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Abstract. Registration is a fundamental task in image processing. Its
purpose is to find a geometrical transformation that relates the points of
an image to their corresponding points of another image. The determi-
nation of the optimal transformation depends on the types of variations
between the images. In this paper we propose a robust method based on
two sets of points representing the images. One—to—-one correspondence is
assumed between these two sets. Our approach finds global affine trans-
formation between the sets of points and can be used in any arbitrary
dimension k& > 1. A sufficient existence condition for a unique solution is
given and proven. Our method can be used to solve various registration
problems emerged in numerous fields, including medical image process-
ing, remotely sensed data processing, and computer vision.
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1 Introduction

There is an increasing number of applications that require accurate aligning of
one image with another taken from different viewpoints, by different imaging
devices, or at different times. The geometrical transformation is to be found
that maps a floating image data set in precise spatial correspondence with a
reference image data set. This process of alignment is known as registration,
although other words, such as co—registration, matching, and fusion, are also
used. Examples of systems where image registration is a significant component
include aligning images from different medical modalities for diagnosis, matching
a target with a real-time image of a scene for target recognition, monitoring
global land usage using satellite images, and matching stereo images to recover
shape for autonomous navigation [6, 10].

The registration technique for a given task depends on the knowledge about
the characteristics of the type of variations. Registration methods can be viewed
as different combinations of choices for the following four components [6]:

— Search space is determined by the type of transformation we have to con-
sider, i.e., what is the class of transformations that is capable of aligning
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the images. Some widely used types are rigid-body, when translations and
rotations are allowed only, affine, which maps parallel lines to parallel lines,
and nonlinear, which can transform straight lines to curves.

— Feature data set describes what kind of image properties are used in match-
ing.

— Similarity measure is a function of the transformation parameters which
shows how well the floating and the reference image fit. The task of regis-
tration is to optimize this function.

— Search strategy determines what kind of optimization method to use.

Fig. 1 explains the major steps of a general registration process.
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Fig. 1. Major steps of a general registration process. Feature data sets F; and F» are
extracted from reference image I; and floating image I, respectively. Transformation
T is calculated using Fi and F5. I» is aligned to I; by applying T'. A brand new image
I3 can be calculated by fusing I and T'(I2)

A general and robust solution for registration problems is selecting points as
features. A general point—based method consists of three steps. First, the points
are identified, then points in the floating image are corresponded with points
in the reference image, finally a spatial mapping is determined. Point—based
methods can be either interactive or automatic. Using an interactive point—based
method, usually few pairs of points (4-20) are identified and corresponded by
the user. Methods of this type are available for rigid-body [1] and nonlinear [4, 9]
problems. Automatic determination of the features usually results huge amount
of points. In this case finding correspondences can be rather difficult (eg., the
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number of elements of the point sets is not necessarily the same) and require a
special algorithm. Widely used methods are head-hat method [13], hierarchical
Chamfer matching [2,5], and iterative closest point [3] method. These are used
mainly for rigid-body problems, but extension to more general transformations
is easy.

In this paper we propose an interactive point-based method.

2 Affine Method for Aligning Two Sets of Points

In this Section we propose a robust method based on identified pairs of points,
which assumes affine motion between the images. Let k£ > 1 denote the dimension
of the images and let n be the number of pairs of points.

Our registration method is described by giving the following four components:

— search space
Global transformation described by a (k+1) x (k+ 1) matrix 7 of the form

tir tiz otk f1kt
ta1 to2 v+ fop l2 k41
T=1: oo :
tkr tke v Tkk o ket
0 o --- 0 1
is to be found. Given 7 and a point z = (zy,...,2;) € IR¥, the transfor-
mation sends = to y = (y1,...,Yx) € RF if and only if (1, ur, DT =
T - (x1,...,7k,1)T holds for the corresponding homogeneous coordinates [8].

Notice that each affine transformation can be described this way (Fig. 2).
This kind of transformation has k - (k + 1) degrees of freedom according to
the matrix elements to be determined.

— feature data set
A set of n reference points {p1,p2,...,pn}, Pi = Vi1, ..., pir) € R*, and a
set of n floating points {q1,q2,-. - an}, @ = (Gi1,---,qik) € R*, are to be
identified in the reference image and the floating image, respectively (Fig.
3). We assume that g; is corresponded to p; (1 <i <n).

— similarity measure
Suppose that we get point §; = (G;,--.,0;,) When point ¢; is transformed
by matrix 7 (1 <14 < n):

i t11 ti2 o tie t1kr qi1
Qi tar toz -cc top lokt1 qi2
Qi kit the -0 tkk Thkt1 Qik

1 o o0 --- 0 1 1
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Fig. 2. Example of a 2D affine transformation: The original image (left) and the trans-

formed one (right). Lines are mapped to lines, parallelism is preserved, but angles can
be altered

G

Fig. 3. Example of identified pairs of points in 2D. Eight pairs (pi,q;) of points are
identified in the reference image (left) and in the floating image (right), respectively

Define the function S of k- (k + 1) variables as follows:

n k
17; = pill® = D> (@5 — pis)’
i=1 i=1 j=1
k

M=

S(tir,-- s tept1) =

[
NE

(tjr - Qin + - - + tjk - ik + tigr1 — Dij)*
1

-
I

=
It can be regarded as the matching error.

— search strategy
The least square solution of matrix 7 is determined by minimizing function
S. Direct matching is applied. Function & may be minimal if all of the

partial derivatives 25 98 __ are equal to zero. The required k- (k + 1)

Ot117 """ Otp kg1
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equations:
S n k
=2 qu ' (tu,k+1 — Diu + Ztul ' Qil) =0
Otuw P —
(1 <u,v<k),

oS n k
=2 tuk+1 — Piw + tur - qu) =0
Ot k1 ;( wht " ; ut - 4i)

(1<u<k).

We get the following system of linear equations:

aii ... aix b t11

0

Akl - .. Qg by tik
bl bk n t17k+1
aiq ... Gy by to1

Qg1 ... g by tor
b1 bk n . t27k+1 =

aiy ... a1 by tr1

a1 - .- g bg trk
b1 ... by n Th k1

where

n
Qyy = Qyy = § Qi * Giv
i=1
n
bu = § Qiu »
i=1
n
Cyy = § Piu * Giv
i=1

n
dy = Zpiu
i=1

(1 <u,v<k).

C11

Ck1

Ckk
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The above system of linear equations can be solved by using an appropriate
numerical method. There exists a unique solution if and only if det(M) # 0,

where
a1 Lo A1k b1
M = - : :
ag1 --- Qkk bk
b1 e bk n

3 Discussion

In this section we state and prove a sufficient existence condition for a unique
solution.

By a hyperplane of the Euclidean space IR¥ we mean a subset of the form
{a+z:2 € S} where S is a (k — 1)-dimensional linear subspace. Given some
points qi1,...,qn in ]Rk, we say that these points span RF if no hyperplane of
IR* contains them. If any k + 1 points from qi, ..., ¢, span IR* then we say that
qi,---,qn are in general position.

Theorem. If ¢1, ..., q, span IR¥ then det(M) # 0.

Proof. Suppose det(M) = 0. Consider the vectors v; = (¢15,¢2j, .-, qnj)

(1 <j <k)inR" and let vp41 = (1,1,...,1) € IR". With the notation

m = k + 1 observe that M = ((Ui,’l}j>) where ( , ) stands for the scalar
Xm

multiplication. Since the columns of Mmare linearly dependent, we can fix a
(Bis-- s Bm) € R™\{(0,...,0)} such that 337, B;(vi,v;) = 0 hold for i =
1,...,m. Then

0= iﬂi 0= iﬂiiﬂj(vi,%‘) = iﬂi<vi,§:5ﬂj> =
=1 =1 j=1 =1 j=1
<Z 5ivi,25jvj> = <Z ﬂivi,25ivi>,
i=1 j=1 i=1 =1

whence ", Bv; = 0. Therefore all the ¢j, 1 < j < n, are solutions of the
following (one element) system of linear equations:

Brer + -+ Brxr = —Pm.- (1)

Since the system has solutions and (fi,...,8m) # (0,...,0), there is an i €
{1,...,k} with 3; # 0. Hence the solutions of (1) form a hyperplane of IR*. This
hyperplane contains gi,...,¢,. Now it follows that if ¢i,...,¢, span IR* then
det(M) # 0. Q.e.d.
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4 Estimating Registration Error

Point-based registration might find imperfect matching due to the presence of
error in localizing the points (note that points are often called fiducials). There
are some papers dealing with the analysis of point—based registration. It is worth
emphasizing that each of these papers considers only rigid—body transformations.
Maurer et al. [11] proposed three types of measures of error:

— Fiducial localization error (FLE), which is the error in determining the po-
sitions of the fiducials.

— Fiducial registration error (FRE), which is the root mean square distance
between corresponding points after registration. Note that point-based reg-
istration methods minimize this error measure.

— Target registration error (TRE), which is the distance between corresponding
points representing ROIs (range—of-interest) after registration.

Using FRE as measure of registration accuracy is unreliable and may be
misleading, thus investigations were focussed on TRE in the last decade [7,12].

There are two important results concerning registration errors [12]:

— Result 1. For a fixed number of fiducials, TRE is proportional to FLE .
— Result 2. TRE is approximately proportional to 1/y/n with n being the
number of fiducials .

Fitzpatrick et al. [7] gave an exact expression for approximating TRE assum-
ing rigid—body transformations, thus proving both Result 1 and Result 2.

In this paper we examine the dependence of TRE for our affine method via
using numerical simulations.

4.1 Model for Numerical Simulations

Let M = {(z,y,2) | z,y,2 € R,0 < z,y,z < 256} be a cube-shaped region in
the 3D Euclidean space. Let P = {p1,p2,...,pn} be a set of n points used for
modeling the fiducials identified in the reference image, where p; € M (1 <i <
n). A known affine transformation Typown is chosen and the set R = {r; | r; =
TknownPi, ¢ = 1,...,n} is calculated. Set R is corrupted by an n—dimensional
noise vector (u1,...,u,) whose components are random variables having o—
Gaussian distribution. This is used for modeling the FLE. The set Q@ = {¢; | ¢; =
ri+wi, i =1,...,n} is constructed, where pair (p;, ¢;) of points can be regarded
as a pair of corresponding fiducials used for registration. It is assumed that the
FLE is identically zero in the base image. The set S = {s; | s; € M, j =
1,...,m} of m points is randomly selected to represent ROIs in the reference
image. Note that the same m = 20 target points are used for our numerical
simulations . Set S is also transformed to generate set of m points U = {u; | u; =
Tunown -Sj, j = 1,...,m}. The transformation Tgouna is determined and it is
applied to the set U to calculate the set of m points V' = {v; | v; = Trounattj, j =
1,...,m}.



8 A. Tandcs et al.

TRE is formulated as follows:

1 m
— > lsj —vsll*.
m

j=1

We repeated the iterations 10000 times.

4.2 Results

Fig. 4 shows that TRE is proportional to FLE, for a fixed number of fiducials.
Therefore, Result 1 holds for affine transformations, too.

Fig. 5 is to demonstrate how TRE depends on the number of fiducials, for
a fixed FLE. Although Result 2 does not hold, it can be seen that the TRE is
inversely proportional to the number of fiducials.

Affine Motion
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Fig.4. TRE (for the 20 target points) as a function of FLE for 10 fiducials. It is
confirmed that TRE is proportional to FLE
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Fig. 5. TRE (for the 20 target points) as a function of the number of fiducials n, where
o =1 Gaussian distribution is used for modelling FLE. TRE is inversely proportional
ton
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