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1 Introduction

In this paper the author gives an account on the progress after his online
talk at the 15th International Summer-School Conference “Problems Allied
to Universal Algebra and Model Theory”, Novosibirsk–Erlagol, June 21,
2023. The content of this talk is covered by [4] together with its references
and, at the time of writing, the slides of the talk are available from the
author’s website. Furthermore, we present some new results; see Theorem
2.3 and Corollary 2.4, exemplified by (4.1) and (4.2).

For a natural number n ∈ N0 = N+ ∪ {0} = {0, 1, 2, . . . }, let Bn =
(Bn;∨,∧) denote the 2n-element Boolean lattice. As we make no difference
between two isomorphic algebraic structures, we often think of Bn as the
powerset lattice P([n]) = (P([n]);∪,∩) of the set [n] := {1, 2, . . . , n} or as
the direct power Bn

1 . A subset X of a finite lattice L generates L if each
element of L can be obtained by applying a lattice term (built from joins
and meets) to appropriate elements of X.

Let γ(L) denote the least number n ∈ N0 such that
there is an n-element subset of L that generates L.

(1.1)

In [3] and [4], we have pointed out that large lattices L with many small
generating subsets give rise to authentication and cryptographic protocols.
If γ(L) is small but L is large, then L has many small generating subsets
and it is a candidate to be the underlying lattice of the protocols described
in [3] and [4]; this constitutes one of our motivations. Another motivation
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is supplied by more than a dozen papers devoted to small generating sets of
certain lattices; in addition to the survey parts of [3] and [4], here we mention
only an early result by Gelfand, and Ponomarev [9], which was quoted by
Zádori [16] when he proved an analogous result.

As usual, we refer to partially ordered sets by their widely spred synonym,
posets. For posets X0 = (X0;≤X0), X = (X;≤X), and Y = (Y ;≤) =
(Y ;≤Y ) such that X ⊆ Y , ≤X is the intersection of X2 with ≤Y , and X is
isomorphic to X0, we are going to call X a copy of X0 in Y . For y1, y2 ∈ Y ,
let y1 ‖ y2 stand for the conjunction of y1 � y2 and y2 � y1. If X and X ′ are
copies of X0 in Y such that x ‖ x′ for all x ∈ X and x′ ∈ X ′, then X and
X ′ are said to be incomparable copies or, in other words, unrelated copies
of X0 in Y . Note that Y is often a lattice in which, as usual, y ≤ y′ means
that y = y ∧ y′.

Denote by σ(X0, Y ) the maximum number of
pairwise incomparable copies of X0 in Y .

(1.2)

As B0 is the singleton poset, Sperner’s classical theorem asserts that, for
n ∈ N0, σ(B0, Bn) =

(
n
bn/2c

)
; see [15]. As for our notation, the lower number

in the binomial coefficient is the lower integer part of n
2
; note at this point

that dxe will stand for the upper integer part of x. Note also that γ and
σ in (1.1) come (1.2) from generating and Sperner, respectively. Results
on σ(X0, Y ) are called Sperner theorems (not to be confused with Sperner’s
theorem); see, e.g., Dove and Griggs [8], Griggs, Stahl, and Trotter [11], and
Katona and Nagy [12] for examples, and see also [5] and [6], which came to
existence after the afore-mentioned conference talk.

In [4] and the conference talk, we proved that γ(Bk) is the smallest
n ∈ N0 such that k ≤

(
n
bn/2c

)
. In other words, γ(Bk

1 ) = min{n ∈ N0 :

k ≤ σ(B0, Bn)}. Hence, we can easily determine γ(Bn) for, say, n = 103000

while the trivial algorithm that lists all subsets and checks which of them are
generating ones would not be feasible even for n = 20. For a finite lattice
D, J(D) stands for a poset of join-irreducible elements of D; an element
is join-irreducible if it covers exactly one element, and the order (relation)
of J(D) is the restriction of the order of D to J(D). The main result of
[5] extends the second formulation of the just-mentioned result on Boolean
lattices to all finite distributive lattices as follows.

For any finite distributive lattice D and k ∈ N+,
γ(Dk) is the least n ∈ N+ such that k ≤ σ(J(D), Bn).

(1.3)

The “conference talk result” on γ(Bk)” is a consequence (1.3) and Sperner’s
theorem. For any finite poset X, Dove and Griggs [8] and, independently,
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Katona and Nagy [12] determined σ(X,Bn) asymptotically as n→∞. Ka-
tona and Nagy [12] and, recently, [5] have determined σ(X,Bn) for some
particular posets X while, for some other particular posets X, [5] and [6]
have supplied estimates for σ(X,Bn) that are reasonable even when n is
small. For n ∈ N0,

let Bn,0 denote the (2n+1)-element lattice that
we obtain by adding a new least element to Bn.

(1.4)

So Bn = Bn,0 \ {0} is a 2n-element sublattice (in fact, a filter) of Bn,0.
For J(B1,0), which is the 2-element chain, Griggs, Stahl, and Trotter [11,
Theorem 2] (valid for all finite chains) applies; so we know that σ(B1,0, Bn) =(

n−1
b(n−1)/2c

)
for i ∈ {0, 1}. For the value of σ(J(B2,0), Bn), Katona and Nagy

[12] give a conjecture, which we are going to recall later. Only estimates are
proved for σ(J(B3,0), Bn) in [5] but, for many k’s,

even these estimates are sufficient to obtain γ(Bk
3,0) exatly; (1.5)

for example, if k = 3 ·10606, then γ(Bk
3,0) = 2023. In the next section, letting

r be any positive integer larger than 1, we give estimates that are sufficient
to obtain information on γ(Bk

r,0) and, if r ≤ 4, to determine it in many cases.

2 Results

Definition 2.1. If X is a finite poset and f and g are N+ → N0 functions
such that f(n) ≤ σ(X,Bn) ≤ g(n) for all n ∈ N+, then (f, g) is a pair of
estimates of the function σ(X,Bn). If, in addition, n0 ∈ N0 and g(n) ≤
f(n+ 1) for all n ∈ N+ \ [n0], then we say that (f, g) is a pair of reasonable
estimates of σ(X,Bn) on N+ \ [n0]. If n0 = 0, then we drop it; the case when
the common domain of f , g, and σ(X,Bn) is of the form {r, r+ 1, r+ 2, . . . }
is analogous.

The following fact is trivial, it was used (in a more involved terminology)
in [5] and [6], and it will be exemplified later in the proof of Corollary 2.4.

Fact 2.2. Assume that D is a finite distributive lattice and (f, g) is a pair
of reasonable estimates of σ(J(D), Bn). Then for any 2 ≤ k ∈ N+, if n = nk
denotes the smallest integer such that k ≤ f(n), then γ(Dk) ∈ {n− 1, n}.

Next, to ease the notation in what follows,

for r ∈ N+, let F (r) := J(Br,0); it consits of a smallest
element z and r maximal elements, u1, . . . , ur.

(2.1)
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Before defining some functions below, let us emphasize that, by conven-
tion,

(
x
y

)
= x!

y!(x−y)!) ∈ N
+ if x, y ∈ N0 such that x ≤ y but(

x

y

)
:= 0 in any other case like y < 0 or x < y. (2.2)

In addition to r ∈ N+, let p be an integer parameter. For n ∈ N+, we define

f (p)
r (n) :=

bn/rc−1∑
i=0

∑
(w2,...,wr)∈{0,...,i}r−1

w2+···+wr=i

i!

w2! . . . wr!
×

×
(

n− (i+ 1)r

1− p+ b(n− r)/2c − 2w2 − 3w3 − · · · − rwr

)
·

r∏
β=2

(
r

β

)wβ (2.3)

and fr(n) := max{f (p)
r (n) : p ∈ {−r,−r + 1, . . . , r}}. (2.4)

We define the counterpart gr(n) of fr(n) only for r ∈ {2, 3, 4}; note that
only g4(n) is new since g2(n) and g3(n) are taken from [5]. So let

g2(n) :=
⌊(

1 +
2n− 3bn/2c − 1

2n− bn/2c − 1

)
·
(

n− 2

b(n− 2)/2c

)⌋
, (2.5)

g3(n) :=
⌊ n

3n− 2− 2bn/2c
·
(

n− 1

b(n− 1)/2c

)⌋
, and (2.6)

g4(n) :=
⌊ dn/2e

4n− 3bn/2c − 3
·
(
n

n/2

)⌋
. (2.7)

Note that fr(n) is defined in a simpler way in [5] than here. For r ∈ {2, 3},
all the three parts of the theorem below have been proved in [5]. Further
comments on the relation of this theorem to earlier results and methods will
be enlightened in the last paragraph of Section 4.

Theorem 2.3. Let r, n ∈ N+ such that 2 ≤ r ≤ n.
(A) fr(n) ≤ σ(F (r), Bn).
(B) Keeping r fixed, fr(n) is asymptotically σ(F (r), Bn), that is, we have

that limn→∞ σ(F (r), Bn)/fr(n) = 1.
(C) For r ∈ {2, 3} and n ∈ N+ \ [r], and also for r = 4 and n ∈ N+ \ [6],

(fr, gr) is a reasonable pair of estimates of σ(F (r), Bn) in the sense of Defini-
tion 2.1 and, furthermore, gr(n), fr(n), and σ(F (r), Bn) are asymptotically
equal.

To make the connection between this theorem and the title of the paper
conspicuous, we formulate the following corollary right here.
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Corollary 2.4 ([5]). (A) Let r, k ∈ N+ \ {1}. If n denotes the smallest
natural number such that k < fr(n), then γ(Bk

r,0) ≤ n; in particular, the
direct power Bk

r,0 has an n-element generating set.

(B) Let r ∈ {2, 3, 4} and 6 ≤ k ∈ N+. Again, let n be the smallest natural
number such that k < fr(n). Then either gr(n− 1) < k and γ(Bk

r,0) = n, or
k ≤ gr(n− 1) and γ(Bk

r,0) ∈ {n− 1, n}.

3 Proofs

Proof of Theorem 2.3. Let A be an n-element set and denote bn/rc by q.
Partition A into (pairwise disjoint) r-element subsets A0, . . .Aq−1 and an
(n − rbn/rc)-element remainder set Aq. (If r divides r, then Aq = ∅ and

the partition is {A0, . . . , Aq−1}.) The elements of Ai will be denoted by u
(i)
1 ,

. . . , u
(i)
r . For a given i ∈ {0, . . . , q − 1} and (w2, . . . , wr) ∈ {0, . . . , i}r−1

such that w2 + · · · + wr = i, pick a vector ~s := (s0, . . . , si−1) ∈ {2, . . . , r}i
such that w2 many components of ~s equal 2, w3 many equal 3, . . . , |{ι :
sι = r}| = wr. There are i!

w2!...wr!
ways to pick such an ~s, and this is why

i!
w2!...wr!

occurs in (2.3). For α ∈ {0, . . . , i − 1}, pick an sα-element subset

Bα of Aα; this can be done in
(
r
sα

)
many ways. Observe that

∏i−1
α=0

(
r
sα

)
is

the same as
∏r

β=2

(
r
β

)wβ in (2.3), whence the latter shows how many ways

(B0, . . . , Bi−1) can be chosen. Letting z := 1− p+ b(n− r)/2c, we also pick
a (z−2w2−3w3−· · ·− rwr)-element subset Bi of Ai+1∪· · ·∪Aq. Note that

|Bi| = z − 2w2 − 3w3 − · · · − rwr = z − s0 − s1 − · · · − si−1. (3.1)

Since Ai+1∪ · · ·∪Aq = A\ (A0∪ . . . Ai) consists of n− (i+ 1)r elements, the
first binomial coefficient in (2.3) shows how many ways we can choose Bi.
(As (2.2) shows, “no way” is possible but it does not disturb our argument.)

Now let ~B := (B0, . . . , Bi). We call any vector obtained in this way an eligible
set vector. For a given ~s, the second line of (2.3) shows how many ways we

can pick ~B while its first line shows how many ways i and (w2, . . . , wr) can

be chosen. Furthermore, ~B determines ~s = (|B0|, . . . , |Bi−1|), (w2, . . . , wr),

and i, whereby it follows that (2.3), that is f
(p)
r (n), is the number of eligible

set vectors.

For an eligible set vector ~B, let Z ~B be the union of the components of
~B. Then

B0 = Z ~B ∩A0, . . . , Bi−1 = Z ~B ∩Ai−1, Bi = Z ~B ∩ (Ai+1 ∪ · · · ∪Aq),
so the sets B0, . . . , Bi are pairwise disjoint and their union is Z ~B.

(3.2)
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Since ~B determines i (the number of its components minus 1), we can write

that i = i( ~B). With i = i( ~B), we define, for ρ ∈ [r],

U
(ρ)
~B

:= Z ~B ∪ {u
(i)
ρ }. Let F

(r)
~B

:=
{
Z ~B, U

(1)
~B
, . . . , U

(r)
~B

}
. (3.3)

It follows from (3.2) that for any ρ ∈ [r],

the sets B0, . . . , Bi, and {u(i)ρ } are pair-

wise disjoint and their union is U
(ρ)
~B

.
(3.4)

It is clear by (3.1) and (3.2) that1

|Z ~B| = z, so it does not depend on ~B. (3.5)

Since Z ~B ∩Ai = ∅, F (r)
~B

is copy of F (r). Thus, in order to show that f
(p)
r (n)

is a lower bound of σ(F (r), Bn), it suffices to show that whenever ~C is an

eligible set vector different from ~B, then F
(r)
~B

and F
(r)
~C

are unrelated. To do

so, let j := i(~C), the number of components of ~C minus 1; then we can write

that ~C = (C0, . . . , Cj). Assume that X ∈ F (r)
~B

and Y ∈ F (r)
~C

; our task it to

show that X ‖ Y . Depending on i and j, there are two cases to consider:
either i = j or, by symmetry, i < j.

Case 1 (where i = j). As ~B 6= ~C, there is an α ∈ {0, . . . , i} such that
Bα 6= Cα. If Bα ‖ Cα, then X ∩ Aα = Bα ‖ Cα = Y ∩ Aα implies that
X ‖ Y provided that α < i. Changing “ ∩ Aα” to “ ∩ (Ai+1 ∪ · · · ∪ Aq)”,
we draw the same conclusion if α = i. Hence, we can assume that Bα and
Cα are comparable, say, Bα ⊂ Cα. Then |Bα| < |Cα|, which together with
|B0| + · · · + |Bi| = |Z ~B| = z = |Z ~C | = |C0| + · · · + |Ci| yield a subscript
β ∈ {0, . . . , i} \ {α} such that |Cβ| < |Bβ|. Now X ⊆ Y would lead to
Bβ = X ∩Aβ ⊆ Y ∩Aβ = Cβ, contradicting the inequality |Cβ| < |Bβ| while

Y ⊆ X would similarly violate that |Bα| < |Cα|. Thus, X ‖ Y and F
(r)
~B

is

unrelated to F
(r)
~C

, completing Case 1.

Case 2 (where i < j). As Y ∩Ai = Ci has at least two elements but X ∩Ai
is either the empty set or it is a singleton set of the form {u(i)ρ }, we have that
Y * X. For the sake of contradiction, suppose that X ⊂ Y . As Z ~B ⊆ X,
we also have that Z ~B ⊂ Y . Let Zup

~B
= Z ~B ∩ (Ai+1 ∪ · · · ∪ Aq) = Bi, Z

mid
~B

=

Z ~B ∩Ai, and Zdn
~B

= Z ~B ∩ (A0 ∪ · · · ∪Ai−1). Using i again rather than j, let

1In addition to the fact that we do not use iteration and our construction is simpler,
this is where our proof differs from that in Dove and Griggs, where several “layers” are
populated.

6



Y up = Y ∩(Ai+1∪· · ·∪Aq), Y mid = Y ∩Ai, Y dn = Y ∩(A0∪· · ·∪Ai−1). Clearly,
Zup
~B
⊆ Y up, Zmid

~B
⊆ Y mid, and Zdn

~B
⊆ Y dn. These inequalities together with

the equalities Z ~B = Zup
~B
∪Zmid

~B
∪Zup

~B
and Y = Y up ∪ Y mid ∪ Y dn imply that

Y \Z ~B ⊇ Y mid \Zmid
~B

= Ci \∅ = Ci. Hence, |Y |−|Z ~B| = |Y \Z ~B| ≥ |Ci| ≥ 2.
This contradicts (3.5) since |Y | differs from |Z ~C | (and thus from |Z ~B|) by at
most 1. The contradiction we have obtained shows that X ‖ Y , completing
Case 2.

Having just seen that F
(r)
~B

and F
(r)
~C

are unrelated, we have proved that,

for every meaningful p, f
(p)
r (n) is a lower bound of σ(F (r), Bn). So is the

maximum fr(n) of these f
(p)
r (n)’s, proving part (A) of Theorem 2.3.

The proof of part (B) uses the previous notation z := 1 − p + b(n −
r)/2c and the folkloric fact2 that for any integers α and β,

(
n−α

b(n−α)/2c−β

)
is

asymptotically
(

n
bn/2c

)
·2−α. So for every fixed i ∈ N+ and each small positive

real number ε,

(1− ε)
(

n− (i′ + 1)r

z − 2w2 − 3w3 − · · · − rwr

)
< 2−(i

′+1)r

(
n

bn/2c

)
<

(1 + ε)

(
n− (i′ + 1)r

z − 2w2 − 3w3 − · · · − rwr

) for i′ ∈ {0, 1, . . . , i} (3.6)

holds for all but finitely many n. Letting

κ(n) :=

bn/rc−1∑
i=0

∑
(w2,...,wr)∈{0,...,i}r−1

w2+···+wr=i

i!

w2! . . . wr!
2−(i+1)r

(
n

bn/2c

) r∏
β=2

(
r

β

)wβ

and applying (3.6) to the inner summation in (2.3), it follows that

(1− ε)f (r)
p (n) ≤ κ(n) ≤ (1 + ε)f (r)

p (n). (3.7)

2This folkloric fact was used by, say, Dove and Griggs [8], Katona and Nagy [12], and
[5, 6]
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Using the multinomial theorem and
∑r

β=0

(
r
β

)
= 2r, we obtain that

κ(n) =
1

2r

(
n

bn/2c

)bn/rc−1∑
i=0

1

2ir

∑
(w2,...,wr)∈{0,...,i}r−1

w2+···+wr=i

i!

w2! . . . wr!

r∏
β=2

(
r

β

)wβ

=
1

2r

(
n

bn/2c

) bn/rc−1∑
i=0

1

2ir

( r∑
β=2

(
r

β

))i
=

1

2r

(
n

bn/2c

)bn/rc−1∑
i=0

1

2ir
(2r − r − 1)i =

1

2r

(
n

bn/2c

)bn/rc−1∑
i=0

(2r − r − 1

2ir

)i
.

Adding to this calculation that
∑∞

i=0

(
2r−r−1

2r

)i
=
∑∞

i=0

(
1− r+1

2r

)i
= 2r

r+1
, we

obtain that

(1− ε)κ(n) ≤ 1

2r

(
n

bn/2c

)
2r

r + 1
≤ (1 + ε)κ(n). (3.8)

Combining (3.7) with (3.8), we have that

(1− ε)2f (p)
r (n) ≤ 1

r + 1

(
n

bn/2c

)
≤ (1 + ε)2f (p)

r (n) (3.9)

for all but finitely many n. Letting ε tend to 0, (3.9) implies that f
(p)
r (n) is

asymptotically 1
r+1

(
n
bn/2c

)
. Applying Katona and Nagy [12, Theorem 1.1] or

Dove and Griggs [8, Theorem 1.4] to our poset F (r), we know that σ(F (r), Bn)
is asymptotically 1

r+1

(
n
bn/2c

)
, too. Hence, part (B) of the theorem follows by

transitivity.
Next, we turn our attention to the upper bounds. As the case r ∈ {2, 3}

has been settled in [5], we restrict ourselves to the case r = 4. For 4 ≤ n ∈
N+, let our base set A := |n] = {1, 2, . . . , n} and let k := σ(F (4), Bn). As
it happened first in Lubell [13] and then in Griggs, Stahl, and Trotter [11],
[5], and [6], and with some terminological change, in Bollobás [2], Dove and
Griggs [8], and Katona and Nagy [12], we also define a set of permutations
of [n] as follows. For X ⊆ A,

let Ψ(X) consist of all those permutations ~π =
(π1, . . . , πn) that satisfy {π1, . . . , π|X|} = X.

(3.10)

All the just listed papers use the obvious fact that for X ‖ Y ∈ P([n]), we
have that Ψ(X)∩Ψ(Y ) = ∅. However, our situation needs some preparation.
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Let W ⊆ P([n]) be a copy of F (4), and pick an order isomorphism ϕ : F (4) →
W . (There are 4! = 24 such isomorphisms but no matter which one we
take.) We call W a cover-preserving copy of F (4) if for all x, y ∈ F (4), if
y covers x (in notation, x ≺ y), then ϕ(x) ≺ ϕ(y). While this definition
reflects generality, note that Wi is a cover-preserving copy of F (4) if and only
if it is of the form

Wi = {Zi, Zi ∪ {u(i)1 }, Zi ∪ {u
(i)
2 }, Zi ∪ {u

(i)
3 }, Zi ∪ {u

(i)
4 }} (3.11)

where none of the elements u
(i)
1 , u

(i)
2 , u

(i)
3 , and u

(i)
4 is in the set Zi ∈ P(A) and

these four elements are pairwise distinct. The key of our argument is the
following statement, for the sake of which we interrupt the proof of Theorem
2.3.

Lemma 3.1. If there are m pairwise unrelated copies of F (4) in Bn, then
there are m pairwise unrelated cover-preserving copies of F (4) in Bn, too.

Note here that this lemma fails for F (r) if r ≥ 5. (For r = 5, this is
witnessed by a 5-element antichain in B4 together with the bottom element.)
This is why Part (C) of Theorem 2.3 is restricted to r ≤ 4.

Proof of Lemma 3.1. As the first step in the argument, recall that the convex
hull of an X ⊆ P(A) is Cnv(X) := {R ∈ P(A) : ∃S, T ∈ X such that S ⊆
R ⊆ T}. Clearly, if X and Y are unrelated members of P(A), then Cnv(X)
and Cnv(Y ) are also unrelated; this fact was heavily used in Dove and Griggs
[8] and in Katona and Nagy [12]. Assume that W1, . . . , Wm are pairwise
unrelated copies of F (4) in P(A). If each of them is of the form (3.11), then
there is nothing to prove. So assume that Wi is not of this form for some
i ∈ [m]. Then Wi = {Zi, Zi ∪ U (i)

1 , Zi ∪ U (i)
2 , Zi ∪ U (i)

3 , Zi ∪ U (i)
4 } for some

sets U
(i)
1 , . . . , U

(i)
4 ∈ P(A) that are disjoint from Zi and form an antichain.

Letting U := U
(i)
1 ∪ U

(i)
2 ∪ U

(i)
3 ∪ U

(i)
4 , the sets U

(i)
1 , . . . , U

(i)
4 ∈ P(A) are also

in P(U) and they are pairwise unrelated. Hence, it follows from Sperner’s
theorem, see the sentence right after (1.2), that |U | ≥ 4. Hence, we can

simply take four distinct elements u
(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 ∈ U and then

W ′
i := {Zi, Zi ∪ {u(i)1 }, Zi ∪ {u

(i)
2 }, Zi ∪ {u

(i)
3 }, Zi ∪ {u

(i)
4 }}

is such a copy of F (4) that is included in Cnv(Wi). Thus, we can change
Wi to W ′

i , and we can do so for the rest of subscripts, one by one, until all
the m copies of F (4) become cover-preserving. These copies remain pairwise
unrelated, completing the proof of Lemma 3.1.
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Resuming the proof of Theorem 2.3, Lemma 3.1 allows us to assume that
all the Wi are cover-preserving copies, that is, (3.11) holds for all i ∈ [k]. For
i ∈ [k], based on (3.10), we let Φi :=

⋃
X∈Wi

Ψ(X). For i 6= j ∈ [k], X ∈ Wi,
and Y ∈ Wj, we have that Ψ(X) ∩ Ψ(Y ) = ∅ by the fact mentioned right
after (3.10). Hence, Φi ∩ Φj = ∅. Letting xi := |Zi|, we know (either from
Lubell [13] or by a trivial argument) that |Ψ(Zi)| = xi!(n − xi)!. Similarly,

|Ψ(Zi∪{u(i)j })| = (xi+1)!(n−xi−1)! for j ∈ [4]. A permutation (π1, . . . , πn)

belongs to both Ψ(Zi) and Ψ(Zi ∪ {u(i)j }) if and only if (π1, . . . , πxi) is a

permutation of Zi, this can happen in xi! many ways, πxi+1 = u
(i)
j , and

(πxi+2, . . . , πn) is a permutation of [n] \ (Zi ∪ {u(i)j }), which can happen in

(n − xi − 1)! ways. Hence, |Ψ(Zi) ∩ Ψ(Zi ∪ {u(i)j })| = xi!(n − xi − 1)! for
every j ∈ [4]. That is all we have to know in order to apply the inclusion-
exclusion principle to obtain |Φi| since whenever T ⊆ Wi is not a chain, then
the sentence following (3.10) yields that |

⋂
X∈T Ψ(X)| = 0. Thus, we obtain

that

|Φi| = xi!(n− xi)! + 4(xi + 1)!(n− xi − 1)− 4xi!(n− xi − 1)!

= (n+ 3xi)xi!(n− xi − 1)! =: h1(xi)
(3.12)

for every i ∈ [k]. We consider h1 given in (3.12) an N0 → N0 function.
Straightforward computation shows that h1(x + 1) − h1(x) = h2(x)x!(n −
x−2)! with h2(x) = 6x2+(9−n)x+(3+2n−n2) provided that 0 ≤ x ≤ n−2.
The nonnegative root of h2 is

x0 =
n− 9 +

√
25n2 − 66n+ 9

12
.

As (5n − 7)2 − (25n2 − 66n + 9) = 40 − 4n < 0 if n ≥ 11, we have that
5n−7 <

√
25n2 − 66n+ 9 for n ≥ 11. Similarly, (5n−6)2−(25n2−66n+9) =

6n+27 > 0 gives that
√

25n2 − 66n+ 9 < 5n−6 for n ≥ 2. Using these two
inequalities, we obtain that (6n − 16)/12 < x0 < (6n − 15)/12 for n ≥ 11.
This implies that x0 < dx0e = b(n− 1)/2c. Since h2 is a quadratic function
of x and so its graph is well known, the smallest m ∈ N0 for which h2(m) is
positive, that is, h1(m+ 1)− h1(m) > 0, is m = b(n− 1)/2c. Therefore, the
minimum value of |Φi| = h1(xi) is h1(b(n−1)/2c) provided that n ≥ 11. The
same holds for n ∈ {4, . . . , 10}; this follows by listing h1(0), . . . , h1(n − 1)
for these small n’s.

Since the Φi’s, for i ∈ [k], are pairwise disjoint subsets of the n!-element
set of all permutations of [n] and the minimum of |Φi| is h1(b(n− 1)/2c), it
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follows that

σ(F (4), Bn) = k =
⌊k · h1(b(n− 1)/2c)
h1(b(n− 1)/2c)

⌋
=
⌊∑k

i=1 h1(b(n− 1)/2c)
h1(b(n− 1)/2c)

⌋
≤
⌊ ∑k

i=1 |Φi|
h1(b(n− 1)/2c)

⌋
≤
⌊ n!

h1(b(n− 1)/2c)

⌋
=
⌊( n

bn/2c

)
bn/2c!(n− bn/2c)!
h1(b(n− 1)/2c)

⌋
. (3.13)

Let us focus on the last (complicated) fraction in (3.13). For n = 2n even,
(3.12) and (3.13) allow us to compute it as follows:

m!m!

h1(m− 1)
=

m!m!

(2m+ 3(m− 1))(m− 1)!m!

=
m(m− 1)!m!

(5m− 3)(m− 1)!m!
=

m

5m− 3
=

dn/2e
4n− 3bn/2c − 3

,

as (2.7) requires. Similarly, for n = 2m+ 1 odd,

m!(m+ 1)!

h1(m)
=

m!(m+ 1)!

(2m+ 1 + 3m)m!m!
=

m+ 1

5m+ 1
=

dn/2e
4n− 3bn/2c − 3

,

as required. We have shown that g4(n) is an upper bound of σ(F (4), Bn).
We have seen that, for r ∈ {2, 3, 4}, (fr, gr) is a pair of estimates of

σ(F (r), Bn). For r ∈ {2, 3}, [5] proves that this pair is reasonable. The
very tedious details of showing exactly that (f4, g4) is a reasonable pair of
estimates of the function n 7→ σ(F (4), Bn) would hardly be appetizing for
the reader. Hence, we only outline the idea; asymptotic equalities will be
denoted ∼. We have already shown that f4(n) ∼ σ(F (4), Bn) ∼ 1

r+1

(
n
bn/2c

)
=

1
5

(
n
bn/2c

)
. Clearly, g4(n) ∼ 1

5

(
n
bn/2c

)
. Combining these asymptotic equalities

with the folkloric fact mentioned in Footnote 2, we obtain that f4(n+1)/2 ∼
g4(n). Parsing the proofs of the asymptotic equalities involved, we can find
an n0 ∈ N+ such that the required inequality g4(n) ≤ f4(n + 1) holds for
all n ≥ n0. By our computer-generated data, see Section 4, it also holds for
n ∈ {7, 8, . . . , n0 − 1} .

Modulo the previous paragraph, we have proved Theorem 2.3.

Proof of Corollary 2.4. It is clear that the proof given in [5] works for any
pair of reasonable estimates; see also Fact 2.2. Hence, no proof is necessary
here. However, we enlighten the (trivial) idea by two examples, namely, by
the direct powers B2023

4,0 and B2500
4,0 . As Table 1 shows, σ(F (4), B15) ≤ g4(15) =
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1430 while 2448 = f4(16) ≤ σ(F (4), B16). Hence, the smallest n for which
2023 ≤ σ(F (4), Bn) is n = 16. Applying (1.3) and taking F (4) ∼= J(B4,0) into
account, we obtain that γ(B2023

4,0 ) = 16.

In case of 2500, we obtain from Table 1 only that σ(F (4), B15) ≤ g4(15) =
1430 < 2500 and 2500 ≤ 4696 = f4(17) ≤ σ(F (4), B17). Hence, the smallest
n for which 2500 ≤ σ(F (4), Bn) is either 16 or 17. Therefore, γ(B2500

4,0 ) ∈
{16, 17}.

4 Odds and ends

To obtain the data of this section, we used a computer algebraic program,
namely, Maple V Release 5 Version 5.00 (November 27, 1997) of Waterloo
Maple Inc. and a desktop computer with AMD Ryzen 7 2700X Eight-Core
Processor 3.70 GHz. Our program that Maple executed is given in the
(Appendix) Section 5.

n 4 5 6 7 8 9 10 11 12 13 14 15
f4(n) 1 1 2 3 12 20 36 66 159 315 558 1113
g4(n) 1 2 5 8 16 30 57 106 205 387 750 1430

n 16 17 18 19 20 21 22
f4(n) 2 448 4 696 8 926 17 310 36 560 69 410 136 710
g4(n) 2 782 5 336 10 418 20 082 39 309 76 076 149 226

n 23 24 25 26 27
f4(n) 262 250 542 000 1 031 500 2 062 036 3 949 288
g4(n) 289 731 569 296 1 108 260 2 180 770 4 254 790

n 28 29 30
f4(n) 8 070 468 15 625 260 31 038 651
g4(n) 8 382 573 16 385 653 32 316 150
g4(n)/f4(n) ≈ 1.038 672 478 1.048 664 342 1.041 158 329

Table 1: Some values of f4(n) and g4(n).

Corollary 2.4 together with Table 2 yield that, say,

γ(B10299

4,0 ) = 1001 (4.1)

(there is no misrpint here, the exponent of the 5-element lattice B4,0 consists
of 300 decimals). However, even Table 1 is sufficient for anything related
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to our motivation, cryptography and authentication. Indeed, this table and
Corollary 2.4 gives that, say,

γ(B30 000 000
4,0 ) = 30. (4.2)

This is a 530 000 000-element lattice generated only by 30 elements; this lattice
is (more than) large enough to provide crpytographic security.

The computation for Table 1 took only one second while that for Table
2 needed 215 minutes. A trivial algorithm based on excluding all the 29-
element subsets and listing some 30-element subsets until a generating one
is found could not prove that γ(B30 000 000

4,0 ) = 30, which is now a simple
consequence of the “one second table” (Table 1) and Corollary 2.4.

n 100 200 300
f4(n) ≈ 2.022 665 · 1028 1.813 143 · 1058 1.876 694 · 1088

g4(n) ≈ 2.042 335 · 1028 1.821 902 · 1058 1.882 725 · 1088

g4(n)
f4(n)

≈ 1.009724683 1.004830944 1.003 213 720

n 400 500 600
f4(n) ≈ 2.060 285 · 10118 2.336 007 · 10148 2.703 240 · 10178

g4(n) ≈ 2.065 246 · 10118 2.340 504 · 10148 2.707 574 · 10178

g4(n)
f4(n)

≈ 1.002 407 708 1.001 924 929 1.001 603 422

n 700 800 900
f4(n) ≈ 3.172 574 · 10208 3.761 977 · 10238 4.496 142 · 10268

g4(n) ≈ 3.176 932 · 10208 3.766 499 · 10238 4.500 945 · 10268

g4(n)
f4(n)

≈ 1.001 373 942 1.001 201 923 1.001 068 186

n 1000 1001 1002
f4(n) ≈ 5.407 062 · 10298 1.080 764 · 10299 2.160 665 · 10299

g4(n) ≈ 5.412 260 · 10298 1.081 801 · 10299 2.162 738 · 10299

g4(n)
f4(n)

≈ 1.000 961 231 1.000 960 076 1.000 959 310

Table 2: Some approximate values of f4(n) and g4(n).

Next, we comment on the parameter p in (2.4). Experiencing with com-
puter, we conjecture that for r = 4 and n ≥ 29, the maximum is achieved at
p = 0 if n is even and at p = −1 if n is odd. This has been verified for many
values of n, the largest two being 1000 and 1001. (For n ∈ {1000, 1001},
the computer checked each p in {−10,−9, . . . , 5}; this took 233 minutes.)
For small n’s (and still r = 4), the situation shows not much regularity; for
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example, p = 1 gives the maximum for n ∈ {4, 5, . . . , 8} while p = 0 for
n ∈ {16, 17, . . . , 24}. Even if this conjecture fails for some (very large) n, we
obtain a good (and asymptotically optimal) lower bound going after it.

We also guess that, for r ∈ {2, 3, 4}, σ(F (r), Bn) is closer the fr(n) than
to g4(n). For r = 2, as we have mentioned after (1.4), Katona and Nagy [12]
conjectured that σ(F (2), Bn) = f2(n).

Calculating with (small) concrete numbers appears to be more difficult
than doing it asymptotically. For example, while the folkloric fact mentioned
in Footnote 2 provided a substantial simplification when proving the asymp-
totic part of our theorem, see around (3.6), we have no similar tool when n
does not tend to ∞. In addition to (1.5), this is our excuse that, opposed
to the asymptotic equalities proved in Dove and Griggs [8] and Katona and
Nagy [12], the present paper deals only with estimates. On the other hand,
let us emphasize that our proof contains many ideas taken from these two
papers; we mentioned some of them while proving Theorem 2.3. Here we
add that, like in the present paper, both [8] and [12] partition A = [n] into
r-element subsets, embed a poset (playing the role of F (r)) into the powerset
of one of these subsets, and modify these initial embeddings according to
their strategies. However, there are differences, Footnote 1 mentions some
of them. Computation shows that for a small n, our fr(n) is better (that is,
larger) than what could be extracted from [12].

5 Appendix

We conclude the paper by presenting the Maple program that computed
Tables 1 and 2; the limits (now 4 and 30) of the last “for” loop can be
modified, of course. As our comment on the parameter p in the previous
section indicates, the limit of the “for” loop with p could be “from −1 to 1”
without changing the output of the program.

> restart; with(combinat, multinomial):

> time0:=time();

> fp4:=proc(n,p) local s,i,w2,w3,w4,z,r;

> r:=4; z:=1-p+floor((n-r)/2); s:=0;

> for i from 0 to floor(n/r)-1 do

> for w2 from 0 to i do

> for w3 from 0 to i-w2 do

> w4:=i-w2-w3;

> s:=s + multinomial(i,w2,w3,w4)*

> binomial(n-(i+1)*r,z-2*w2-3*w3-4*w4)*

> binomial(r,2)^w2*binomial(r,3)^w3*binomial(r,4)^w4;
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> od; #end of w3 loop

> od; #end of w2 loop

> od; #end of i loop

> s:=s;

> end: #end of procedure fp4

>

> f4:=proc(n) local p,p0,b0,b,pfrom,pto; p0:=-1; b0:=0;

> if n<50 then pfrom:=-10; pto:=10

> else pfrom:=-4; pto:=2

> fi;

> for p from pfrom to pto do

> b:=fp4(n,p);

> if b>=b0 then b0:=b; p0:=p

> fi;

> od; #end of p cycle

> # print(‘n=‘,n,‘ p=‘,p0,‘ f4(n)=‘,b0);

> #print is invalidated after a test period

> b:=b0;

> end: #end of procedure f4

>

> g4:=proc(n) local h; h:=floor(n/2);

> floor( (ceil(n/2)/(4*n-3*h-3))*binomial(n,h) )

> end: #end of procedure g4

> #for n from 4 to 100 do f4(n): od:

> #for n from 4 to 100 do b:=f4(n) ;count:=0;

> # for p from -4 to 4 do if fp4(n,p)=b then count:=count+1 fi od;

> # print(‘n=‘,n,‘ count=‘,count);

> # od:

>

> for n from 4 to 30 do lower:=f4(n): upper:= g4(n):

> if lower>0 then ratio:=evalf(upper/lower)

> else ratio:=undefined

> fi :

> print(‘n=‘, n, ‘ f4(n)=‘ ,lower, ‘ g4(n)=‘,

> upper, ‘ ratio=‘, ratio);

> if lower>10^6 then

> print(‘lg(lower)=‘,evalf(log[10](lower)),

> ‘lg(upper)=‘,evalf(log[10](upper)));

> fi ;

> od:

> time1:=time();

> print(‘The total computation needed ‘, time1-time0,‘ seconds.‘);

15



References

[1] Anderson, I.: Combinatorics of Finite Sets. Dover Publications Inc.,
Mineola, New York, 2002.

[2] Bollobás, B.: Sperner systems consisting of pairs of complementary
subsets. Journal of Combinatorial Theory (A) 15, 363-366 (1973)

[3] Czédli, G.: Four-generated direct powers of partition lattices and au-
thentication3. Publicationes Mathematicae (Debrecen) 99 (2021), 447–
472

[4] G. Czédli: Generating Boolean lattices by few elements and a protocol
for authentication and cryptography based on an NP-complete problem.
arXiv:2303.10790 (extended version)

[5] G. Czédli: Sperner theorems for unrelated copies of some partially or-
dered sets in a powerset lattice and minimum generating sets of powers
of distributive lattices. arXiv:2308.15625

[6] G. Czédli: Minimum-sized generating sets of the direct powers of the
free distributive lattice on three generators and a Sperner theorem.
arXiv:2309.13783

[7] Dilworth, R. P.: A decomposition theorem for partially ordered sets.
Ann. of Math. 51 (1951), 161–166.

[8] Andrew P. Dove, Jerrold R. Griggs: Packing posets in the Boolean
lattice. Order 32, 429–438 (2015)

[9] Gelfand, I.M., Ponomarev, V.A.: Problems of linear algebra and classi-
fication of quadruples of subspaces in a finite dimensional vector space.
Hilbert Space Operators, Coll. Math. Soc. J. Bolyai 5, Tihany, 1970.

[10] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)
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