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Abstract. If A = (aij)m×n is an m×n matrix of real numbers and α,β, γ, δ

are integers with 1 ≤ α ≤ β ≤ m and 1 ≤ γ ≤ δ ≤ n then the elements aij

with α ≤ i ≤ β and γ ≤ j ≤ δ form a submatrix R which we call a rectangle

of A. Let r be the least element (or one of the least elements) of R. If for
every element aij of A which is neighbouring with R we have aij < r then R

is called a rectangular island of A. More precisely, R is called a rectangular
island if whenever (i, j) ∈

(
{1, . . . , m}×{1, . . . , n}

)
\
(
{α, . . . , β}×{γ, . . . , δ}

)
,

(k, `) ∈ {α, . . . , β} × {γ, . . . , δ}, |i − k| ≤ 1 and |j − `| ≤ 1 then aij < r.
The first aim of the present paper is to determine the maximum of the

number of rectangular islands of m × n matrices, for any fixed pair (m, n) of
positive integers. The second aim is to point out that a purely lattice theoretic

result on weak bases of distributive lattices in [1] is useful in combinatorics.

1. Motivations and definitions

For n ∈ N let n = [1, n] = {1, . . . , n}. For m, n ∈ N the set m × n will be
called a table of size m × n. In our figure and arguments we will consider m × n
as a collection of cells; (i, j) will mean the j-th cell in the i-th row of cells. If
(i, j) and (k, `) are two cells of the table then their distance is

√
(i − k)2 + (j − `)2,

the usual distance of their center points. Two cells with distance at most
√

2
are called neighbouring cells. For 1 ≤ α ≤ β ≤ m and 1 ≤ γ ≤ δ ≤ n the set
R = [α, β] × [γ, δ] = {α, . . . , β} × {γ, . . . , δ} is called a rectangle of m × n. When
α = β and γ = δ then R is called a unit square. So a unit square is a singleton
consisting of a cell. Given a rectangle R, we will use the notations α(R), β(R), . . .
to express that R = [α(R), β(R)] × [γ(R), δ(R)]. Notice that rectangles are never
empty and sometimes they will be treated as other tables.

By a (real) matrix of size m×n we mean a mapping A : m×n → R, (i, j) 7→ aij .
Given A, for a rectangle R of the table m × n let min(A|R) denote the minimum
of {aij : (i, j) ∈ R}. We say that R is a rectangular island of the matrix A if
aij < min(A|R) holds for each (i, j) ∈ (m × n) \ R such that (i, j) is neighbouring
with some cell of R. The set of rectangular islands of A will be denoted by Irect(A).

The primary motivation of the present paper comes from a recent result by
Földes and Singhi [3] where “full segments” of vectors, which are just rectangular
islands of 1 × n tables in our terminology, are considered. According to Thm. 4 of
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[3], 1 × n tables A whose entries form the lexicographic length sequence of some
binary maximal instantaneous code are characterized by |Irect(A)| many equations.
This makes the maximum of {|Irect(A)| : A is an 1 × n table} important in coding
theory, and this is why determining

f(m, n) = max{|Irect(A)| : A is an m × n matrix}
seems to be interesting.

The particular case of determining f(1, n) has already been solved by Härtel [4].
It will be clear soon that determining f(m, n) is much harder than determining
f(1, n). Perhaps the two dimensional problem, i.e. determining f(m, n), may look
rather easy at the first sight, and one might expect to generalize it to the analogous
problem in higher dimensions easily. However, at the end of the paper we will point
out where the present approach fails in the three dimensional space, and now the
reader is invited to guess f(100, 100) before further reading.

Beside giving further motivations, the following example explains our terminol-
ogy. Let us consider a rectangular lake whose bottom is divided into (m + 2) ×
(n + 2) cells. In other words, we identify the bottom of the lake with the table
{0, 1, . . ., m + 1} × {0, 1, . . . , n + 1}. The height of the bottom (above see level) is
constant on each cell but definitely less than the height of the lake shore. Let aij

be the height of the cell (i, j) for (i, j) ∈ m × n and let min(A|m×n) − 1 be the
height of (i, j) otherwise. Now a rectangle R of the table m × n is a rectangular
island in our sense iff there is a possible water level such that R is an island of the
lake in the usual sense. There are other examples requiring only m × n cells; for
example, aij may mean a colour on a gray-scale (before we convert the picture to
black and white), transparency (against X-rays), or melting temperature.

Only a very minimal knowledge of lattice theory is assumed: the notion of a
distributive lattice, cf., e.g., Grätzer [5] or any textbook on universal algebra or
lattice theory. Let L = (L;∨,∧) be a finite distributive lattice. Following [1], a
subset H of L is called weakly independent if for any k ∈ N and h, h1, . . . , hk ∈ H
which satisfy h ≤ h1 ∨ · · · ∨ hk there exists an i ∈ {1, . . . , k} such that h ≤ hi.
Maximal weakly independent subsets are called weak bases of L. It is pointed out
in [1] that the set J0(L) of join-irreducible elements and all maximal chains are
weak bases of L. The main theorem of [1] asserts that

Lemma 1. Any two weak bases of a finite distributive lattice have the same number
of elements.

Although this statement initiated some further research like [2], Lengvárszky [7]
and some others mentioned in [7], all this happened within lattice theory. This is
probably the first time when Lemma 1 is applied in another branch of mathematics.

2. Auxiliary statements

Let R and S be rectangles of m × n. We say that R and S are far from each
other if they are disjoint and no cell of R is neighbouring with some cell of S. In
other words, if the distance of any cell in R from any cell in S is at least two. The
set of rectangles of m×n will be denoted by R(m×n). Notice that, by definition,
the empty set does not belong to R(m×n). Since the notion of rectangular islands
does not make it comfortable to work with these islands, the following easy lemma
will be important.
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Lemma 2. Let H be a subset of R(m×n). Then the following two conditions are
equivalent.

(i) There exists a matrix A : m× n → R such that H = Irect(A);
(ii) m× n ∈ H, and for any R, S ∈ H either R ⊆ S or S ⊆ R or R and S are

far from each other.

In what follows, subsets H of R(m × n) satisfying the (equivalent) conditions
of Lemma 2 will be called systems of rectangular islands. We will of course work
with (ii) rather than (i). Our task is to determine the maximum of |H| for these
systems.

Proof. Suppose H = Irect(A). Then m × n ∈ H is evident. If the rest of (ii)
fails then one can easily find a cell (i, j) ∈ R \ S which is neighbouring with some
cell of S. Since S is an island, we have aij < min(A|S). Similarly, there is a cell
(k, `) ∈ S \ R which is neighbouring with some cell of R and so ak` < min(A|R).
Hence aij < min(A|S) ≤ ak` < min(A|R) contradicts (i, j) ∈ R. This proves (i) ⇒
(ii).

The converse implication will be proved via induction on mn. For mn = 1 or
|H| = 1 everything is clear. Suppose mn > 1, |H| > 1 and (ii) holds for H. Let
R1, . . . , Rk be the maximal elements of H\{m×n}. Clearly, Hi = {S ∈ H : S ⊆ Ri}
satisfies (ii) for the table Ri, 1 ≤ i ≤ k. Hence, by the induction hypothesis, there
is a matrix Ai : Ri → R such that Irect(Ai) = Hi for each i ∈ {1, . . . , k}. Now
choose an r ∈ R such that r is strictly less than the minimum of the elements of
Ai for all i ∈ {1, . . . , k}. Then the union of the Ai, 1 ≤ i ≤ k, and the constant
mapping m × n \ (R1 ∪ · · · ∪ Rk) → {r} is an m× n → R matrix A. Since the Ri

are pairwise far from each other, we conclude H ⊆ Irect(A). Then using the (i) ⇒
(ii) direction we obtain H = Irect(A). �

Let max(H) denote the set of maximal elements of H\ {m×n} with respect to
set inclusion. Since the one element system is not a problem, in what follows we
usually assume that the system H of rectangular islands is not a singleton. Notice
that max(H) = ∅ iff |H| = 1. For R ∈ H, let H|R denote {S ∈ H : S ⊆ R}. Then
H|R is clearly a system of rectangular islands of the table R. Since the elements of
max(H) are far from each other, we have

H = {m× n} ∪
⋃̇

R∈max(H)
H|R ,

where the dot in the formula indicates that the H|R, R ∈ max(H), are pairwise
disjoint. The lattice of all subsets of m× n will be denoted by

P(m× n) =
(
P(m× n);∪,∩

)
.

It is a finite distributive lattice. Notice that
(
R(m× n) ∪ {∅};⊆

)
is also a lattice

but it is not distributive in general.

Lemma 3. Let H be a system of rectangular islands of m×n. Then H is a weakly
independent subset of P(m× n). Consequently, |H| ≤ mn.

Proof. Suppose
R ⊆ R1 ∪ · · · ∪ Rk (1)

where R, R1, . . . , Rk ∈ H. We can assume that (1) is irredundant in the sense that
there is no i ∈ {1, . . . , k} with R ⊆ R1 ∪ · · · ∪ Ri−1 ∪ Ri+1 ∪ · · · ∪ Rk. Then no
Ri is disjoint from R, and the Ri are pairwise incomparable. If R ⊆ Ri for some
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i then we are done. In the opposite case k ≥ 2 and Ri ⊂ R for all i ∈ {1, . . . , k}.
Then there is a cell c of R which is neighbouring with R1. (Indeed, take a cell c0

in R \ R1 and a cell c1 ∈ R1, and walk from c1 to c0 within R, stepping from cell
to neighbouring cell.) Since the Rj for 1 < j are far from R1, c does not belong to
R1 ∪ · · · ∪ Rk. This contradicts (1).

Finally, to derive the last sentence of the lemma, extend H to a weak basis H′ of
P(m×n), and consider a maximal chain C in P(m×n). Then C has mn+1 elements
and it is also a weak basis. Hence we conclude from Lemma 1 that |H′| = mn + 1.
On the other hand, the empty set belongs to every weak basis but not to H, so
|H| ≤ |H′| − 1 = mn. �

Notice that Lemma 3 together with the first two sentences in the proof of
Lemma 6 clearly imply the result of Härtel [4] on f(1, n).

The proof of Lemma 3 does not pay any attention how we extend H to a weak
basis. However, we will need a particular extension in what follows. Let H be
a system of rectangular islands of m × n, and let C be a set of unit squares of
m× n. We say that C is a companion set of H if C ∩H = ∅ and H ∪ C ∪ {∅} is a
weak basis of P(m × n). Notice that in this case |H ∪ C| = mn by Lemma 1. A
cell (i, j) ∈ m × n is called an outer cell of H if (i, j) is not in

⋃
R∈max(H) R. In

particular, if |H| = 1 then all cells of m × n are outer cells of H. The set of outer
cells of H will be denoted by out(H). Notice that out(H) is never empty, for the
members of max(H) are pairwise far from each other.

To avoid syntactical errors in subsequent formulas we often have to convert cells
to unit squares and vice versa. For a cell c = (i, j) let c+ = {c}. For a set S of cells
let S+ = {c+ : c ∈ S}. (If the reader prefers not to make a notational distinction
between cells and unit squares, then he can simply disregard + in what follows;
probably this is the best strategy at first reading.)

Lemma 4. Let H be a system of rectangular islands of m × n. Then H has a
companion set C. Moreover, for each companion set C of H there is a unique outer
cell c of H such that c+ does not belong to C.

Proof. We prove the lemma via induction on |H|. For |H| = 1 we can choose any cell
c = (i, j), and let C =

(
(m×n)\{c}

)+. Then Lemma 1 and |H∪C∪{∅}| = mn+1
easily give that H ∪ C ∪ {∅} is a weak basis, whence C is a companion set of H.

Suppose now that |H| > 1, max(H) = {R1, . . . , Rk} and, for 1 ≤ i ≤ k, Ci is a
companion set of H|Ri in the table Ri. The induction hypothesis gives

∣∣∣H|Ri ∪Ci

∣∣∣ =
|Ri|. Fix a cell c ∈ out(H) arbitrarily. We claim that

C = C1 ∪ · · · ∪ Ck ∪ out(H)+ \ {c+} is a companion set of H. (2)

It is straightforward to see that H∪ C ∪ {∅} is weakly independent. Since

|H ∪ C ∪ {∅}| =
∣∣∣
⋃̇

1≤i≤k
(H|Ri ∪ Ci)∪̇

(
out(H)+ \ {c+}

)
∪̇{m× n, ∅}

∣∣∣ =

1 + |out(H)+| +
∑

1≤i≤k

∣∣∣(H|Ri ∪ Ci)
∣∣∣ = 1 + |out(H)| +

∑

1≤i≤k

|Ri| =

1 +
∣∣∣out(H) ∪̇

⋃̇
1≤i≤k

Ri

∣∣∣ = 1 + |m× n| = 1 + mn,

H∪ C ∪ {∅} is a weak basis by Lemma 1. This proves (2).
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Finally, to show the last sentence of the lemma, let C be an arbitrary companion
set of H. We can assume that (m, n) 6= (1, 1), for otherwise C is necessarily empty
and the unique unit square of the table does the job. If out(H)+ ⊆ C then m×n ⊆⋃

c∈out(H) c+ ∪
⋃

R∈max(H) R would contradict the weak independence of H ∪ C. If
c, d ∈ out(H)+ \C with c 6= d then H∪C∪{∅, d} would still be weakly independent,
contradicting the maximality of H ∪ C ∪ {∅}. �

Given a system H of rectangular islands, a set D of unit squares is called an
extended companion set of H if out(H)+ ⊆ D and there is a unit square d ∈ out(H)+

such that D \ {d} is a companion set of H. It is clear from Lemma 4 that H has
an extended companion set. Moreover, if D is an extended companion set then for
each d ∈ out(H)+, D \ {d} is a companion set of H; this comes from the fact that
c right before (2) was chosen arbitrarily. Now Lemma 1 implies

Lemma 5. If D is an extended companion set and C is a companion set of the
system H of rectangular islands then

|H| + |C| = |H| + |D| − 1 = mn .

3. The main result and the rest of its proof

Given a real number x, bxc resp. dxe will denote the greatest resp. least integer
such that bxc ≤ x resp. x ≤ dxe. The usual calculation rules bxc + byc ≤ bx + yc
and dxe + dye ≥ dx + ye will be used without further notice.

Theorem 1. Given a table of size m × n, the maximum number of rectangular
islands, i.e. max{|Irect(A)| : A is an m × n matrix} = max{|H| : H is a system of
rectangular islands of m× n}, is

f(m, n) = b(mn + m + n − 1)/2c.

As a particular case, we obtain Härtel’s result which, in our terminology, says
that f(1, n) = n. The proof of the theorem consists of the following two lemmas.

Lemma 6. f(m, n) ≥ b(mn + m + n − 1)/2c.

Proof. When m = 1 then H =
{
{1} × [1, i] : i ∈ n

}
is a system of rectangular

islands. This shows that f(1, n) ≥ |H| = n = b(1 · n + 1 + n − 1)/2c. By the
commutativity of f the lemma holds for the case 1 ∈ {m, n}, and it clearly holds
for m = n = 2.

Now we show that

f(m1 + 1 + m2, n) ≥ f(m1, n) + 1 + f(m2, n). (3)

Indeed, in the table T = [1, m1 + 1 + m2] × n, let R1 = [1, m1] × n and R2 =
[m1 + 2, m1 + 1 + m2]×n. Then, for i ∈ {1, 2}, there is a system Hi of rectangular
islands in the subtable Ri with |Hi| = f(mi, n). Clearly, H = H1 ∪ {T} ∪ H2 is a
system of rectangular islands of T and |H| = f(m1, n) + 1 + f(m2, n) shows (3).

Finally, we obtain the lemma from (3) via induction on mn as follows:

f(n, m + 2)) = f(m + 2, n) ≥ f(m, n) + 1 + f(1, n) ≥
b(mn + m + n − 1)/2c + 1 + n =

b(mn + m + n − 1)/2 + 1 + nc =
⌊(

(m + 2)n + (m + 2) + n − 1
)
/2

⌋
.

�
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Now, for a system H of rectangular islands of m×n, we define the deficiency of
H as d(H) = mn − |H|. Notice that Lemma 5 yields

d(H) = |C| = |D| − 1 (4)

for any companion set C and any extended companion set D of H. Since mn −
d(mn + 1− m− n)/2e = b(mn + m + n− 1)/2c, the following lemma will complete
the proof of Theorem 1.

Lemma 7. For any system H of rectangular islands of m× n,

d(H) ≥ d(mn + 1 − m − n)/2e.

Proof. We prove Lemma 7 via induction on mn. For 1 ∈ {m, n} Lemma 7 follows
from Lemma 3, and for m = n = 2 it follows trivially via inspecting all cases. (Up
to symmetry, there are only three possibilities for max(H).)

So we assume that m ≥ 2, n ≥ 2, mn ≥ 5 and Lemma 7 is valid whenever the
“area” of the table is less than mn. As the previous sentence indicates, subsets
(mainly rectangles or the whole table) of m × n will often be treated as subsets
of the Euclidian plane in the obvious way. This will cause no confusion; when we
speak of the number |S| of elements of some set S then S is understood as a subset
of m× n, and when we mention the area µ(S) of S or we want to magnify S then
S is regarded as the corresponding subset of the plain. Notice that cells and unit
squares are the same when they are considered as planar sets. The area µ(S) of S is
defined in the usual way. In particular, µ(R) = (β(R)−α(R)+1)(δ(R)−γ(R)+1)
for R ∈ H. For simplicity, if S1 and S2 are subsets of the plane with µ(S1 ∩S2) = 0
then S1 ∪ S2 will be denoted by S1∪̇S2 and we say that S1 and S2 do not overlap.
When µ

(
(S1 \S2)∪ (S2 \S1)

)
= 0, then we will simply say that S1 = S2 modulo µ.

Figure 1

The key idea of the proof is that we can magnify the members of max(H) by half
in all the four directions, and they still will not overlap after this magnification.
For R ∈ max(H) let R∗ denote what we obtain from R after this magnification.
The magnification process is visualized in Figure 1, where m = 6, n = 8, and the
table is depicted by dotted lines. The elements of max(H) are indicated by thick
solid lines on the left. Similarly, the members of {R∗ : R ∈ max(H)} are given
by thick solid lines on the right. The shaded area is disjoint from each magnified
maximal rectangular island. We can also magnify the table T = m × n by half in
all the four directions; the magnified table will be denoted by T ∗ and its area is
µ(T ∗) = (m+1)(n+1). Notice that R∗ ⊆ T ∗ for all R ∈ max(H) and µ(R∗∩S∗) = 0
for distinct R, S ∈ max(H).
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Let max(H) = {R1, . . . , Rk}. In Figure 1, k = 6. Choose a companion set Ci of
H|Ri in the table Ri for each i ∈ {1, . . . , k}, and let

D = C1 ∪̇ · · · ∪̇ Ck ∪̇ out(H)+ . (5)

Notice that the members of the union in (5) are pairwise disjoint and, by (2), D is an
extended companion set of H. Let G denote (T ∗ \T )∪out(H) = T ∗ \ (R1∪· · ·∪Rk)
in the plane. This equation is, and some of the following ones will automatically
be, understood modulo µ. Then

µ(G) = m + n + 1 + |out(H)|. (6)

Moreover, in the plane we have

G = E ∪̇ (R∗
1 \ R1) ∪̇ · · · ∪̇ (R∗

k \ Rk) (7)

where

E = G \
(
(R∗

1 \ R1) ∪ · · · ∪ (R∗
k \ Rk)

)
= T ∗ \ (R∗

1 ∪̇ · · · ∪̇ R∗
k).

In Figure 1, E is the shaded area. Notice that µ(E) is an integer, since so are µ(G)
and the µ(R∗

i \Ri) =
(
β(Ri)−α(Ri)+1

)
+

(
δ(Ri)−γ(Ri)+1

)
+1 for i ∈ {1, . . . , k}.

It follows from the definition of E that

µ(E) +
k∑

i=1

µ(R∗
i ) = µ(T ∗) = (m + 1)(n + 1). (8)

Now suppose that Ri is of size u × v, i.e., u = β(Ri) − α(Ri) + 1 and v =
δ(Ri) − γ(Ri) + 1. Then by the induction hypothesis we have

|Ci|+ µ(R∗
i \ Ri) = |Ci| + u + v + 1 = d(H|Ri) + u + v + 1 ≥

d(uv + 1 − u − v)/2e + u + v + 1 = d(uv + 1 − u − v)/2 + u + v + 1e =
d(u + 1)(v + 1)/2 + 1e,

whence
|Ci|+ µ(R∗

i \ Ri) ≥ dµ(R∗
i )/2 + 1e. (9)

Now, applying the previous formulas and indicating their use like =(4) , ≥(9),
etc., let us compute:

d(H) =(4) |D| − 1 =(5)

|C1| + · · ·+ |Ck| + (|out(H)| + m + n + 1) − (m + n + 2) =(6)

|C1|+ · · ·+ |Ck| + µ(G) − (m + n + 2) =(7)

−(m + n + 2) +
k∑

i=1

|Ci| + µ(E) +
k∑

i=1

µ(R∗
i \ Ri) =

−(m + n + 2) + µ(E) +
k∑

i=1

(
|Ci| + µ(R∗

i \ Ri)
)
≥(9)

−(m + n + 2) + µ(E) +
k∑

i=1

dµ(R∗
i )/2 + 1e =

−(m + n + 2) + µ(E) − dµ(E)/2e + dµ(E)/2e +
k∑

i=1

dµ(R∗
i )/2 + 1e ≥
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−(m + n + 2) + µ(E) − dµ(E)/2e +
⌈
µ(E)/2 +

k∑

i=1

(µ(R∗
i )/2 + 1)

⌉
=(8)

−(m + n + 2) + µ(E) − dµ(E)/2e + dµ(T ∗)/2e +
k∑

i=1

1 =

−(m + n + 2) + µ(E) − dµ(E)/2e + d(m + 1)(n + 1)/2e + k =(
µ(E) − dµ(E)/2e + k − 2

)
+ d(m + 1)(n + 1)/2− (m + n)e =

(
µ(E) − dµ(E)/2e + k − 2

)
+ d(mn + 1 − m − n)/2e.

Hence the only thing we have to show now is that

µ(E) − dµ(E)/2e + k − 2 ≥ 0. (10)

Since µ(E) − dµ(E)/2e ≥ 0, it suffices to deal with the case of k ≤ 1. If k = 0 then
E = T ∗ by (8), so µ(E) = (m+1)(n+1) = mn+m+n+1 ≥ 5+2+2+1 = 10 yields
(10). If k = 1 then µ(E) ≥ min{m + 1, n + 1} ≥ 3, whence µ(E) − dµ(E)/2e ≥ 1
implies (10). �

Notice that most of our auxiliary statements are valid for the analogous three
dimensional problem. However, it seems to be only a lucky peculiarity of the planar
configuration that the right hand side of the key formula (9) depends only on µ(R∗

i )
but not on R∗

i . Finally, at the time of final revision, we mention Horváth, Németh
and Pluhár [6] as a related research motivated by the present paper.
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