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Abstract. Let A be an algebra (of an arbitrary finitary type), and let γ be a binary

term. A pair (a, b) of elements of A will be called a γ-eligible pair, if for each x in the
subalgebra generated by {a, b} such that x is distinct from a there exists an element

y in A such that b = xyγ . We say that A is a γ-closed algebra, if for each γ-eligible
pair (a, b) there is an element c with b = acγ . We call A a closed algebra, if it is

γ-closed for all binary terms γ that do not induce a projection.
Let T be a unital subring of the field of real numbers. Equipped with all the binary

operations (x, y) 7→ (1 − p)x + py, p ∈ T and 0 < p < 1, T becomes a mode, that is,
an idempotent algebra in which any two term functions commute. In fact, the mode

T is a (generalized) barycentric algebra. Let Q(T ) denote the quasivariety generated
by this mode.

Our main theorem asserts that each mode of Q(T ) extends to a minimal closed
cancellative mode, which is unique in a reasonable sense. In fact, we prove a slightly

stronger statement. As corollaries, we obtain a purely algebraic description of the

usual topological closure of convex sets, and we exemplify how to use the main theorem
to show that certain open convex sets are not isomorphic.

1. Introduction and motivation

1.1. The initial idea. The “classical” convex sets, which are the convex
subsets of the real affine space Rn, are easily described by algebraic tools as
follows. The open unit interval {x ∈ R : 0 < x < 1} of real numbers will be
denoted by Io(R). For q ∈ Io(R), let q denote the binary barycentric operation
(Rn)2 → Rn with (x, y) 7→ xyq, where xyq stands for (1 − q)x + qy. With
the notation Io(R) = {q : q ∈ Io(R)}, the nonempty convex subsets of Rn are
exactly the subalgebras of

(
Rn; Io(R)

)
.

Our primary goal and the original motivation of the present work were to
describe the topological closure of a convex set by algebraic methods, in the
language of the barycentric algebra

(
Rn; Io(R)

)
. For an illustration we will use

the real affine plane R2. The initial idea is quite simple. First of all, we need
an algebraic property that characterizes topologically closed convex sets. Let
A be a subalgebra of

(
Rn; Io(R)

)
. Let p ∈ Io(R), and let a and b be distinct
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Figure 1. Some p-eligible pairs of A in case p = 1/2

points of A; see Figure 1, where A ⊆ R2 and p = 1/2. Let ` denote the line
through a and b. Then there is a unique point c on ` such that b = acp. Note
that we do not assume that c ∈ A. Roughly speaking, our intention is to call
the pair (a, b) a p-eligible pair of A if all the elements of the (left closed and
right open) line segment `[b, c) belong to A. More precisely, (a, b) is called
a p-eligible pair of A if for each x ∈ `(a, b], there exists an y = y(x, a, b, p)
in A such that xyp = b. Equivalently, (a, b) is p-eligible iff for every x that
belongs to the subalgebra generated by {a, b} but distinct from a, there exists
an y ∈ A such that xyp = b.

Let Ep(A) denote the set of p-eligible pairs of A. By our intuition (or
by Corollary 2.5), A is topologically closed iff for each (a, b) ∈ Ep(A), there
exists an element c ∈ A such that b = acp. This is an algebraic description
of topologically closed convex sets. Furthermore, to obtain a closure of A,
we have to add, to each (a, b) ∈ Ep(A), a (possibly new) element c with the
property b = acp. Of course, we want to obtain a subalgebra of

(
Rn; Io(R)

)

since otherwise we could add the same element for all (a, b) ∈ Ep(A). Hence,
if (a′1, b′1), (a′2, b′2) ∈ Ep(A) “aim at the same direction”, then they need the
same element c′, which is either a new element (like c′ in Figure 1), or an old
element (like c′′ for (a′′1 , b′′1) and (a′′2 , b′′2) in the figure).

Therefore, we will show that the p-eligible pairs constitute a subalgebra
Ep(A) of A2 and the relation “aiming in the same direction” is an “internally
definable” congruence relation ∼p on Ep(A). Finally, we will show that the
quotient algebra Ep(A)/∼p does not depend on p,

(
A; Io(R)

)
has a natural

embedding into Ep(A)/∼p, and Ep(A)/∼p is isomorphic to the topological
closure of A.

1.2. Connections with Universal Algebra and Mode Theory. The
barycentric algebra (Rn; Io(R)

)
is a particular case of modes, to be defined

soon. Hence, the initial idea described above is closely connected with Mode
Theory, see [16]. However, as it will be made clear below, our work also has
a lot of connections with basic problems of Universal Algebra. Notice at this
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point that the present paper is self-contained modulo any standard book on
Universal Algebra, see the easy-to-reach Burris and Sankappanavar [1] for ex-
ample.

We elaborate the basic definition for general algebras, not only for barycen-
tric ones. Even if we cannot show interesting examples other than barycentric
algebras at the moment, there might be some.

To achieve more generality, we replace R by a unital subring T of R such
that T 6= Z. This leads to several kinds of difficulties. First, a single step of
“closing the p-eligible pairs”, that is, passing from A to Ep(A)/∼p, does not
seem to be sufficient to obtain a closed algebra in general. Thus we form a
directed union of the “λ-step p-closures”, where λ ranges in a set of ordinal
numbers. Second, we have to use p for all p ∈ Io(T ), possibly continuously
many, since Ep(A)/∼p may depend on the choice of p. This makes the directed
union a bit more complicated.

To increase generality even further, we do not restrict the investigation to
subalgebras of the generalized barycentric algebra

(
Tn; Io(T )

)
. We want to

consider more algebras in the variety V(T ) generated by
(
T ; Io(T )

)
. However,

we cannot consider all members of V(T ), since several quasi-identities (like the
cancellativity laws for the barycentric operations), which hold in

(
T ; Io(T )

)

but not in all members of V(T ), are needed in the construction of the 1-step
p-closure Ep(A)/∼p. Because of these quasi-identities, it is reasonable to con-
sider only the members of an appropriate subquasivariety H(T ) of V(T ). This
subquasivariety cannot be too large since otherwise the 1-step p-closure con-
struction will not work. On the other hand, H(T ) should contain

(
T ; Io(T )

)
,

and it should also contain the closure of any of its members.
It is not clear at first sight if there exists an appropriate H(T ). In fact, the

treatment of H(T ) occupies a large part of the paper. This part can be interest-
ing for experts of Universal Algebra, because of the following. We need certain
quasi-identities that make the 1-step p-closure construction, Ep(A)/∼p, possi-
ble. Unfortunately, the quotient algebra Ep(A)/∼p does not inherit the above-
mentioned properties, and we also have to construct Eq(Ep(A)/∼p)/∼q (and
infinitely many further quotient algebras) to form a directed union. Thus, to
define H(T ), we stipulate infinitely many appropriately chosen further quasi-
identities. These quasi-identities will imply that H(T ) is closed under “re-
peated” 1-step closures. The exact, necessarily technical definition of H(T ) is
postponed to Section 5.

The notation H(T ) comes from “hereditary” since 1-step p-closures inherit
the quasi-identities defining H(T ) in Subsection 5.3. This notation also comes
from “hypercubic” identities, to be introduced in Section 5, which are re-
sponsible for the desired properties of H(T ). Actually, in terms of Universal
Algebra, Lemma 5.1 asserts that the hypercubic identities hold in all clones
as heterogeneous algebras. However, we do not study this aspect of these
identities.
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1.3. The rest of the motivation. The initial idea was strongly motivated
by the fact that

(
A; Io(R)

)
was embedded into

(
Rn; Io(R)

)
, which is already

closed. (Unless otherwise stated, “closed” and “closure” are always under-
stood in our new, algebraic sense. Sometimes, for emphasis, we say that “our
closure” or add that “in our sense”.) As detailed in Section 11, the book [16]
gives analogous embeddings not only for finite dimension and not only for
T = R. Hence, we were motivated by the fact that, in many cases, we knew
the existence of a closed generalized barycentric algebra

(
B; Io(T )

)
that in-

cludes
(
A; Io(T )

)
, and we could take the smallest closed subalgebra including(

A; Io(T )
)
. However, this definition of the closure of

(
A; Io(T )

)
would not be

satisfactory since we also want to prove uniqueness.
To enlighten the situation with an analogous classical construction, assume

that f ∈ Q[x] is an irreducible polynomial of degree n. We are interested in
the splitting field of f , that is, the smallest field K over which f decomposes
into the product of linear factors. Since f decomposes this way in C[x] by the
fundamental theorem of classical algebra, the existence of K is obvious. How-
ever, to prove its uniqueness, we have to construct K without referring to C,
and then we can prove the uniqueness by chasing the steps of the construction.

Similarly, we give an intrinsic definition of our closure. Then, by chasing
the steps of the construction, we are able to prove the desired uniqueness.

Yet another ingredient of our motivation is the isomorphism problem of
convex sets as barycentric algebras. This problem is surely easier for closed
convex sets. Exercise 2.6 illustrates how to benefit from the uniqueness men-
tioned above in case of open convex sets.

1.4. Outline. Most of the preliminaries are given in Section 2. Theorem 2.3,
the main theorem about the existence and uniqueness of our closure, is also
formulated in this section. The most important related statements and an
example for the isomorphism problem, Exercise 2.6, are also presented there.
Although Theorem 2.3 depends on some technical definitions to be defined
afterwards, the location of the postponed definitions is always given.

Sections 3–8, which represent the majority of the present paper, are devoted
to the proof of the main theorem. Section 3 proves some basic properties
of generalized barycentric algebras. In Section 4, the rudiments of aiming
congruences are developed for the (easy) case when 1/6 belongs to our ring T .

Section 5 contains a lot of complicated computations with terms. This is
why we discontinue the Polish notation for terms (but only in this section), and
develop a powerful parametric notational toolkit in Subsection 5.1. In Sub-
section 5.2, we introduce some term compositions. We use it in Lemma 5.1
to show that every clone satisfies a family of certain identities, which we call
hypercubic identities. Based on hypercubic compositions, Subsection 5.3 de-
fines some quasi-identities and the quasivariety H(T ), see (5.11). Benefiting
from the parametric notation, Subsection 5.4 is devoted to some congruences
defined by hypercubic compositions.
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Section 6 proves some basic properties of the quasivariety H(T ). Section 7 is
devoted to one-step closures, while multi-step closures are treated in Section 8.
Also, Section 8 completes the proof of the main theorem.

The statement of the main theorem simplifies a lot when T is more or less a
field; this is analyzed in Section 9. In Section 10, we compare our closure with
the classical topological closure. Finally, Section 11 relates our achievements
with some results of the reference book [16] on modes.

2. Preliminaries and the main results

2.1. Modes and barycentric algebras. Let γ and δ be m-ary and n-ary
term functions of an algebra A, respectively. (Except for Section 5, we will
follow the tradition of, say, [16] by using the Polish notation x1 . . .xmγ rather
than γ(x1, . . . , xm).) If for any system (xij : 1 ≤ i ≤ m and 1 ≤ j ≤ n) of
elements of A we have

x11 . . .xm1γ x12 . . .xm2γ · · · x1n . . .xmnγ δ =

x11 . . .x1nδ x21 . . .x2nδ · · · xm1 . . .xmnδ γ ,

then we say that γ commutes with δ. An algebra is called entropic, if any two of
its (not necessarily distinct) operations (equivalently, any two term functions)
commute with each other. An algebra is idempotent if each singleton subset
is a subalgebra. Idempotent entropic algebras are called modes, see [16]. The
main classes of modes include the class of affine modules over commutative
unital rings and that of subreducts (subalgebras of reducts) of affine modules.
These are the classes of modes that interest us in this paper.

As a general assumption for the whole paper,

T is always a subring of R such that Z ⊂ T ⊆ R. (2.1)

The open unit interval {r ∈ T : 0 < r < 1} will be denoted by Io(T ). The
assumption Z ⊂ T yields that Io(T ) 6= ∅. For each p ∈ Io(T ), we consider a
binary operation symbol p, and let Io(T ) = {p : p ∈ Io(T )}. Defining the
so-called barycentric operation

p : T 2 → T, where (x, y) 7→ xyp := (1 − p)x+ py,

for all p ∈ Io(T ), we obtain an algebra (T ; Io(T )). The name of the operations
comes from the fact that the barycenter z of a two-body system with weight
(1 − p) in the point x and weight p in the point y is given by the barycentric
operation, namely, z = xyp.

The members of the variety generated by the algebra (T ; Io(T )) are modes.
In what follows, they will be called barycentric algebras (rather then general-
ized barycentric algebras). Note, however, that originally barycentric algebras
were defined as members of the variety generated by the algebra (R; Io(R))
(see [10], [12, Ch. 2], [13]), and then more generally as members of the va-
rieties generated by (F ; Io(F )), each for a subfield F of the field R (see [16,
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Chs. V, VII]). Modes and barycentric algebras have been studied intensively
in the monographs [12] and [16]. See also the bibliography of [16], and many
later papers including, e.g., [8], [9], [11], and [15]. The equational theory of
barycentric algebras over a field is well-understood, see [16, Chs. V and VII],
and over the field of reals Neumann [10], and then Ignatov [3].

For brevity, barycentric algebras will often be referred to as modes. We say
that a mode A = (A; Io(T )) is cancellative if the cancellation laws

xyp = xzp ⇒ y = z and yxp = zxp ⇒ y = z

hold for all x, y, z ∈ A and p ∈ Io(T ). Consider the following classes of modes:

V(T ) = the variety generated by (T ; Io(T )),

C(T ) = {A ∈ V(T ) : A is cancellative},
Q(T ) = the quasivariety generated by (T ; Io(T )),

H(T ) = the quasivariety to be defined in Section 5.

Since quasivarieties are defined by quasi-identities (also called universally quan-
tified Horn sentences) and the cancellation laws are quasi-identities that clearly
hold in (T ; Io(T )), it follows that C(T ) is a quasivariety and Q(T ) ⊆ C(T ) ⊆
V(T ). The quasivariety H(T ) will be an economical technical tool to formulate
and prove our main theorem.

As usual, N = {1, 2, 3, . . .} will stand for the set of positive integers, and
N ∪ {0} will be denoted by N0. The proofs of the following two statements
are postponed to the next section. The following lemma is well-known in the
particular case when T happens to be a field, see [16, 3.7.14 and 7.6.3]. (For
the field R, see also Neumann [10] and Ignatov [3].) For a stronger statement,
see Lemma 3.1 later.

Lemma 2.1 (The canonical example). For n ∈ N, let X be a nonempty convex
subset of the real space Rn. Then (X; Io(T )), with the usual meaning of the
barycentric operations, belongs to Q(T ).

For the particular case when T is a subfield of R, the following statement
follows from the characterization of free barycentric algebras, see [16, Lemma
5.8.2] and Neumann [10]. For free subreducts of affine modules see also [11].

Lemma 2.2. For each nontrivial binary term γ of V(T ) that is not a pro-
jection in V(T ), there exists a unique p ∈ Io(T ) such that V(T ) satisfies the
identity x1x2γ = x1x2p. Conversely, if p ∈ Io(T ), then p is not a projection
in V(T ).

Unless otherwise stated, we will not consider terms that induce a projec-
tion in V(T ). Motivated by this lemma, we will use the following notational
convention for Γ ⊆ Io(T ) and ∆ ⊆ Io(T ):

Γ := {p ∈ Io(T ) : p ∈ Γ}, ∆ = {p : p ∈ ∆}.

Note that, for technical reasons, in subscripts we always write Γ instead of Γ.
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2.2. Identities and quasi-identities in barycentric algebras. Keeping
(2.1) in mind, the following identities clearly hold in V(T ) for all p, q ∈ Io(T ):

xxp = x (idempotence),

xyp = yx1 − p (skew commutativity),

xyp uvp q = xuq yv q p (entropic law).

These identities and the cancellation laws will be our main working tools.
(Note that, in general, many other identities hold in V(T ) that are not con-
sequences of the above three.) We will use =i, =sc and =e to indicate that
the idempotence, the skew commutativity and the entropic law is used, re-
spectively. Furthermore, =e is also used to refer to the fact that any two term
functions commute in V(T ). Similarly, if an equality follows from, say, formula
(3.2), then we write =(3.2) instead of =. An analogous convention applies for
the sign ⇐⇒ of logical equivalence.

Note that there is a very trivial algorithm to decide if a given identity holds
in V(T ). Namely, we can perform some very elementary calculations in T at
the high school level. For example, in the case of the entropic law,

xyp uvp q = (1 − q)
(
(1 − p)x+ py

)
+ q

(
(1 − p)u+ pv

)
=

= (1 − p)(1 − q)x+ p(1 − q)y + (1 − p)qu+ pqv,

and we obtain the same expression for xuq yv q p. The present paper contains
some identities that are much more complex than the entropic law. Unless
there is an elegant way, we will not present their trivial but often very tedious
proofs of the above kind. If the reader wants to see, without spending hours
on boring trivialities, why these identities, namely, (4.8), (9.1), (9.2), (9.5),
(9.10) and (9.12), hold in V(T ), he or she can resort to any sort of computer
algebra, including the Maple worksheet available at the authors’ web site.

One of the advantages of Polish notation is that we do not have to use
parentheses. However, sometimes we put superfluous parentheses in long terms
as reference points. These parentheses should be disregarded. For example,
(abr) (b)h (deq) w is the same term as abr bh deq w, but the former one makes
it easier to reference certain subterms of (9.5) later.

2.3. Closed algebras. Let A be an algebra (of an arbitrary finitary type).
For a, b ∈ A, the subalgebra generated by {a, b} is denoted by 〈a, b〉, and (a, b〉
will stand for 〈a, b〉 \ {a}. For a binary term γ in the language of A, a pair
(a, b) ∈ A2 will be called a γ-eligible pair if for each x ∈ (a, b〉 there exists an
element y = y(x) ∈ A such that b = xyγ . A γ-eligible pair (a, b) is called
γ-closed if there is an element c with b = acγ . If γ induces the first projection
on A, then b = acγ is possible only when a = b. If γ induces the second
projection, then all pairs are γ-closed. Hence, we always assume that γ does
not induce a projection on A. If all γ-eligible pairs are γ-closed, then A is
called a γ-closed algebra. Let Γ be a set of binary terms, none of them inducing
a projection on A. Then A is called Γ-closed if it is γ-closed for all γ ∈ Γ.
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Finally, we call A a closed algebra if it is γ-closed for all binary terms γ not
inducing a projection on A.

While an easy transfinite induction shows that each algebra A is a subalge-
bra of a closed algebra B, we are interested only in cases where B has some
nice properties. In this paper, we are interested in modes, whence Lemma 2.2
allows us to deal with subsets of Io(T ) instead of arbitrary sets Γ of binary
terms.

2.4. The main result and some related statements. If A is a submode
(that is, a subalgebra) of a mode B, then B is called an extension of A. Two
extensions, B1 and B2, of A are said to be isomorphic over A, if there is
an isomorphism B1 → B2 that acts identically on A. We say that a closed
extension B of A is the closure of A, if B is a minimal closed extension of A,
that is, if there is no closed submode X of B such that A ⊆ X ⊂ B. The
notion of a γ-closure and, for a subset Γ of Io(T ), that of a Γ-closure are
defined analogously.

Theorem 2.3 (Main Theorem). Keeping (2.1) in mind, let Γ be a nonempty
subset of Io(T ). Then the following three statements hold.

(i) Q(T ) ⊆ H(T ) ⊆ C(T ).
(ii) If 1/6 = 6−1 belongs to T , then H(T ) = C(T ).
(iii) Each A ∈ H(T ) has a Γ-closure in H(T ), which is uniquely determined

up to isomorphism over A. In particular, each A ∈ H(T ) has a unique
closure in H(T ).

The quasivariety H(T ) will be defined in Subsection 5.3, see (5.11). The
unique Γ-closure of A will be denoted by

K∞
Γ (A),

and it will be constructed in Section 8. The construction will trivially imply
that |K∞

Γ (A)| ≤ |A|+ |Γ| holds for every A ∈ V(T ). The closure of A, which
is the Io(T )-closure of A, is denoted by

K∞
all(A).

The situation with Theorem 2.3 is more pleasant if T happens to be a field.
Then somewhat more can be stated, see Section 9, and a shorter proof would
be possible based on already known results, see Section 11.

To present an example, we will prove the following statement.

Proposition 2.4. Assume that S is a subfield of R such that T ⊆ S. Let
n ∈ N, and letH ⊆ Rn be a nonempty convex set. The usual topological closure
of H is denoted by Htc. Consider the barycentric algebras

(
H∩Sn; Io(T )

)
and(

Htc ∩ Sn; Io(T )
)
. Then both of these algebras belong to Q(T ), and

(
Htc ∩ Sn; Io(T )

)
is isomorphic to K∞

all

(
H ∩ Sn; Io(T )

)
over H ∩ Sn.
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Moreover, for every p ∈ Io(T ), K∞
all

(
H ∩ Sn; Io(T )

)
equals the one-step p-

closure K(1)
p

(
H ∩ Sn; Io(T )

)
, to be defined in (7.1).

Corollary 2.5. A convex subset H of Rn is topologically closed iff
(
H; Io(R)

)

is closed in our sense iff there is a p ∈ Io(R) such that
(
H; Io(R)

)
is p-closed.

Theorem 2.3 and Proposition 2.4 are useful in studying the isomorphism
classes of convex sets in algebraic sense. In particular, they can be used to
extend some results of [9] from closed polygons to open ones. To keep the size
of the paper limited, here we demonstrate the power of our results by solving
only the following exercise in Section 10.

Exercise 2.6. Denote 1/2 by h. (Here h comes from “half”.) Consider the
set C = {(x, y) ∈ Q2 : x2 + y2 < 1} of all rational points of the open unit
circle and the set D = {(x, y) ∈ Q2 : 0 < x, 0 < y and x + y < 1} of all
rational points of the open triangle with vertices (0, 0), (1, 0) and (0, 1). Are
the groupoids (C;h) and (D;h) isomorphic?

These groupoids are commutative binary modes, that is, idempotent, com-
mutative and entropic (or medial) groupoids, see e.g. Ježek and Kepka [4] and
[5], and [16], [8], and [14]. An easier version of Exercise 2.6, with R instead
of Q and the unit square instead of a triangle, has been raised for students of
the first author for several years.

Proposition 2.4 and our closure are not as trivial as they may look at the
first sight. As opposed to Proposition 2.4, next we state that even if our closure
makes sense for a subset of Rn, it can be very far from the topological closure.
The isomorphism in Lemma 2.7 will be understood in V(T ). The subfield of
R generated by T will be denoted by 〈T 〉field.

Lemma 2.7. Let S be a subfield of R such that T ⊆ S and the degree of the
field extension S |〈T 〉field is at least ℵ0. Let C =

(
{(x, y) ∈ S2 : x2 + y2 <

1}; Io(T )
)
, which is a submode of

(
R2; Io(T )

)
. Then Ctc ∩ S2 ∼= K∞

all(C) by
Proposition 2.4. However,

(
R2; Io(T )

)
(in fact, even

(
S2; Io(T )

)
) has another

submode B such that B ∼= C but Btc ∩ S2 is not isomorphic with K∞
all(B).

3. Three easy proofs

This section is devoted to Lemmas 2.1 and 2.2. Actually, Lemma 2.1 follows
in two different ways. First, it is a particular case of a stronger statement,
Lemma 3.1 below. Although Lemma 3.1 is known from [16, Thm. 5.8.6 and
Lemma 7.6.3] for the particular case when F = T is a subfield of R, our
approach is entirely different from [16]. Let FF

n denote the n-dimensional
affine space over F , which is the full idempotent reduct of the n-dimensional
vector space (denoted the same way). By a convex subset of FF

n we mean a
subset closed with respect to all the barycentric operations p, p ∈ Io(F ).
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Lemma 3.1. Let F be an arbitrary subfield of R such that T ⊆ F . Let n ∈ N,
and let X be a nonempty convex subset of the space FF

n. Then (X; Io(T )),
with the usual meaning of the barycentric operations, belongs to Q(T ).

Proof. Let G be the subfield of F generated by T . First, we intend to show
that (G; Io(T )) belongs to Q(T ). For b ∈ T \{0}, let 1

b
·T := {a/b : a ∈ T}. It

is well-known that G =
⋃

b∈T\{0}
1
b
·T . This union is a directed one, since, for

any b, c ∈ T , we have 1
b
· T ⊆ 1

bc
· T and 1

c
· T ⊆ 1

bc
·T . Observe that, for every

b ∈ T \ {0},
(

1
b
· T ; Io(T )

) ∼=
(
T ; Io(T )

)
, since 1

b
· T → T , x 7→ b · x is clearly

an isomorphism. So, (G; Io(T )) is a directed union of certain subalgebras that
are isomorphic to

(
T ; Io(T )

)
. Since quasi-identities are clearly preserved by

forming directed unions, we conclude that
(
G; Io(T )

)
belongs to Q(T ).

Next, consider F as a vector space1
GF over G in the natural way. Let

κ denote the dimension of GF over G. Then GF is embeddable in the κ-
th direct power of the vector space GG. So, we can assume that GF is a
subspace of GG

κ. Since p is a term of the vector space GF for all p ∈ Io(T ),
we get that (F ; Io(T )) is a subalgebra of (G; Io(T ))κ. Since Q(T ) is closed
with respect to subalgebras and direct products, the statement follows from(
G; Io(T )

)
∈ Q(T ). �

The reader may be interested in the following geometric argument.

Proof of Lemma 2.1. Let F = {r/s : r ∈ T , 0 6= s ∈ T}, the field of fractions
(also called quotient field) of T . For S ⊆ F k, let S⊥ denote {~x ∈ F k : ~s ⊥ ~x

for all ~s ∈ S}, where ~s ⊥ ~x means that s1x1 + · · · + skxk = 0. Then S⊥ is a
subspace of the vector space FF

k. It is well-known from Linear Algebra that
(even for finite dimensional vector spaces over arbitrary fields)

(S⊥)⊥ equals F〈S〉, the subspace spanned by S. (3.1)

(For example, (3.1) is the corollary to Theorem 4.3.2 in Herstein [2], or see
formula (3.2.5) in van Lint [18].)

Let γ be a k-ary term in V(T ), distinct from a projection. A trivial induction
on the length of γ shows that there are a1, . . . , ak ∈ T such that a1+· · ·+ak = 1
and

x1 . . .xkγ = a1x1 + · · ·+ akxk (3.2)

holds for all x1, . . . , xk ∈ R. Next, let γi and δi be k-ary terms in V(T ). It
follows from (3.2) that there are ai1, . . . , aik ∈ T such that, with the notation
~ai = (ai1, . . . , aik) and ~x = (x1, . . . , xk), for all ~x ∈ Rk we have

x1 . . . xkγi = x1 . . . xkδi ⇐⇒ ~ai ⊥ ~x. (3.3)

Keeping the previous notation, let χ be a quasi-identity of the form

γ1 = δ1 ∧ · · · ∧ γm = δm ⇒ γ0 = δ0.

1Alternatively, we could consider affine spaces in this paragraph.
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Figure 2. The aiming congruence ∼p in case p = 1/3

We get from (3.3) that χ holds in (T ; Io(T )) iff, for all ~x ∈ T k,

~x ∈ {~a1 . . . ,~am}⊥ ⇒ ~x ⊥ ~a0. (3.4)

Now, assume that χ holds in
(
T ; Io(T )

)
. Since each ~x ∈ F k is of the

form 1
r · ~y for some r ∈ T and ~y ∈ T k, we easily conclude from (3.4) that,

for all ~x ∈ F k, ~x ∈ {~a1 . . . ,~am}⊥ implies ~x ⊥ ~a0. This clearly means that
~a0 ∈ ({~a1, . . . ,~am}⊥)⊥, understood in F k. Therefore, using (3.1), we infer that
~a0 ∈ F〈{~a1, . . . ,~am}〉. But then ~a0 ∈ R〈{~a1, . . . ,~am}〉 =(3.1) ({~a1, . . . ,~am}⊥)⊥,
understood in Rk. This means that (3.4) holds for all ~x ∈ Rk. Hence, resorting
to (3.3) again, we conclude that χ holds in (R; Io(T )). Thus, (R; Io(T )) belongs
to Q(T ), and so does the subalgebra (X; Io(T )) of its direct power. �

Proof of Lemma 2.2. If γ is not a projection in V(T ), then it is not a projec-
tion in (T ; Io(T )). Hence, with the notation of (3.2), {0, 1} ∩ {a1, a2} = ∅.
Therefore, x1x2γ = x1x2a2 holds in (T ; Io(T )), and so it holds in V(T ) as
well. The uniqueness and the converse are evident. �

4. The aiming congruence when 1/6 ∈ T

To motivate our idea, fix a p ∈ Io(T ). Consider the mode
(
X; Io(T )

)
from

Lemma 2.1. For (a, b) ∈ X2 and c ∈ X, we say that the pair (or vector) (a, b)
aims at c with respect to p if b = acp. Roughly speaking, we will define a
relation ∼p on X2 such that (a1, b1) ∼p (a2, b2) iff (a1, b1) and (a2, b2) aim at
the same point with respect to p, see Figure 2. This relation, called an aiming
congruence, will play a crucial role. We will not assume that c ∈ X, so we
need an exact “inner description” of ∼p that does not rely on c. Moreover,
and this is the main source of difficulty, we deal with an arbitrary A ∈ H(T )
or, wherever it is feasible, with an arbitrary A ∈ C(T ). Note that the final
plan with ∼p is to add the same c to the mode for all p-eligible pairs (a, b)
“aiming” at the same non-existing element such that, in the enlarged mode,
(a, b) should aim at c.

For A ∈ C(T ), p ∈ Io(T ) and (x1, x2), (x3, x4) ∈ A2, we define

(x1, x2) ∼p (x3, x4) iff x1x4p = x1x3px2p. (4.1)
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See Figure 2 with (x1, x2, x3, x4) := (a1, b1, a2, b2) for illustration, but remem-
ber that now we are in A ∈ C(T ) rather than in the real space. For later use,
we formulate the definition of ∼p in a slightly different form, too. We define
two quaternary terms, fL

p and fR
p , as follows:

x1x2x3x4f
L
p := x1x4p and x1x2x3x4f

R
p := x1x3px2p. (4.2)

The superscripts come from “left” and “right”, respectively. Note that

(x1, x2) ∼p (x3, x4) iff x1x2x3x4f
L
p = x1x2x3x4f

R
p . (4.3)

In other words, we will say that ∼p is the “LR-equalizer relation” of the pair
(fL

p , f
R
p ). (The terminology LR is intended to express that the left part,

(x1, x2) of (x1, x2, x3, x4) is “equalized” with the right part, (x3, x4).) In the
following lemma, we do not assume that 1/6 ∈ T .

Lemma 4.1. Let A ∈ V(T ) and p ∈ Io(T ). Then ∼p is a reflexive and
compatible relation on A2. If it is a congruence relation and A ∈ C(T ), then
the quotient mode A2/∼p belongs to C(T ).

Proof. Since uvp =i uupvp,

V(T ) satisfies the identity uvuvfL
p = uvuvfR

p , (4.4)

and the reflexivity of ∼p follows from (4.3).
Next, assume that (x1, x2) ∼p (x3, x4), (y1, y2) ∼p (y3, y4), and q ∈ Io(T ).

Then x1x2x3x4f
L
p = x1x2x3x4f

R
p and y1y2y3y4fL

p = y1y2y3y4f
R
p , and

x1y1 q x2y2 q x3y3 q x4y4 q f
L
p =e x1x2x3x4f

L
p y1y2y3y4f

L
p q =

x1x2x3x4f
R
p y1y2y3y4f

R
p q =e x1y1 q x2y2 q x3y3 q x4y4 q f

R
p .

(4.5)

Hence, (x1y1 q, x2y2 q) ∼p (x3y3 q, x4y4 q). This means that (x1, x2)(y1, y2)q ∼p

(x3, x4)(y3, y4)q. So, ∼p is a compatible relation. For later reference, notice
that the same argument shows that, for any pair (gL, gR) of terms on 2k+1

variables,

the LR-equalizer relation of (gL, gR) is a compatible relation on A2k

. (4.6)

Finally, assume that A ∈ C(T ) and ∼p is a congruence relation on A2. Then
the quotient mode A2/∼p makes sense and belongs to V(T ). The elements
of A2/∼p are the ∼p-blocks denoted by (x, y)∼p , where (x, y) ∈ A2. Let
(a, b), (c1, d1) and (c2, d2) belong to A2, and assume that (a, b)∼p(c1, d1)∼p q =
(a, b)∼p(c2, d2)∼p q. This means that (ac1 q, bd1q) ∼p (ac2q, bd2q). This gives
the second equation in the following formula:

abp c1d2p q =e ac1 q bd2q p = ac1 q ac2 q p bd1 q p =e aap c1c2p q bd1q p

=i a c1c2p q bd1 q p =e abp c1c2pd1p q.

Hence, by the cancellativity of q, we infer that c1d2p = c1c2pd1p. This means
that (c1, d1) ∼p (c2, d2), that is (c1, d1)∼p = (c2, d2)∼p . This proves one of
the cancellation laws while the other one follows by left-right symmetry (or by
skew commutativity). Thus, A2/∼p ∈ C(T ). �
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Lemma 4.2. If 1/6 = 6−1 belongs to T , p ∈ Io(T ), and A ∈ C(T ), then the
relation ∼p is a congruence on A2.

Notice that 1/6 is in T iff both 1/2 and 1/3 are in T .

Proof of Lemma 4.2. In what follows, like in Exercise 2.6, we will write h

instead of 1/2. Note that h ∈ Io(T ) is a commutative operation by skew
commutativity. To show that the following auxiliary identity

(x1y2p) (x2y1p)h = (x1x2p y1p )(x2x1p y2p)h (4.7)

holds in V(T ), let us compute:

x1x2p y1p x2x1p y2p h =e x1x2p x2x1p h y1y2h p

=e x1x2h x2x1h p y1y2h p =sc x1x2h x1x2h p y1y2h p

=i x1x2h y1y2h p =sc x1x2h y2y1h p =e x1y2p x2y1p h,

as required.
To prove the symmetry of ∼p, assume that (x1, y1) ∼p (x2, y2). Then

x1y2 p = x1x2p y1p and the cancellativity of h together with (4.7) imply that
x2y1 p = x2x1p y2p, that is, (x2, y2) ∼p (x1, y1). Hence, ∼p is symmetric.

In what follows,
t will stand for 1/3.

Note that t comes from “third”. Observe that the following identity

(x1y2p) (x1x3py1p )h (x2y3p) t = (x1x2py1p) (x1y3p) h (x2x3py2p) t (4.8)

holds in V(T ). To prove the transitivity of ∼p, assume that, for (xi, yi) ∈ A2,
(x1, y1) ∼p (x2, y2) and (x2, y2) ∼p (x3, y3). Then, by definition, the first
and the third parenthesized subterms on both sides of (4.8) give the same
elements. Hence, applying the cancellativity of t and then the cancellativity
of h, we conclude that the second parenthesized subterms on both sides are
also equal. This means that (x1, y1) ∼p (x3, y3). Thus, ∼p is transitive �

5. Hypercubic compositions and the quasivariety H(T )

5.1. Notation for complicated terms. We will consider pairs of terms.
The final purpose is to define congruences as LR-equalizers of these pairs.
Since no specific property of V(T ) will be used in the proof of Lemma 5.1, we
will consider terms of an arbitrary fixed type at the beginning.

We are going to deal with pairs of high complexity. Hence, it is reasonable
to introduce an appropriate shorthand notation. This is not only a question
of brevity. The classical “parametric” expressions

∑
(xi : i ∈ I) and

∏
(xj :

j ∈ J) (also used in subscripted form) have the advantage that, beside being
short, they allow certain manipulations with their parameters. It is not rare
that an argument would be quite difficult to find or follow with the parameter-
free x1 + · · · + xn and y1 . . . ym technique. Our situation is the same, so we
need a parametric notation for arbitrary operations. Since it would be very
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unusual to write (xi : i ∈ I)
∑

, not to mention the nonsense xi : i ∈ I
∑

, in
this section (and only here) we use the classical γ(x0, x1) notation rather than
the Polish notation x0x1γ .

Let f be a pair of terms. The first (left) and the second (right) component
of a pair f will be denoted by fL and fR, respectively, that is, f = (fL, fR).
We always assume that fL and fR have the same arity, which is called the
arity of the pair f . If k denotes this arity and z is a k-tuple, then f(z) will
stand for the pair

(
fL(z), fR(z)

)
.

Let 2 denote the two-element (ordered) set {0, 1} with 0 < 1, and let
2L

R = {L,R} with L < R . The elements of 2k or 2L

R

k will be treated as strings,
and both comma and juxtaposition will mean concatenation. For example, if
u = 01 ∈ 22, then each of x1,u and x1u is x101. Unless otherwise stipulated
by commas or range specifications, the ordering of the variables is always the
lexicographic one. Our self-explanatory notational system is exemplified as
follows. If z = (zu : u ∈ 23), then

z = (z000, z001, z010, z011, z100, z101, z110, z111),

zL = (z000, z001, z010, z011) = (z0v : v ∈ 22) is the left part of z,

zR = (z100, z101, z110, z111) = (z1v : v ∈ 22) is the right part of z.

For z = (zv : v ∈ 2n), z = (zv0 : v ∈ 2n−1) and z = (zv1 : v ∈ 2n−1) are called
the even part and the odd part of z, respectively. The range specifications
determine the ordering of variables as follows:

(
(yij : i ∈ 2) : j ∈ 2

)
= (y00, y10, y01, y11),(

(yij : j ∈ 2) : i ∈ 2
)

= (y00, y01, y10, y11).

Furthermore, let us see some more complex examples, where z = (zu : u ∈ 2n):

zRL = (zR)L = (z10u : u ∈ 2n−2),

f(z) = f(zLL, zLR, zR) = f(zu : u ∈ 2n)

=
(
fw(zu : u ∈ 2n) : w ∈ 2L

R

)
=

(
fL(z), fR(z)

)
.

As a final example, g
(
(xu0 : u ∈ 22), (x0v1 : v ∈ 2)

)
stands for

(
gw

(
(xu0 : u ∈ 22), (x0v1 : v ∈ 2)

)
: w ∈ 2L

R

)
=

(
gL(x000, x010, x100, x110, x001, x011), gR(x000, x010, x100, x110, x001, x011)

)
.

5.2. Hypercubic compositions. Let f1, f2, . . . be pairs of arbitrary qua-
ternary terms. (Notice that fL

i and fR
i should not be confused with fL

p and
fR

p for p ∈ Io(T ), since N0 is disjoint from Io(T ).) We are going to define

the n-fold hypercubic composition g
(n)
f1...fn

= (g(n)L
f1...fn

, g
(n)R
f1...fn

) of these pairs of

terms by induction as follows. Both components of g(n)
f1...fn

will be 2n+1-ary
terms. The variables of the n-fold hypercubic composition will be indexed
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by the elements of the (vertex set of the) hypercube 2n+1. This explains the
terminology “hypercubic”.

The empty (0-fold) hypercubic composition is the pair g(0) = (g(0)L, g(0)R)
where g(0)L and g(0)R are the first and the second binary projections, respec-
tively. That is, g(0)L(x0, x1) = x0 and g(0)R(x0, x1) = x1.

Let n ∈ N0. Assume that the n-fold hypercubic composition g(n)
f1...fn

, which
is a pair of 2n+1-ary terms, is already defined. Then let

g
(n+1)
f1...fn+1

(xu : u ∈ 2n+2) :=

g
(n)
f1...fn

((
fw

n+1(xjv : j ∈ 22) : v ∈ 2n
)

: w ∈ 2L

R

)
,

(5.1)

that is,

g
(n+1)L
f1...fn+1

(xu : u ∈ 2n+2) := g
(n)L
f1...fn

((
fw

n+1(xjv : j ∈ 22) : v ∈ 2n
)

: w ∈ 2L

R

)
,

and analogously for g(n+1)R
f1...fn+1

. The particular case of (5.1) for n = 0 yields

g
(1)
f1

(xj : j ∈ 22) = f1(xj : j ∈ 22), that is, g(1)
f1

= f1, (5.2)

because
(
(xjv : j ∈ 22) : v ∈ 20

)
can obviously be replaced by (xj : j ∈ 22).

We conclude the inductive definition of the hypercubic composition by the
following example (which allows us to imagine the astronomically long formulas
that would have occurred in the paper, if we had used a traditional notation):

g
(2)L
f1f2

(x000,x001, x010, x011, x100, x101, x110, x111) =

fL
1

(
fL
2 (x000, x010, x100, x110), fL

2 (x001, x011, x101, x111),

fR
2 (x000, x010, x100, x110), fR

2 (x001, x011, x101, x111)
)
.

Lemma 5.1. For n ∈ N0 and arbitrary pairs f1, . . . , fn+1 of quaternary terms
(of an arbitrary fixed type), the following hypercubic identity holds:

g
(n+1)
fn+1f1...fn

(xv : v ∈ 2n+2) =

fn+1

((
g
(n)w
f1...fn

(xui : u ∈ 2n+1) : i ∈ 2
)

: w ∈ 2L

R

)
.

(5.3)

Proof. If n = 0, then both sides of (5.3) coincides with f1(xu : u ∈ 22) by
(5.2). Assume that n ∈ N0 such that (5.3) holds. Let us compute:

g
(n+2)
fn+2f1...fn+1

(xv : v ∈ 2n+3)

=(5.1) g
(n+1)
fn+2f1...fn

((
fL

n+1(xjs : j ∈ 22) : s ∈ 2n+1
)
,

(
fR

n+1(xjs : j ∈ 22) : s ∈ 2n+1
))

.

(5.4)

The induction hypothesis says that we have to consider the even part and the
odd part of the vector on which g(n+1)w

fn+2f1...fn
acts, and we have to do it first for
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w = L and then for w = R. Hence, by the induction hypothesis, (5.4) equals

fn+2

((
g
(n)w
f1...fn

((
fL

n+1(xjvi : j ∈ 22) : v ∈ 2n
)
,

(
fR

n+1(xjvi : j ∈ 22) : v ∈ 2n
))

: i ∈ 2
)

: w ∈ 2L

R

)
.

Applying (5.1) to each of the subterms g(n)w
f1...fn

(. . .), this coincides with

fn+2

((
g
(n+1)w
f1...fn+1

(xui : u ∈ 2n+2) : i ∈ 2
)

: w ∈ 2L

R

)
. (5.5)

We have obtained that the lefthand side of (5.4) equals (5.5). This completes
the induction step. �

5.3. The definition of H(T ). In the rest of Section 5, the current section, we
will only consider algebras and terms of V(T ). Remember that, for p ∈ Io(T ),
the pair fp = (fL

p , f
R
p ) has been defined in (4.2). For brevity, if p1, . . . , pn ∈

Io(T ), then the following notation will apply:

ĝ(n)
p1...pn

= (ĝ(n)L
p1...pn

, ĝ(n)R
p1...pn

) := g
(n)
fp1 ...fpn

= (g(n)L
fp1 ...fpn

, g
(n)R
fp1 ...fpn

). (5.6)

For ~x = (xu : u ∈ 2n) and ~y = (yu : u ∈ 2n), let us define

~x ≈p1...pn ~y ⇐⇒ ĝ(n)L
p1...,pn

(x, y) = ĝ(n)R
p1...,pn

(x, y). (5.7)

In other words, ≈p1...pn denotes the LR-equalizer relation of the pair ĝ(n)
p1...,pn ,

where the pi are not assumed to be distinct. In particular, if n = 0, then

≈∅ is the equality relation, (5.8)

since ĝ(0) is the pair of projections. For n = 1, (4.3) and (5.2) imply that

≈p coincides with ∼p. (5.9)

Consider the quasi-identities

~x ≈p1...pn ~y ⇒ ~y ≈p1...pn ~x and

~x ≈p1...pn ~y ∧ ~y ≈p1...pn ~z ⇒ ~x ≈p1...pn ~z.
(5.10)

Then we define the quasivariety

H(T ) := {A ∈ C(T ) : A satisfies the quasi-identities (5.10)

for all n ∈ N0 and p1, . . . , pn ∈ Io(T )}.
(5.11)

5.4. Some congruences on cancellative barycentric algebras. The fol-
lowing trivial lemma is well-known, so we present it without proof.

Lemma 5.2. Let U and V be arbitrary algebras of the same type. Let ψ : U →
V be a surjective homomorphism, and let Θ ⊆ V 2 be an arbitrary relation on V .
Then Θ is a congruence on V iff {(u, v) ∈ U2 : ψ(u) Θ ψ(v)} is a congruence
on U .
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Lemma 5.3. Let A ∈ C(T ), let p ∈ Io(T ), and suppose that ∼p is a congru-
ence on A2. Denote the quotient mode A2/∼p by B. Let p1, . . . , pn ∈ Io(T )
be arbitrary (not necessarily distinct) elements of Io(T ). Then ≈p1...pn is a
congruence on B2n

iff ≈pp1...pn is a congruence on A2n+1
.

Proof. For z = (zu : u ∈ 2n+1) ∈ An+1, let
(
(zu0, zu1)∼p : u ∈ 2n

)
∈ B2n

be
denoted by z∼

∗
p . Clearly, each element of B2n

is of this form. We are going to
show that, for all x, y ∈ A2n+1

,

x∼
∗
p ≈p1...pn y

∼∗
p ⇐⇒ x ≈pp1...pn y. (5.12)

By definition, x∼
∗
p ≈p1...pn y

∼∗
p iff

ĝ(n)L
p1...,pn

((
(xu0, xu1)∼p : u ∈ 2n

)
,
(
(yu0, yu1)∼p : u ∈ 2n

))
=

ĝ(n)R
p1...,pn

((
(xu0, xu1)∼p : u ∈ 2n

)
,
(
(yu0, yu1)∼p : u ∈ 2n

))

iff

ĝ(n)L
p1...,pn

((
(xu0, xu1) : u ∈ 2n

)
,
(
(yu0, yu1) : u ∈ 2n

))
∼p

ĝ(n)R
p1...,pn

((
(xu0, xu1) : u ∈ 2n

)
,
(
(yu0, yu1) : u ∈ 2n

))

iff (
ĝ(n)L

p1...,pn

(
(xui : u ∈ 2n), (yui : u ∈ 2n)

)
: i ∈ 2)

)
∼p

(
ĝ(n)R

p1...,pn

(
(xu0 : u ∈ 2n), (yu0 : u ∈ 2n)

)
: i ∈ 2

)
.

By virtue of (4.3), this holds iff

fL
p

((
ĝ(n)w

p1...,pn

(
(xui : u ∈ 2n), (yui : u ∈ 2n)

)
: i ∈ 2

)
: w ∈ 2L

R

)
=

fR
p

((
ĝ(n)w

p1...,pn

(
(xui : u ∈ 2n), (yui : u ∈ 2n)

)
: i ∈ 2

)
: w ∈ 2L

R

)
.

Keeping (5.6) in mind, Lemma 5.1 yields that this equation is equivalent to

ĝ(n+1)L
pp1...,pn

(
(xu : u ∈ 2n), (yu : u ∈ 2n)

)
= ĝ(n+1)R

pp1...,pn

(
(xu : u ∈ 2n), (yu : u ∈ 2n)

)
,

which is equivalent to x ≈pp1...pn y by definition. This proves (5.12).
Finally, since ψ : A2n+1 → B2n

, z 7→ z∼
∗
p is clearly a surjective homomor-

phism, the last sentence of Lemma 5.3 follows from (5.12) and Lemma 5.2. �

For A ∈ C(T ) and a fixed sequence ~p = (p0, p1, p2 . . .) of elements of Io(T ),
we define

A[0] := A,

A[n+1] :=
(
A[n] ×A[n]

)
/∼pn , provided ∼pn is a congruence.

At present, A[n] is not necessarily defined. However, if it is defined, then A[k]

is also defined for every k < n.
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Lemma 5.4. Let A ∈ C(T ), and let ~p = (p0, p1, p2 . . .) be a fixed sequence of
elements of Io(T ). Assume that n ∈ N0 such that A[n] is defined. Then ∼pn

is a congruence on A[n] ×A[n] iff ≈p0...pn is a congruence on A2n+1
.

Proof. We need some auxiliary mappings. All of them will be surjective ho-
momorphisms. Namely, we will define ψk : A2k → A[k] for k = 0, . . . , n,
ϕk : A2k → A[k−1] × A[k−1] for k = 1, . . . , n, and πk : A[k−1] × A[k−1] → A[k]

for k = 1, . . . , n. We also define them for k = n + 1 without claiming that
πn+1 and ψn+1 always make sense. Let ψ0 be the identity mapping.

For 0 ≤ k ≤ n, assume that the surjective homomorphism ψk : A2k → A[k]

is already defined. Let

ϕk+1 : A2k+1
→ A[k] × A[k], x 7→

(
ψk(xL), ψk(xR)

)
,

πk+1 : A[k] × A[k] → (A[k] ×A[k])/∼pk = A[k+1], x 7→ x∼pk , and

ψk+1 = πk+1 ◦ ϕk+1 : A2k+1
→ A[k+1], x 7→ πk+1(ϕk+1(x)).

Since ψk+1 is the composite of ψk × ψk and the natural projection to a
quotient mode, it is clearly a surjective homomorphism, provided ∼pk is a
congruence, which is surely the case when k < n. Hence, ϕk, π` and ψ` are
surjective homomorphisms for k ≤ n+ 1 and ` ≤ n, but πn+1 and ψn+1 make
sense only if ∼pn is a congruence on A[n].

Next, we prove by induction on k that, for all k ≤ n and x, y ∈ A2k+1
,

x ≈p0...pk y ⇐⇒ ϕk+1(x) ∼pk ϕk+1(y). (5.13)

If k = 0 and z = (z0, z1) ∈ A21
, then ϕ1(z) = (ψ0(z0), ψ0(z1)) = (z0, z1) = z,

whence (5.13) clearly follows from (5.9). So, assume that (5.13) holds for some
k < n, let x, y ∈ A2k+2

, and compute:

x ≈p0...pk+1 y ⇐⇒(5.7) ĝ(k+2)L
p0...pk+1

(x, y) = ĝ(k+2)R
p0...pk+1

(x, y) ⇐⇒(5.1),(5.6)

ĝ(k+1)L
p0...pk

((
fw

pk+1
(x0v, x1v, y0v, y1v) : v ∈ 2k+1

)
: w ∈ 2L

R

)

= ĝ(k+1)R
p0...pk

((
fw

pk+1
(x0v, x1v, y0v, y1v) : v ∈ 2k+1

)
: w ∈ 2L

R

)
.

By (5.7), this means that
(
fL

pk+1
(x0v, x1v, y0v, y1v) : v ∈ 2k+1

)
≈p0...pk(

fR
pk+1

(x0v, x1v, y0v, y1v) : v ∈ 2k+1
)
.

By the induction hypothesis, this holds iff

ϕk+1

(
fL

pk+1
(x0v, x1v, y0v, y1v) : v ∈ 2k+1

)
∼pk

ϕk+1

(
fR

pk+1
(x0v, x1v, y0v, y1v) : v ∈ 2k+1

)
.

Since x0v = xL
v, . . . , y1v = yR

v, and fL
pk+1

acts componentwise on the elements

xL, xR, yL, yR of A2k+1
, the above condition is equivalent to

ϕk+1

(
fL

pk+1
(xL, xR, yL, yR)

)
∼pk ϕk+1

(
fR

pk+1
(xL, xR, yL, yR)

)
.
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Since ϕk+1 is a homomorphism, this holds iff

fL
pk+1

(
ϕk+1(xL), ϕk+1(xR), ϕk+1(yL), ϕk+1(yR)

)

∼pk f
R
pk+1

(
ϕk+1(xL), ϕk+1(xR), ϕk+1(yL), ϕk+1(yR)

)
.

Since congruences become equations in the corresponding quotient mode, this
is equivalent to

fL
pk+1

(
ϕk+1(xL)∼pk , ϕk+1(xR)∼pk , ϕk+1(yL)∼pk , ϕk+1(yR)∼pk

)

= fR
pk+1

(
ϕk+1(xL)∼pk , ϕk+1(xR)∼pk , ϕk+1(yL)∼pk , ϕk+1(yR)∼pk

)
.

Using ϕk+1(z)∼pk = ψk+1(z) and (4.3), the above equation is equivalent to
(
ψk+1(xL), ψk+1(xR)

)
∼pk+1

(
ψk+1(yL), ψk+1(yR)

)
,

that is, to ϕk+2(x) ∼pk+1 ϕk+2(y). This completes the induction step, and we
have seen that (5.13) holds for all k ≤ n.

Finally, Lemma 5.2 applied to (5.13) with k = n completes the proof. �

6. Basic properties of H(T )

Lemma 6.1. If 1/6 ∈ T , then H(T ) = C(T ).

Proof. Let n ∈ N0, and let p0, . . . , pn be an arbitrary sequence of elements of
Io(T ). We conclude from Lemmas 4.1 and 4.2 that for every B ∈ C(T ) and
p ∈ Io(T ), (B × B)/∼p makes sense and belongs to C(T ). Letting B equal
A = A[0], A[1], A[2], . . . , we conclude that, for any A ∈ C(T ), A[n] is defined
and belongs to C(T ). Hence, ∼pn is a congruence on A[n] by Lemma 4.2, and
Lemma 5.4 yields that ≈p0...pn is a congruence on A2n+1

. So, shifting the
subscripts by one, we obtain that the quasi-identities (5.10) hold in C(T ) for
all n ∈ N. Finally, we get from (5.8) that (5.10) trivially holds for n = 0. �

If 1/6 does not belong to T , then we can prove only a weaker statement.

Lemma 6.2. Q(T ) ⊆ H(T ) ⊆ C(T ).

Proof. Let A = (T ; Io(T )). Since it generates Q(T ), it suffices to show that
the quasi-identities (5.10) hold in A. Hence, it suffices to show that, for any
p1, . . . , pn ∈ Io(T ), ≈p1...pn is a congruence on A2n

. (This property of ≈p1...pn

is stronger than (5.10), but it will be easier to prove.)
First, by induction on n, we show that ≈p1...pn is reflexive. For n = 0

and n = 1, it is reflexive by (5.8) and by (5.9) together with Lemma 4.1,
respectively. So, assume that n ∈ N such that ≈p1...pn is reflexive. We have to
show that, for any x ∈ A2n+1

, x ≈p1...pn+1 x. That is, by (5.7), we have to show
that xx ĝ(n+1)L

p1...,pn+1 = xx ĝ
(n+1)R
p1...,pn+1 . (Note that we have returned to the Polish

notation.) Taking the recursive definition (5.1) and the notational convention
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(5.6) into account (and converting to Polish notation), this is equivalent to

(x0vx1vx0vx1vf
L
pn+1

: v ∈ 2n) (x0vx1vx0vx1vf
R
pn+1

: v ∈ 2n) ĝ(n)L
p1...,pn

= (x0vx1vx0vx1vf
L
pn+1

: v ∈ 2n) (x0vx1vx0vx1vf
R
pn+1

: v ∈ 2n) ĝ(n)R
p1...,pn

.

By (5.7), this holds iff

(x0vx1vx0vx1vf
L
pn+1

: v ∈ 2n) ≈p1...pn (x0vx1vx0vx1vf
R
pn+1

: v ∈ 2n). (6.1)

Since ≈p1...pn is reflexive by the induction hypothesis, (6.1) follows from (4.4).
This completes the induction step. Thus, for all n ∈ N and p1, . . . , pn ∈ Io(T ),
≈p1...pn is a reflexive relation on A2n

. It is compatible by (4.6).
Let A′ = (T ; Io(T )∪{P}) where P is the ternary ring term xyzP := x−y+z.

A trivial calculation shows (and we know from [16]) that P commutes with
all the p, p ∈ Io(T ). That is, A′ is still a mode. Therefore any two term
functions of A′ commute, and the compatibility of ≈p1...pn , as a relation on
A′2n

, follows again from (4.6).
Clearly, P satisfies the identities xxyP = y and xyyP = x in A′2n

. That
is, P is a Mal’cev term on A′2n

, see Mal’cev [7]; see also Burris and Sankap-
panavar [1] or Smith [17]. On the other hand, if an algebra has a Mal’cev term,
then all of its compatible reflexive relations are congruences, see Proposition
143 in Smith [17]. Thus, ≈p1...pn is a congruence on A′2n

, whence it is also a
congruence on A2n

. �

Lemma 6.3. If A ∈ H(T ) and p ∈ Io(T ), then the quotient mode (A×A)/∼p

makes sense and belongs to H(T ).

Proof. Let B = (A × A)/∼p. It makes sense since ∼p coincides with ≈p, see
(5.9), and ≈p is a congruence by the definition of H(T ). Lemma 5.3 clearly
implies that B ∈ H(T ). �

7. One-step closure

Let A ∈ C(T ) and p ∈ Io(T ). Remember that a pair (a, b) ∈ A2 is said to
be a p-eligible pair if for each x ∈ (a, b〉, there exists an element y = y(x) ∈ A

such that b = xyp. Let

Ep(A) := {(a, b) ∈ A2 : (a, b) is a p-eligible pair of A}.

Lemma 7.1. For A ∈ C(T ), Ep(A) is a submode of A2. Furthermore, for all
a ∈ A, (a, a) ∈ Ep(A).

Proof. For every a ∈ A, Ep(A) contains (a, a) since (a, a〉 = ∅.
Assume that (a1, b1), (a2, b2) ∈ Ep(A) and r ∈ Io(T ). Let

(a, b) := (a1, b1)(a2, b2)r = (a1a2 r, b1b2 r);

see Figure 3 for an illustration. We have to show that (a, b) ∈ Ep(A). Let
y ∈ (a, b〉. We have to find a z ∈ A with b = yzp. We can assume that y 6= b
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Figure 3. Illustration with (p, q, r) = (1/3, 1/2, 2/5)

since otherwise we can choose z = b. Then, by Lemma 2.2, y = abq for some
q ∈ Io(T ). Let yi = aibi q ∈ 〈ai, bi〉 for i = 1, 2. If yi 6= ai, then there is
an element zi ∈ A with bi = yizi p since (ai, bi) ∈ Ep(A). If yi = ai, then
aiai q =i ai = yi = aibi q implies ai = bi by cancellativity, whence bi =i yibip,
and we can choose zi := bi to ensure bi = yizip. Finally, with z := z1z2 r,

yzp = abqzp = a1a2 r b1b2 r qzp =e a1b1 q a2b2 q rzp

= y1y2 rzp = y1y2 r z1z2 r p =e y1z1py2z2p r = b1b2 r = b. �

Assume that A ∈ H(T ). Then ∼p is a congruence and (A×A)/∼p ∈ H(T )
by Lemma 6.3. Therefore, its restriction to the subalgebra Ep(A), which will
also be denoted by ∼p, is a congruence on Ep(A). So, we can define

K(1)
p (A) := Ep(A)/∼p , (7.1)

which we call the one-step p-closure of A. Notice that we write K(1)
p (A; Io(T ))

instead of K(1)
p ((A; Io(T ))), and the same convention applies for similar con-

structs. Since K(1)
p (A) is clearly a submode of (A×A)/∼p ∈ H(T ), Lemma 6.3

implies the following statement.

Lemma 7.2. If A ∈ H(T ) and p ∈ Io(T ), then K
(1)
p (A) ∈ H(T ).

For A,B ∈ C(T ) such that B is an extension of A (that is, A is a submode
of B), we say the extension B closes the p-eligible pairs of A if for each (a, b) ∈
Ep(A) there exists a c ∈ B such that b = acp. If, in addition, for each c ∈ B

there exists an (a, b) ∈ Ep(A) with b = acp, then we say that B accurately
closes the p-eligible pairs of A.

Lemma 7.3. For p ∈ Io(T ) and A ∈ H(T ), the mapping ψ : A → K
(1)
p (A),

a 7→ (a, a)∼p is an embedding. Moreover, K(1)
p (A) is an extension of ψ(A) that

accurately closes the p-eligible pairs of ψ(A).

We usually identify A with ψ(A), so Lemma 7.3 simply says that K(1)
p (A)

is an extension of A that closes the p-eligible pairs of A.
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Proof of Lemma 7.3. The second sentence of Lemma 7.1 shows that ψ is in-
deed a well defined A → K

(1)
p (A) mapping. Let ψ(a1) = ψ(a2). Then

(a1, a1)∼p(a2, a2), whence

a1a2p a1a2p p =i a1a2p = a1a2p a1p =i a1a2p a1a1p p.

Applying cancellativity twice, we get a2 = a1. This shows that ψ is injective.
Since ψ is the composite of the homomorphism A → Ep(A), x 7→ (x, x), and
the natural homomorphism Ep(A) → Ep(A)/∼p = K

(1)
p (A), y 7→ y∼p , ψ is a

homomorphism. Thus, ψ is an embedding.
Since babp p =i bbpabp p =e bapbbp p =i bap bp, we conclude that

(b, b) ∼p (a, abp) =i (aap, abp) = (a, a)(a, b)p,

for all a, b ∈ A. Hence, ψ(b) = ψ(a)(a, b)∼p p for (a, b) ∈ Ep(A), proving that

K
(1)
p (A) closes and accurately closes the p-eligible pairs of ψ(A). �

We conjecture that K(1)
p (A) is not p-closed in general because of some pos-

sible new p-eligible pairs. The next statement is about uniqueness, but we
need a stronger statement.

Proposition 7.4. Assume that A,B ∈ H(T ), and B is an extension of A
such that B closes the p-eligible pairs of A. Then the following statements
hold.

(i) There is a unique submode C of B such that C accurately p-closes the
p-eligible pairs of A.

(ii) There is exactly one embedding α1 : K(1)
p (A) → B whose restriction to A

is the identical mapping.
(iii) C = α1(K

(1)
p (A)), whence C is isomorphic to K(1)

p (A) over A.
(iv) If B accurately closes the p-eligible pairs of A, then B is isomorphic to

K
(1)
p (A) over A.

Proof. Consider the mapping

α0 : Ep(A) → B, (a, b) 7→ c ⇐⇒ b = acp.

By cancellativity, c above is unique, whence α0 is well-defined. It is a ho-
momorphism since in case of (a1, b1) 7→ c1, (a2, b2) 7→ c2 and q ∈ Io(T )
we have b1b2 q = a1c1p a2c2p q =e a1a2 q c1c2 q p, that is, (a1, b1)(a2, b2)q =
(a1a2q, b1b2 q) 7→ c1c2 q.

Next, we show that Kerα0, the congruence kernel of α0, coincides with ∼p.
If (a1, b1) 7→ c1, (a2, b2) 7→ c2, and (a1, b1) ∼p (a2, b2), then

a1 a2c2p p = a1b2p = a1a2p b1p = a1a2p a1c1p p

=e a1a1p a2c1p p =i a1 a2c1p p.

Hence, applying cancellativity twice we conclude that c2 = c1. This means
that ∼p is included in Kerα0. Secondly, we assume that (ai, bi) 7→ c, that is,
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b1 = a1cp and b2 = a2cp. Then

a1b2p = a1 a2cp p =i a1a1p a2cp p =e a1a2p a1cp p = a1a2p b1 p

gives that (a1, b1) ∼p (a2, b2). Hence, Kerα0 is included in ∼p, so these two
congruences are equal. Therefore, since K(1)

p (A) = Ep(A)/∼p, the mapping

α1 : K(1)
p (A) → B, (a, b)∼p 7→ α0((a, b))

is an embedding. Since a =i aap, α1 acts identically on A.
To show the uniqueness stated in the second part of Proposition 7.4, assume

that β : K(1)
p (A) → B is an embedding over A. Let y ∈ K

(1)
p (A) \ A. Then

b = ayp for some (a, b) ∈ Ep(A) since K(1)
p (A) accurately closes the p-eligible

pairs of A by Lemma 7.3. Hence, b = β(b) = β(ayp) = β(a)β(y)p = aβ(y)p ,
and the cancellativity of p yields the uniqueness of β. This together with the
previously constructed α1 proves the second part of the proposition, and also
shows the existence of a C according to the first part.

To prove the uniqueness of C, assume that D is another submode of B that
accurately closes the p-eligible pairs of A. Take an arbitrary c ∈ C \ A, and
choose an (a, b) ∈ Ep(A) with b = acp. Since D also closes (a, b), there is a
d ∈ D with b = adp. Then the cancellativity of p implies c = d, whence c ∈ D.
This shows C ⊆ D, and D ⊆ C follows the same way.

Finally, the last two parts of the proposition clearly follow from the first
two. �

8. Multi-step closure and the rest of the main proof

In this section, let ν = ν(T ) denote the smallest ordinal number whose
cardinality, denoted by |ν|, is larger than that of our fixed ring T , that is,
|ν| > |T |. Let ∅ 6= Γ ⊆ Io(T ). A transfinite sequence ~p = (pι : ι < ν) will be
called a strong Γ-sequence if the following properties hold:

(i) Γ = {pι : ι < ν};
(ii) each p ∈ Γ is cofinal in the sequence ~p, that is, for arbitrary p ∈ Γ and

ι < ν, there exists an ordinal λ such that ι < λ < ν and p = pλ.

Lemma 8.1. There exists a strong Γ-sequence.

Proof. Let U = (U ;<) and V = (V ;<) be well-ordered sets such that V is of
order type ν and |U | = |Γ|. Take a bijection τ : U → Γ, u 7→ pu. Consider the
anti-lexicographic ordering < on U ×V . That is, for (u1, v1), (u2, v2) ∈ U ×V ,
let (u1, v1) < (u2, v2) mean that either v1 < v2, or v1 = v2 and u1 < u2. Then
(U ×V ;<) is a well-ordered set. Let η denote its order type. Since Γ is clearly
cofinal in ~p :=

(
pu : (u, v) ∈ U × V

)
, it suffices to show that η = ν.

By the definition of ν, |{y : y < v}| < |ν|. That is |{y : y < v}| ≤ |T | holds
for every v ∈ V . Hence, each initial segment {(u′, v′) : (u′, v′) < (u, v)} of
U × V is of cardinality at most |Γ| · |T | = |T |. This implies that η ≤ ν. On
the other hand, |U × V | ≥ |V | = |ν|, whence ν ≤ η. �
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Definition 8.2. Let ~p = (pι : ι < ν) be a fixed strong Γ-sequence, and let
A ∈ H(T ). We are going to define a directed system of modes K̃(λ)

~p (A), λ ≤ ν,

with embeddings ψξ,λ : K̃(ξ)
~p (A) → K̃

(λ)
~p (A), ξ ≤ λ ≤ ν. As usual, “directed

system” means that ψξ,ξ will be the identity mapping and ξ ≤ ζ ≤ λ ≤ ν will
imply ψξ,λ = ψζ,λ ◦ψξ,ζ .

Let K̃(0)
~p (A) := A. If λ = µ + 1 is a successive ordinal, then let

K̃
(λ)
~p (A) := K(1)

pµ

(
K̃

(µ)
~p (A)

)

or , equivalently, K̃(µ+1)
~p (A) := K(1)

pµ

(
K̃

(µ)
~p (A)

)
,

ψµ,λ : K̃(µ)
~p (A) → K̃

(λ)
~p (A), a 7→ (a, a)∼pµ , and

ψξ,λ : K̃(ξ)
~p (A) → K̃

(λ)
~p (A) is the composite ψµ,λ ◦ ψξ,µ for ξ < µ.

(8.1)

Note that ψµ,λ is the embedding ψ from Lemma 7.3 and K̃(1)
~p (A) = K

(1)
p0 (A).

If λ is a limit ordinal and λ ≤ ν, then let

K̃
(λ)
~p (A) :=

⋃

µ<λ

K̃
(µ)
~p (A) (directed union), and

ψµ,λ :=
⋃

µ≤ι<λ

ψµ,ι , if µ < λ.

Notice that a category theorists would say that, for a limit ordinal λ ≤ ν,
K̃

(λ)
~p (A) is the directed colimit of the functor F from the small category {µ :

µ < λ} to V(T ) such that F (ι) = K̃
(ι)
~p (A) and F (ι→ µ) = ψι,µ for ι < µ < λ,

see Mac Lane [6, pages 67–68]. Finally, define

K∞
Γ (A) := K̃

(ν)
~p (A) and K∞

all(A) := K∞
Io(T )(A).

It follows from the forthcoming Lemmas 8.3 and 8.4 that, up to isomorphism
over A, K∞

Γ (A) does not depend on the actual choice of the strong Γ-sequence
~p. The notion of Γ-closures has been defined right before Theorem 2.3.

Lemma 8.3. If A ∈ H(T ) and ∅ 6= Γ ⊆ Io(T ), then the definition of K∞
Γ (A)

makes sense, K∞
Γ (A) belongs to H(T ), and it is a Γ-closure of A.

Proof. For modes X and Y , X ≤ Y will denote that X is a submode of Y .
Clearly, K̃(0)

~p (A) = A ∈ H(T ). If K̃(µ)
~p (A) ∈ H(T ), then Lemma 7.2 implies

that K̃(µ+1)
~p (A) =(8.1) K

(1)
pµ

(
K̃

(µ)
~p (A)

)
belongs to H(T ). Quasivarieties are

closed with respect to directed colimits since this construction clearly preserves
the quasi-identities. Hence, K∞

Γ (A) belongs to H(T ).
Next, let p ∈ Γ and let (a, b) ∈ Ep

(
K∞

Γ (A)
)
. We want to show that (a, b) is

p-closed in K∞
Γ (A). We know that ν is a limit ordinal, so there is a least ι < ν

such that a, b ∈ K̃
(ι)
~p (A). Clearly, (a, b〉 = {abp : p ∈ Io(T )} ∪ {b} (both in

K̃
(ι)
~p (A) and in K∞

Γ (A)). Let xp := abp. Then {xp : p ∈ Io(T )} = (a, b〉 \ {b},
but b is not interesting from our perspective here. Since (a, b) is p-closed in
K∞

Γ (A), for each p ∈ Io(T ) there is a yp ∈ K∞
Γ (A) such that b = xpyp p.
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Hence, there is a least ordinal λp such that ι ≤ λp < ν and yp ∈ K̃
(λp)
~p (A). Let

µab :=
∑

p∈Io(T ) λp. Then |µab| =
∑

p∈Io(T ) |λp| ≤ |T | · |T | = |T |, so µab < ν.

Clearly, (a, b) is p-eligible in K̃(η)
~p (A) for every η such that µab ≤ η < ν. Since p

is cofinal in the Γ-sequence, we can choose this η such that pη = p. Then, since
(a, b) is p = pη-eligible in K̃(η)

~p (A), the construction (see (8.1) and Lemma 7.3)

yields a c ∈ K̃
(η+1)
~p (A) ⊆ K∞

Γ (A) such that b = acpη = abp. Thus, K∞
Γ (A) is

Γ-closed.
Finally, suppose that A ≤ B ≤ K∞

Γ (A) such that B is a Γ-closed extension
of A. We have to prove that B = K∞

Γ (A). It suffices to show, by induction on
µ, that K̃(µ)

~p (A) ⊆ B for all µ < ν. For µ = 0, this is trivial since K̃(0)
~p (A) = A.

Assume that K̃(µ)
~p (A) ⊆ B. By the second part of Proposition 7.4, there is a

(unique) embedding β of K̃(µ+1)
~p (A) =(8.1) K

(1)
pµ

(
K̃

(µ)
~p (A)

)
into B such that β

acts identically on K̃(µ)
~p (A). This β is also a K̃(µ+1)

~p (A) → K∞
Γ (A) embedding.

On the other hand, α : K̃(µ+1)
~p (A) → K∞

Γ (A), x 7→ x, is also an embedding

that acts identically on K̃
(µ)
~p (A). Hence, the second part of Proposition 7.4,

applied to K̃(µ)
~p (A) and K∞

Γ (A), yields that α and β are the same mappings.
Hence,

K̃
(µ+1)
~p (A) = α

(
K̃

(µ+1)
~p (A)

)
= β

(
K̃

(µ+1)
~p (A)

)
⊆ B,

indeed. The induction step for limit ordinals is trivial. �

Lemma 8.4. Let A ∈ H(T ), and let ∅ 6= Γ ⊆ Io(T ). Then, in H(T ), the
Γ-closure of A is unique up to isomorphism over A.

Proof. We know from Lemma 8.3 that K∞
Γ (A) is a Γ-closure of A. Let

B ∈ H(T ) be another Γ-closure of A. We are going to define a sequence
of embeddings βι : K̃

(µ)
~p (A) → B, µ ≤ ν, by induction on µ such that βι is a

restriction of βλ for all ι < λ ≤ ν. (Here K̃(ν)
~p (A) is understood as K∞

Γ (A).)
Let β0 be the identical mapping.

Assume that βµ is already defined. Then βµ

(
K̃

(µ)
~p (A)

)
is a submode of

B. Since B is pµ-closed, the second part of Proposition 7.4 gives a unique
embedding

α1 : K(1)
pµ

(
βµ

(
K̃

(µ)
~p (A)

))
→ B.

Clearly, we can extend the isomorphism βµ : K̃(µ)
~p (A) → βµ

(
K̃

(µ)
~p (A)

)
to a

unique isomorphism β̂µ : K(1)
pµ

(
K̃

(µ)
~p (A)

)
→ K

(1)
pµ

(
βµ

(
K̃

(µ)
~p (A)

))
in the natural

way. Since the domain of β̂µ is just K̃(µ+1)
~p (A), the composite mapping βµ+1 =

α1 ◦ β̂µ is an embedding that extends βµ.
If λ ≤ ν is a limit ordinal, then let βλ =

⋃
µ<λ βµ.

Since βν is a K∞
Γ (A) → B embedding, βν

(
K∞

Γ (A)
)

is a Γ-closed submode
of B. Hence, since B is a Γ-closure of A, we conclude that βν

(
K∞

Γ (A)
)

= B.
Consequently, βν is surjective, whence it is an isomorphism. �
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The proof of Theorem 2.3. Lemmas 6.1, 6.2, 8.3 and 8.4. �

9. When T is more or less a field

This section deals with the question whether p-closed members of C(T ) are
necessarily q-closed, for given p, q ∈ Io(T ). Since p and q can be algebraically
independent over Q, we conjecture that the answer is negative in general.
However, if T contains certain quotients of its elements, then we can give a
satisfactory answer.

Lemma 9.1. Let p, q ∈ Io(T ) with p < q. Suppose that

(1) r̂(p, q) := (q − p)/((1 − p)q) ∈ T , and
(2) û(p, q) := p/(p+ q) ∈ T .

Then every p-closed member of C(T ) is q-closed.

Note that (1) and (2), on which the proof relies, do not hold automatically.
For example, let us consider D = Z[1/2] = {a/2k : a ∈ Z, k ∈ N}, the ring of
dyadic rational numbers. Then 1/4 and 1/2 are in Io(D), but r̂(1/4, 1/2) =
2/3 /∈ D and û(1/4, 1/2) = 1/3 /∈ D.

Proof of Lemma 9.1. Let A ∈ C(T ) be p-closed. Let r = r̂(p, q) and u =
û(p, q). They belong to T by (1) and (2), whence 0 < p < q < 1 implies
that r, u ∈ Io(T ). We will use the fact that, under the assumptions p < q,
r = r̂(p, q), and u = û(p, q), the identities (9.1) and (9.2) below hold in V(T ).
Hence, they hold in A as well.

Let (a, b) be a q-eligible pair. We have to find a c ∈ A such that b = acq.
Let a1 = abr. We claim that (a1, b) is p-eligible. Suppose that x ∈ (a1, b〉 and,
without loss of generality, x 6= b and a 6= b. By Lemma 2.2, x = a1bs for some
s ∈ Io(T ). Since abs ∈ (a, b〉 and (a, b) is q-eligible, there exists a y ∈ A with
abs y q = b. Hence, the identity

(b) (abs y q )u = (abr bs yp ) (b) u (9.1)

together with the cancellativity of u yields the first equation of the following
formula:

b = abr bs yp = a1bs yp = xyp.

Hence, (a1, b) is p-eligible. Since A is p-closed, there exists a c with a1cp = b,
that is, abr cp = b. Hence, the identity

(abr cp) (b) u = (b) (acq) u (9.2)

and the cancellativity of u imply acq = b. �

Proposition 9.2. Let T be subfield of R, let p ∈ Io(T ), and let A ∈ C(T ).
Then A is p-closed if and only if A is closed.
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Proof. Assume that A is p-closed. We have to show that it is q-closed for all
q ∈ Io(T ). In virtue of Lemma 9.1, we know that X := {q ∈ Io(T ) : A is
q-closed} is an order filter (in other words, up-set) in (Io(T );≤). Hence, it
suffices to show that whenever p ∈ X is greater than 1/2, then 1 − p also
belongs to X. So, we assume that 1/2 < p ∈ Io, A ∈ C(T ) is p-closed and
q := 1 − p. We have to show that A is q-closed.

Let (a, b) be a q-eligible pair, that is, (a, b) ∈ Eq(A). We have to show that
(a, b) is q-closed. That is, we have to find a c ∈ A with b = acq. The case
a = b is evident, so we assume that a 6= b. Define

r := q/p ∈ Io(T ) and d := abr. (9.3)

Since (a, b) is q-eligible and A is cancellative, there is a unique e ∈ A with

b = deq. (9.4)

With the notation h = 1/2 ∈ Io(T ) (coming from “half”) and w = 1/(2p+1) ∈
Io(T ), and with the previous meaning of p, q, r, consider the following identity:

(abr) (b)h (deq) w = (d) (aer) h (b) w. (9.5)

This identity holds in V(T ). In the present situation, the first and the third
parenthesized subterms on both sides give the same elements by (9.3) and
(9.4). Hence, the cancellativity of w and h yields that

b = aer. (9.6)

We want to show that (a, e) is a p-eligible pair. Let x ∈ (a, e〉, we can assume
that x 6= e. Then

x = aes (9.7)

for some s ∈ Io(T ). Define
z := aaxr r. (9.8)

Since

z =(9.8) aaxr r =(9.7) aaaes r r =i a (aas aes r) r

=e aaar (aer) s r =(9.6) aaar bs r =i aabs r,

we get that z ∈ 〈a, b〉. In fact, z belongs to (a, b〉, because otherwise aaar r =i

a = z =(9.8) aaxr r, and the cancellativity of r would imply x = a, contra-
dicting x ∈ (a, e〉. Therefore the q-eligibility of (a, b) yields an element y ∈ A

such that
b = zy q. (9.9)

If h = 1/2, q = 1 − p and r = q/p, as before, then the identity

(abr eq) (b)(xyp)q h = (b) (aaxr r y q)(e)q h (9.10)

holds in V(T ). In the present situation, the first parenthesized elements (on
the left-hand and right-hand sides of (9.10)) are equal by (9.3) and (9.4). The
second parenthesized elements are equal by (9.8) and (9.9). Therefore, by the
cancellativity of h and q, the third parenthesized elements are also equal, that
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is, xyp = e. This shows that (a, e) ∈ Ep(A). Hence, there exists an element
c ∈ A such that

e = acp. (9.11)

Finally, for q = 1 − p and r = q/p as before, the identity

aacp r = acq (9.12)

holds in V(T ). Hence, we conclude that acq = aacp r =(9.11) aer =(9.6) b.
This means that (a, b) is q-closed. �

Proposition 9.3. If T is a subfield of R, A ∈ C(T ), and p ∈ Io(T ), then
K∞

all(A) = K∞
{p}(A).

Proof. Apply Theorem 2.3 and Proposition 9.2. �

10. Relating our closure to the topological one

Proof of Proposition 2.4. We will consider Rn as an affine space RRn, which
is the full idempotent reduct of the vector space (denoted the same way). The
affine subspaces are exactly the cosets of the subspaces of the vector space.
The elements of the affine space RRn will be called affine points while the cor-
responding elements of the vector space RRn are called vectors. Sometimes we
consider Rn even as a Euclidean space. Let a0, . . . , ak ∈ RRn be affine points.
We say that these points are independent, if they are pairwise distinct and
none of them belongs to the affine subspace spanned (generated) by the rest.
Alternatively, they are independent iff {a0, . . . , ak} is a free generating set of
the affine space RRn. Yet another definition is that a0, . . . , ak are independent
iff they are the vertices of a k-dimensional simplex. Clearly, the independence
of a0, . . . , ak ∈ RRn implies k ≤ n.

Let k denote the largest integer such that H contains k + 1 independent
affine points. Fix k + 1 independent affine points, say, v0, . . . , vk in H, and
let V denote the affine subspace they span. We claim that H ⊆ V . Indeed,
otherwise we could take an arbitrary affine point vk+1 in H\V , and, as an easy
consequence of the Exchange Axiom, v0, . . . , vk, vk+1 would be an independent
set of more than k + 1 elements.

The topological notion of an open set will be used within V , which we
consider a Euclidean space of dimension k with the topology induced by the
usual metric. To emphasize this, we will say that a subset of V is “open in
V ”. Let H ′ denote the interior of H, understood again in V . If k = 0, then
H is a singleton set, whence the statement of the proposition is trivial. Hence,
we can assume that k ≥ 1. Then H ′ is a non-empty open set in V since the
interior of the simplex determined by v0, . . . , vk is a subset of H ′. Clearly,
H ′ ⊆ H ⊆ H ′tc, whence H ′tc = Htc.

Since V is still subset of Rn, we can form Htc ∩ Sn, which is a subset
of V . For short, we will denote the barycentric algebras

(
Htc ∩ Sn; Io(T )

)
,(

H∩Sn, Io(T )
)
, and

(
H ′∩Sn, Io(T )

)
byHtc

S = H ′tc
S ,HS , andH ′

S , respectively.
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All of them belong to Q(T ) by Lemma 3.1, and therefore also to H(T ) by
Lemma 6.2 (or by Theorem 2.3).

For p ∈ Io(T ), let

p(i) : Rn × Rn → Rn, where (x, y) 7→ −1 − p

p
· x+

1
p
· y.

This operation is called the right inverse of p. Indeed, for any x, y, z ∈ Rn,

xyp = z ⇐⇒ y = xz p(i) .

Note thatH is not closed with respect to p(i) in general. Note also that formally
p(i) is 1/p. However, we will not use the notation 1/p, since 1/p /∈ Io(T ) for
p ∈ Io(T ).

First we show that, for every p ∈ Io(T ),

Htc
S is p-closed. (10.1)

Let (a, b) ∈ Ep(Htc
S ) such that a 6= b. Then there is unique c ∈ Rn such that

acp = b, that is, c = abp(i) . Assume for a contradiction that c is not in Htc
S .

Then there is a small neighborhood U of c in V such that U∩Htc
S ⊆ U∩Htc = ∅,

because V \ Htc is open in V . (By a neighborhood of c we mean a superset
of {c} that is open in V .) Since x → xbp(i) is a continuous V → V mapping,
U ′ := {x ∈ V : xbp(i) ∈ U} is an open set in V . We get from abp(i) = c ∈ U

that a ∈ U ′. Since T is distinct from Z, Io(T ) is everywhere dense in the closed
interval I(R) = {x ∈ R : 0 ≤ x ≤ 1}. Hence, we can choose a sufficiently small
q ∈ Io(T ) such that x0 := abq ∈ (a, b〉∩U ′. Let y0 = x0b p

(i) , then x0y0p = b.
It follows from the definition of U ′ that y0 ∈ U . On the other hand, y0 ∈ Htc

S

since (a, b) ∈ Ep(Htc
S ). This yields that y0 ∈ Htc ∩ U = ∅, a contradiction

proving (10.1).
Consider the mapping

α : Ep(HS) → Htc
S , (a, b) 7→ abp(i) .

First of all, we have to check that (a, b) ∈ Ep(HS) implies abp(i) ∈ Htc
S . Since

S is a field, abp(i) ∈ Sn. The p-eligibility of (a, b) yields that xbp(i) ∈ HS for
all x ∈ (a, b〉. Since p(i) is continuous and Htc is closed with respect to limits,

α(a, b) = abp(i) = ( lim
x→a, x∈(a,b〉

x)b p(i) = lim
x→a, x∈(a,b〉

(xbp(i) ) ∈ Htc.

Hence, α(a, b) ∈ Htc
S , indeed.

To show that α is a homomorphism, assume that (a1, b1), (a2, b2) ∈ Ep(HS),
q ∈ Io(T ), and α(ai, bi) = aibi p

(i) = ci ∈ Sn for i = 1, 2. Then bi = aicip

for i = 1, 2. Since b1b2q = a1c1p a2c2p q =e a1a2 q c1c2 q p, we obtain that
c1c2q = a1a2 q b1b2q p

(i) . Hence, α((a1, b1) (a2, b2) q) = α(a1a2 q, b1b2 q) =
c1c2q = α(a1, b1)α(a2, b2)q, showing that α is a homomorphism.

Next, we show that α is surjective. For c ∈ H ′
S , c is clearly the α-image of

(c, c), which belongs to Ep(HS) by Lemma 7.1. So, assume that c ∈ Htc
S \H ′

S,
and fix an element a ∈ H ′

S. Then b := acp ∈ Htc
S . The convexity of Htc easily
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implies that (a, b) ∈ Ep(Htc
S ). Take the hyperplane (that is, an affine subspace

of dimension k− 1) D of V through a that is orthogonal to the line ` through
a and c. Since H ′ is an open set in V , there is a small positive % such that the
(k−1)-dimensional closed sphere G in D with center a and radius % is a subset
of H ′. By the convexity of Htc, all points of the (bounded) cone determined
by c and G (in V ) belong to Htc. Since all points of ` strictly between a

and c belong to the interior of this cone, and therefore to the interior of Htc,
it follows in a straightforward way that these points belong to H. This fact
together with (a, b) ∈ Ep(Htc

S ) yields that (a, b) ∈ Ep(HS). So, (a, b) is in the
domain of α, and α(a, b) = abp(i) = c proves the surjectivity of α.

Next, we show that the congruence kernel Kerα of α coincides with the
congruence ∼p on Ep(HS). Let (a, b), (a′, b′) ∈ Ep(HS), and denote α(a, b)
and α(a′, b′) by c and c′, respectively. Then b = acp and b′ = a′c′p. First,
assume that (a, b) ∼p (a′, b′). Then

aa′p acp p = aa′p bp =(4.1) ab′p = aa′c′p p

=i aap a′c′p p =e aa′p ac′p p.

Hence, by applying the cancellativity of p twice, we obtain c = c′. This means
that ∼p is included in Kerα. Conversely, assume that c = c′, that is, Kerα
collapses (a, b) and (a′, b′). Then

aa′p bp = aa′p acp p =e aap a′cp p =i aa′cp p = aa′c′p p = ab′p

means that (a, b)∼p(a′, b′). Thus, Kerα is ∼p.
Finally, taking the canonical embedding given by Lemma 7.3 into account,

the homomorphism theorem yields thatK(1)
p (HS) =(7.1) Ep(HS)/∼p is isomor-

phic to Htc
S over HS. This together with (10.1), where p was an arbitrary ele-

ment of Io(T ), imply thatK(1)
p (HS) is closed. In particular,K(1)

p (HS) closes its
own p-eligible pairs. Either from Lemma 7.3 combined withHS ⊆ K

(1)
p (HS), or

from Lemma 7.1 applied for a = b := c, we obtain that for each c ∈ K
(1)
p (HS),

there is a pair (a, b) ∈ Ep(K
(1)
p (HS)) such that b = acp. Hence, K(1)

p (HS) ac-
curately closes its own p-eligible pairs. So we infer from Proposition 7.4 that

K̃
(2)
~p (HS) = K

(1)
p (K(1)

p (HS)) = K
(1)
p (HS). This implies K̃(λ)

~p (HS) = K
(1)
p (HS)

for all λ. Therefore K∞
all(HS) = K

(1)
p (HS) ∼= Htc

S , over HS. �

Proof of Corollary 2.5. We are going to use Proposition 2.4, applied for T =
S = R. SinceK∞

all

(
H; Io(R)

)
is isomorphic to

(
Htc; Io(R)

)
overH, we conclude

that
(
H; Io(R)

)
is closed in our sense iff

(
H; Io(R)

)
equals K∞

all

(
H; Io(R)

)
iff(

H; Io(R)
)

equals
(
Htc; Io(R)

)
iff H is topologically closed.

Let p ∈ Io(R). We obtain from Proposition 2.4 again that
(
H; Io(R)

)
is

p-closed iff
(
H; Io(R)

)
equals K(1)

p

(
H; Io(R)

)
, and the statement follows from

K
(1)
p

(
H; Io(R)

)
= K∞

all

(
H; Io(R)

)
and the first part of the proof. �
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Let A ∈ V(T ) and a ∈ A. Then a is called a wall element if

xyp = a implies x = y = a, for all p ∈ Io(T ), (10.2)

that is, if {a} is a wall according to [16].

Proof of Lemma 2.7. Let F denote 〈T 〉field. Consider R2 and S2 as vector
spaces F R2 and FS

2 over F , respectively. Let % and σ denote the smallest
ordinal numbers whose cardinalities are the dimension of F R2 and that of FS

2,
respectively. Then ω ≤ σ by the assumption, and σ ≤ %, evidently.

Take a basis (eλ : λ < σ) of the vector space FS
2. We can assume that

each eλ belongs to C. Indeed, otherwise eλ can be replaced by eλ/m for a
sufficiently large m = m(λ) ∈ N ⊆ F .

Our plan is to construct a submode B of
(
S2; Io(T )

)
that is everywhere

dense in R2 in the usual topological sense. A square in R2 will be called a
rational square if both coordinates of each of the four vertices belong to Q.
There are countably many rational squares. Let (Ui : i < ω) be an enumeration
of them. (Here Ui is understood as a closed convex subset of R2.) We claim
that the vector space

FS
2 has a basis (fι : ι < σ) such that fi ∈ Ui for all i < ω. (10.3)

Let f0 ∈ U0 \ {0} be arbitrary. Next, assume that i < ω, and f0, . . . , fi are
defined and they are linearly independent. Let Wi denote the subspace of FS

2

spanned by {f0, . . . , fi}. Assume for a contradiction that Ui+1 ∩ FS
2 ⊆ Wi.

Then since Q ⊆ S, the center point ci+1 of Ui+1 belongs to FS
2 and also to

Wi. For each v ∈ FS
2, there is a sufficiently large n ∈ N such that w :=

ci+1 + 1
n
·v ∈ Ui+1. But w ∈ FS

2, whence w ∈Wi. So, v = n · (w−ci+1) ∈Wi.
We have obtained that FS

2 ⊆ Wi. This is a contradiction, because the (i+1)-
dimensional vector space FWi cannot include the σ-dimensional FS

2. Having
seen that Ui+1 ∩ FS

2 6⊆ Wi, we can select an fi+1 ∈ (Ui+1 ∩ FS
2) \ Wi.

Clearly, the system f0, . . . , fi, fi+1 is still linearly independent. This way we
have defined a linearly independent system (fι : ι < σ). Since this system can
be extended to a basis of FS

2, (10.3) follows.
Armed with the two bases, the bijection {eι : ι < σ} → {fι : ι < σ},

eι 7→ fι, can be extended to an automorphism π of the vector space FS
2.

Since
(
S2; Io(T )

)
is a reduct of this vector space, π is an automorphism

of
(
S2; Io(T )

)
as well. Define B := π(C), then

(
B; Io(T )

) ∼=
(
C; Io(T )

)
.

Clearly, Ctc∩S2 has many wall elements, for example, (1, 0), (0,−1) and, say,
(3/5,−4/5). Since Ctc ∩S2 ∼= K∞

all(C) by Proposition 2.4, we get that K∞
all(C)

also has wall elements. Therefore K∞
all(B) also has wall elements, because

B ∼= C and the uniqueness part of Theorem 2.3 yield that K∞
all(B) ∼= K∞

all(C).
On the other hand, {fi : i < ω} = {π(ei) : i < ω} is a subset of B

and it is everywhere dense in R2. Hence, Btc = R2, so Btc ∩ S2 = S2.
Since S2 =

(
S2; Io(T )

)
has no wall elements, Btc ∩ S2 is not isomorphic to

K∞
all(B). �
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Solution of Exercise 2.6. No, they are not isomorphic. Let Ctc
Q = {(x, y) ∈

Q2 : x2 + y2 ≤ 1} and Dtc
Q = {(x, y) ∈ Q2 : 0 ≤ x, 0 ≤ y, x+ y ≤ 1}. Assume

for a contradiction that the two groupoids in question are isomorphic. It is
well-known, see Theorem 6.6.1 in [16], that the modes (R2;h) and (R2; Io(D))
are term equivalent, that is, they have the same term functions. Therefore,
the same holds for their submodes. Hence, (C;h) is term equivalent with
(C; Io(D)), and (D;h) is term equivalent with (D; Io(D)). Thus, (C; Io(D))
is isomorphic to (D; Io(D)), and Theorem 2.3 yields that K∞

all(C; Io(D)) ∼=
K∞

all(D; Io(D)). Hence, applying Proposition 2.4, we get that
(
Ctc

Q ; Io(T )
) ∼=

(
Dtc

Q ; Io(T )
)
. (10.4)

Clearly,
(
Dtc

Q ; Io(T )
)

has only three wall elements, see (10.2), the vertices
(0, 0), (1, 0) and (0, 1) of the triangle. On the other hand,

(
Dtc

Q ; Io(T )
)

has at
least four wall elements, namely, (1, 0), (−1, 0), (0, 1), (0,−1). (In fact, it has
infinitely many wall elements obtained from Pythagorean triples, for example,
(3/5, 4/5).) This contradicts (10.4). �

11. Relating Theorem 2.3 to some results of [16]

Now, we are going to compare our results with some results of the reference
book on modes.

For a subfield F of R and a mode A ∈ V(F ), [16, Prop. 5.8.7] states that A
is cancellative iff at least one of the operations p ∈ Io(F ) is cancellative. (For
F = R, this was originally proved by Neumann [10].) This has motivated (but
seems not to imply directly) our Proposition 9.2.

The reader has surely observed that the case 1/6 ∈ T is essentially simpler
than the case 1/6 /∈ T . The situation simplifies further when T = F is a
subfield of R. Then, by [16, Thm. 5.8.6], each (cancellative barycentric) algebra
A of C(F ) is a convex set over F , that is, a convex subset of some affine
space over F in the obvious sense. Since affine spaces are closed members of
C(F ), A clearly possesses a closed extension in C(F ), and the existence of a
closure (which is a minimal closed extension) follows trivially. Furthermore,
[16, Lemma 7.6.3] together with [16, Thm. 5.8.6] yield that B

1
:= C(F ) is a

minimal subquasivariety of V(F ), provided F is a subfield of R. This yields
Q(F ) = H(F ) = C(F ), which is much more than the corresponding part of
Theorem 2.3 for fields.

On the other hand, our construction and the aiming congruences are not
only for proving the existence of a closure. They are heavily used in proving
the uniqueness part of Theorem 2.3. Note that [16] does not have a proper
connection with this uniqueness (not even for subfields of R). In fact, no
concept similar to our closure is discussed there.
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[5] Ježek, J., Kepka, T.: Medial Groupoids. Academia, Praha (1983)
[6] Mac Lane. S.: Categories for the Working Mathematician, Springer-Verlag, New York

(1971)
[7] Mal’cev, A.I.: Algebraic Systems. Springer-Verlag, Berlin (1973)

[8] Matczak, K., Romanowska, A.: Quasivarieties of cancellative commutative binary
modes. Studia Logica 78, 321–335 (2004)

[9] Matczak, K., Romanowska, A.B., Smith, J.D.H.: Dyadic polygons. International

Journal of Algebra and Computation 21, 387–408 (2011)
[10] Neumann, W.D.: On the quasivariety of convex subsets of affine spaces. Arch. Math.

(Basel) 21, 11–16 (1970)
[11] Pszczo la, K., Romanowska, A., Smith, J.D.H.: Duality for some free modes. Discuss.

Math. General Algebra and Appl. 23, 45–62 (2003)
[12] Romanowska, A.B., Smith, J.D.H.: Modal Theory. Heldermann, Berlin (1985)

[13] Romanowska, A.B., Smith, J.D.H.: On the structure of barycentric algebras. Houston
J. Math. 16, 431–448 (1990)

[14] Romanowska, A.B., Smith, J.D.H.: On the structure of semilattice sums.
Czechoslovak Math. J. 41, 24–43 (1991)

[15] Romanowska, A.B., Smith, J.D.H.: Embedding sums of cancellative modes into
functorial sums of affine spaces. In: Abe, J.M., Tanaka, S. (eds.) Unsolved Problems

on Mathematics for the 21st Century. A Tribute to Kiyoshi Iseki’s 80th Birthday, pp.
127–139. OS Press, Amsterdam (2001)

[16] Romanowska, A.B., Smith, J.D.H.: Modes. World Scientific, Singapore (2002)
[17] Smith, J.D.H.: Mal’cev Varieties. Springer, Berlin-Heidelberg-New York (1976)

[18] van Lint, H.H.: Introduction to Coding Theory. Springer, New York-Berlin-Heidelberg
(1982)
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