 5. Since {a′, e, d, b} is a 4-cell by
(2.3), there is a one-step (i&ii)-sequence from [e, b] to [a′, d]. Combining it with a
sequence of swings from [a, b] to [e, b], we obtain an (i&ii)-sequence from [a, b] to
[a′, d]. Applying the induction hypothesis to ↓d, we obtain that [a′, d] (i&ii)-spans
[a′∧c, d∧c] = [a′∧c, b∧c]. Taking the above-mentioned (i&ii)-sequence into account,
it follows that [a, b] (i&ii)-spans [a′ ∧ c, c] = [a′ ∧ c, b ∧ c]. We know from Czédli
and Grätzer [7, Exercise 3.4] and it also follows from (2.1) that a ∧ d ≤ e ∧ d = a′.
Hence, a∧ c = a∧d∧ c ≤ a′ ∧ c. In the interval [a∧ c, b], let C2 be a maximal chain
such that {a′ ∧ c, a′, e} ⊆ C2.

The elements of [a∧ c, b] on the left of C2 form a cover-preserving sublattice L1,
because (2.2) applies for the leftmost maximal chain of [a∧ c, b] and C2. Since a is
on the left of e, the element a is in L1 by Kelly and Rival [20, Prop. 1.6]. Pick a
maximal chain C1 in L1 such that a ∈ C1, and let R denote the cover-preserving
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sublattice of L1 determined by C1 and C2 in the sense of (2.2). Since d is strictly
on the right of e ∈ C2, Kelly and Rival [20, Prop. 1.6] gives that d /∈ R. Thus,
|R| < |K|. Hence, the induction hypothesis applies for 〈R, a, b, a′∧ c〉 as 〈K, a, b, c〉,
and we obtain that [a, b] (i&ii)-spans [a∧c, a′∧c] in R. Since R is a cover-preserving
sublattice and also a region, the same holds in K. Thus, since [a, b] (i&ii)-spans
both [a ∧ c, a′ ∧ c] and [a′ ∧ c, b∧ c], it (i&ii)-spans [a ∧ c, b∧ c]. This proves (4.2).

Next, we claim that

(4.3)
If a, b, c are elements of a planar semimodular lattice
L such that a ≺ b, then [a, b] SSL-spans [a ∧ c, b∧ c].

It follows from (3.1) that (4.3) generalizes (4.2). In order to prove (4.3), let K
denote the full slimming of L. Its elements and edges will be called old, while the
rest of elements and edges are new ; this terminology is explained by (2.4) and the
paragraph following it. The new elements are exactly the eyes. As in the proof of
(4.2), we can assume that c < b but c � a. First, we deal only with the case where
[a, b] is an old edge. Since (the segments of) (i&ii)-sequences are also SL-sequences
by (3.1), we conclude from (4.1) that

(4.4)
if s1 and s2 are old edges and there is an (i&ii)-sequence from
s1 to s2 in K, then there is an SL-sequence from s1 to s2 in L.

Hence, for an old prime interval s and old elements u ≤ v,

(4.5) if s (i&ii)-spans [u, v] in K, then s SSL-spans [u, v] in L.

If c is also an old element, then {a ∧ c, b ∧ c} ⊆ K, so the validity of (4.3) follows
from (4.2) and (4.5). Hence, we can assume that c is an eye. Let c∗ and c∗
stand for its (unique) cover and lower cover, respectively; they are old elements.
Since c < b and c is meet-irreducible, c∗ ≤ b. (4.2) yields that [a, b] (i&ii)-spans
[a∧ c∗, b∧ c∗] = [a∧ c∗, c∗] in K. Since c � a, we have that a ∧ c < c. Using that c
is join-irreducible, we obtain that a ∧ c = a ∧ c∗. Hence, by (4.5),

(4.6) [a, b] SSL-spans [a ∧ c, c∗] = [a ∧ c∗, c∗] in L.

On the other hand, a∧ c∗ < c∗, since otherwise c < c∗ ≤ a would contradict c � a.
(4.2) yields that [a, b] (i&ii)-spans [a ∧ c∗, b ∧ c∗] = [a ∧ c∗, c∗]. Thus, we can pick
an old element w such that a ∧ c∗ ≤ w ≺ c∗ and there is an (i&ii)-sequence from
[a, b] to [w, c∗] in K. By (4.4), we have an SL-sequence from [a, b] to [w, c∗] in L.
By left-right symmetry, we can assume that w is to the left of c. Listing them from
left to right, let w = w0, w1, . . . , wt be the old lower covers of c∗ that are neither
strictly to the left of w, nor strictly to the right of c; see Figure 6 for t = 3. Note
that the old elements are empty-filled while the new ones are black-filled, and the
elements in the figure do not form a sublattice. Let wt+1 be the neighboring old
lower cover of c∗ to the right of wt in K; it is also to the right of c. By (2.3),
{wi−1 ∧ wi, wi−1, wi, c

∗} is a 4-cell of K for i ∈ {1, . . . , t}; these 4-cells are colored
by alternating shades of grey in the figure. Clearly, [wi−1, c

∗] strongly swings to
[wi, c

∗] in K, for i ∈ {1, . . . , t}. Hence, there is an (i&ii)-sequence in K from
[w, c∗] = [w0, c

∗] to [wt, c
∗]. By (4.4), we have an SL-sequence from [w, c∗], and

thus also from [a, b], to [wt, c
∗]. Also, since c∗, c∗, wt, wt+1, and the lower covers

of c∗ between wt and wt+1 form a region in L and a cover-preserving sublattice Mn

for some n, (4.1) allows us to continue the above-mentioned SL-sequence to [c∗, c].
Hence, [a, b] SSL-spans [c∗, c] = [c∗, b∧ c] in L. This fact and (4.6) yield that [a, b]
SSL-spans [a ∧ c, b∧ c] in L, proving (4.3) for old edges [a, b].
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Second, we assume that [a, b] is a new edge. If b is an eye, which has only one
lower cover, then c < b gives that c ≤ a, whence [a ∧ c, b ∧ c] is a singleton, which
is clearly SSL-spanned. So we can assume that a is an eye with upper and lover
covers a∗ = b and a∗, respectively. Let S = {a∗, w`, wr, b} denote the 4-cell of K
into which a has been added. Here this is understood so that several eyes could
have been added to this 4-cell simultaneously, whence [a∗, b]L is isomorphic to Mn

for some n ∈ {3, 4, . . .}. Applying (4.1) to [a∗, b]L and using (2.1), we obtain that

(4.7) [a, b] SSL-spans both [a∗, wr] and [wr, b] in L.

Since (4.3) has already been proved for “old” edges,

(4.8) [a∗, wr] SSL-spans [a∗ ∧ c, wr ∧ c] and [wr, b] SSL-spans [wr ∧ c, b∧ c].

In (4.7), prime intervals are SSL-spanned, whence (4.7) yields SL-sequences. Com-
bining these SL-sequences with those provided by (4.8) and using transitivity, we
obtain that [a, b] SSL-spans [a∗ ∧ c, b ∧ c]. Hence, we need to show only that
a∗ ∧ c = a ∧ c. If we had that a ≤ c, then a ≺ b and b < c would give that a = c,
contradicting c � a. Thus, a � c and a ∧ c < a. Since a∗ is the only lower cover of
a, we have that a ∧ c ≤ a∗ and so a ∧ c ≤ a∗ ∧ c. Since the converse inequality is
obvious, a ∧ c = a∗ ∧ c, as required. This completes the proof of (4.3).

Figure 6. From [w, c∗] to [c∗, c]

Next, let α = {〈x, y〉 ∈ L2 : p SSL-spans [x ∧ y, x ∨ y]}, where p is the prime
interval from Theorem 2.2(ii). We are going to show that α is a congruence.
Obviously, 〈x, y〉 ∈ α ⇐⇒ 〈x ∧ y, x ∨ y〉 ∈ α and

(4.9)
(

x ≤ y ≤ z, 〈x, y〉 ∈ α, and 〈y, z〉 ∈ α

)

=⇒ 〈x, z〉 ∈ α.

Hence, by Grätzer [14, Lemma 11], it suffices to show that whenever x ≤ y, 〈x, y〉 ∈
α, and z ∈ L, then 〈x ∨ z, y ∨ z〉 ∈ α and 〈x ∧ z, y ∧ z〉 ∈ α. To do so, pick a
maximal chain x = u0 ≺ u1 ≺ · · · ≺ un = y that witnesses 〈x, y〉 ∈ α. Then,
for each i ∈ {1, . . . , n}, there is an SL-sequence from p to [ui−1, ui]. By (4.3),
〈ui−1 ∧ z, ui ∧ z〉 ∈ α for i ∈ {1, . . . , n}, and (4.9) yields that 〈x ∧ z, y ∧ z〉 =
〈u0 ∧ z, un ∧ z〉 ∈ α. By semimodularity, either [ui−1, ui] is up-perspective to
[ui−1 ∨ z, ui ∨ z], or ui−1 ∨ z = ui ∨ z. Hence, either by (3.2) or trivially, 〈ui−1 ∨
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z, ui ∨ z〉 ∈ α. Thus, (4.9) implies that 〈x∨ z, y ∨ z〉 = 〈u0 ∨ z, un ∨ z〉 ∈ α, and we
have shown that α is a congruence.

Finally, since α collapses p, we have that con(p) ⊆ α. So if 〈0q, 1q〉 ∈ con(p),
then the containment 〈0q, 1q〉 ∈ α and the definition of α yield an SL-sequence
from p to q. This completes the proof of Theorem 2.2. �

Remark 4.1. For a slim semimodular lattice L, (4.3) is equivalent to (4.2) by
(3.1). Actually, (4.3) is not needed in this case. In this way, we obtain a proof for
the Swing Lemma (Lemma 3.2) that is much shorter than the proof above.

5. Swing Lattice Game

The Swing Lattice Game is available at

http://www.math.u-szeged.hu/~czedli/swinglattice/ or
http://www.math.u-szeged.hu/~makay/swinglattice/

as a JavaScript program. The program works in the latest versions of most mod-
ern browsers, including Mozilla Firefox, Google Chrome, Internet Explorer, and
Microsoft Edge.

After describing the Game, we will point out its connections to Theorem 2.2
and, more generally, to planar semimodular lattices. In order to demonstrate that
the player need not be a mathematician and does not have to know what a lattice
is, we describe the game in a plane language that avoids the terminology of lattices
as much as possible. The description below is close to what the program gives to
its users; the main difference is that the program displays the diagrams instead of
describing them as “slim semimodular”.

5.1. Description of the Game. The program displays a diagram D of a random
slim semimodular lattice L of length in the interval [6, 13] (default) or [4, 29] (upon
request). An invisible monkey keeps moving from edge to edge such that the two
edges in question have to belong to the same cell. The monkey’s recent position is
always indicated by a red thick edge. The monkey moves at a constant speed at
the beginning; later, this speed slowly increases. The monkey can

(i) either jump to the opposite edge of the same cell,
(ii) or swing to the other upper edge of the same cell provided that the desti-

nation edge hangs between two other edges from the same vertex,
(iii) or tilt to the other lower edge of the same cell provided that the destination

edge stands between two other edges from the same vertex.

However, the monkey cannot move back to the edge it came from in the very
next step. If the monkey can make several moves, then the program chooses the
actual move randomly. The monkey looses a life when no move is possible; this can
happen only at a boundary edge of the lattice. If a life is lost but the monkey still
has at least one life, then the game continues on a new random diagram. When the
monkey has no more lives left, the game terminates.

The purpose is to keep the monkey alive as long as the player’s luck and, much
more significantly, his skill allow. The player’s tools are the following.

(5.1)
When a new diagram D appears, the player
has three seconds to choose the initial edge.
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If the player is late, the program chooses the initial edge randomly. At any time,

(5.2)
the player is allowed to add an eye
to one of the cells by a mouse click;

this eye will be indicated by a black-filled vertex. Whenever he adds a new eye, the
old one disappears. Therefore, except for the beginning when there is no eye, the
diagram contains exactly one black-filled vertex. If the player clicks on a cell while
the monkey is moving from or to an edge ending at the old eye, then the action of
adding a new eye is delayed till the monkey arrives at an edge not adjacent to the
old eye. From time to time in a random way, the program turns a cell into a grey

bonus cell ;

(5.3)
if the monkey can jump or swing between two edges of
the grey cell within ten moves, then it earns an extra life.

Similarly, the program offers blue candidate cells from time to time randomly. If
the player accepts the candidate cell by clicking on it within three moves, then this
cell becomes a purple adventure cell and

(5.4)
the monkey earns two extra lives if it jumps or swings between two edges
of the adventure cell within 20 moves but it looses a life otherwise.

When the monkey has no more lives left, the game terminates. Using (5.2) appro-
priately, the player can increase the probability that the monkey will go in a desired
direction. In order to make a good decision how to use (5.1), when to use (5.4), and
when and how to apply (5.2), the player should have some experience and insight
into the process. Hence, the Swing Lattice Game is not only a reflex game.

5.2. Mathematics beyond the Game. The Swing Lattice Game grew out from
Lattice Theory; our motivation was to make lattices more popular. Besides the gen-
eral development of the theory of planar semimodular lattices as surveyed in Czédli
and Grätzer [7], three milestones toward the Game are worth separate mentioning.

First, in Czédli [6], a class C2 of aesthetic planar semimodular lattice diagrams
has been introduced. Instead of repeating the long definition of C2 here, we only
mention that the diagrams in Figures 1, 3, and 5 and L′ in Figure 4 belong to C2,
but the diagrams in Figure 2 and L in Figure 4 do not. Whenever the program
displays a new diagram D, the diagram belongs to C2. After adding an eye, D turns
into the diagram D′ ∈ C2 of a larger planar semimodular lattice.

Second, the diagrams of length n in C2 are given by their Jordan-Hölder per-
mutations belonging to the symmetric group Sn; see Czédli and Schmidt [13] for
details. Since not every diagram in C2 of a given length is appropriate for the
game, the program defines the concept of “good diagrams”. For example, nei-
ther a distributive diagram, nor a glued sum decomposable diagram is good. We
have characterized goodness in terms of permutations. Whenever a new diagram is
needed, the program generates a random good permutation π ∈ Sn, and the dia-
gram is derived from π. The lattice theoretical background of this algorithm is not
quite trivial. However, instead of going into details in the present paper, we only
mention that several tools given by Czédli [4] and [6] and Czédli and Schmidt [13]
have extensively been used.

Third, the main link between the Game and Lattice Theory is Theorem 2.2.
Let us call a GS-sequence ~r from (1.1) an SLG-sequence if, for i ∈ {1, 2, . . . , n},
ri−1 6= ri. (The acronym comes from “Swing Lattice Game”.) As long as the
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player does not change the lattice by adding an eye or repositioning the eye, the
edges visited by the monkey in the Game form an SLG-sequence.
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Verlag, Basel (2014)

[8] Czédli, G., Grätzer, G., Lakser, H.: Congruence structure of planar semimodular lattices:

the General Swing Lemma. Algebra Universalis, to appear.1

[9] Czédli, G., Schmidt, E.T.: How to derive finite semimodular lattices from distributive lat-

tices?. Acta Math. Hungar. 121, 277–282 (2008)
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