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Four-generated large equivalence lattices

GABOR CzEDLI*

Dedicated to E. Tamds Schmidt on his 60th birthday

Commaunicated by M. B. Szendrei

Abstract. Strietz [4, 5] has shown that Equ(A), the lattice of all equivalences
of a finite set A, has a four-element generating set. We extend this result for
many infinite sets A; even for all sets if there are no inaccessible cardinals.
Namely, we prove that if A is a set consisting of at least four elements and
there is no inaccessible cardinal < |A|, then the complete lattice Equ(A) can
be generated by four elements. This result is sharp in the sense that Equ(A)
cannot be generated by three elements.

I. The main result

Given a set A, let Equ(A) denote the (complete) lattice of all equivalences
of A. If A is finite, then Equ(A) can be generated by four elements, but three
elements are insufficient for |A| > 4, cf. Strietz [4, 5] and Zadori [6]. Our aim is
to extend this result for some infinite sets A. Then, of course, we have to consider
Equ(A) as a complete lattice, for otherwise it would not be finitely generated. An
analogous result (for some infinite cardinalities) was proved for the (involution)
lattice of all quasiorders of A in [1]. The present paper benefits a lot from the ideas
developed in [1] and Zadori [6].

As usual, Ng denotes the smallest infinite cardinal. A cardinal m is called
inaccessible if it satisfies the following three conditions: (i) m > Ro; (ii) n < m
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implies 2" < m; and (iii) if I is a set of cardinals such that |I| <m and n < m
for all n € I, then sup{n: n € I} < m. Note that sup{n: n € I} in (iii) can be
replaced by }° ., n. For details on inaccessible cardinals the reader can resort to
standard textbooks, e.g., to Levy (3, pp. 138-141]. By Kuratowski’s result [2] (cf.
also (3]), ZFC has a model without inaccessible cardinals. Hence the existence of
inaccessible cardinals cannot be proved from ZFC, and the scope of the following
theorem includes all sets in an appropriate model of set theory.

Theorem 1. Let A be a set with at least four elements, and suppose that there is
no tnaccessible cardinal m such that m < |A|. Then the complete lattice Equ(A) of
all equivalences of A has a four-element generaling set.

The rest of the paper is devoted to the proof of this theorem. But first of
all we notice that Equ(A) in the theorem cannot be generated by less than four
elements. This observation for finite sets was proved by Zidori [6, Lemma 2 and
page 580], and — luckily enough — his proof is valid for infinite sets without any
essential change.

I1. Boxes and their extensions

By Strietz [4, 5], it is sufficient to prove the result only for infinite sets. So
even if we start the proof at some finite sets, we do not have to (and will not)
deal with all finite sets. Basically, the proof is an induction on |A|. However, the
mere assumption of the statement for a given cardinal is far from being a suitable
induction hypothesis. Therefore we have to build a structure on A and study these
structures in the necessary extent. Before developing the necessary terminology,
we give an example.

Let Lo = {a¢,a1,.--,a16,b0,b1,...,b15}. For p,q € Lo (or p,q in any set), let
(p,q) denote the smallest equivalence collapsing p and g. Note that (p,q) = (q,p)
is an atom in Equ(Lo) if p # g, and (p,p) = 0 € Equ(Lg). If x € Ly and
© € Equ(Lo), then the ©-class containing x will be denoted by [x]©. Denoting the
lattice operations by 3~ or + (join) and [] or - (meet), we let

15 14 15

a0 =Y (@i,aim) + ) _(bibir1),  Bo=D (e bi),
i=0 i=0 i=0
15

Yo = (birair), b0 = (a0, bo) + (@16, b1s)-
i=0
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Figure 1

These equivalences are represented by horizontal, vertical, southwest—northeast,
and dotted lines in Figure 1, respectively.

We will soon show that {ag, 8o, 70, 6o} generates Equ(Lg). The elements
d = dyp = a14 and h = hg = b4 will be treated as constants. For i =1, 3, 5, 7,
9, the quadruplet e = (b;, aiy3, bit1, ai44) is called an edge pair. Let Ey denote
the set of edge pairs. The edge pairs of Ly are represented by parallelograms in
Figure 2. Associated with an e € Ey we will use the notation e = (b, a., b., a’).

a a a a a a a
, 8, 8,8, a 4a 8,2, 8 8 a,a a 3a,d a
[ ]

. e o o
b, b, b, b, b, by b, b, By b, by by b b b b

\

Figure 2

What we have depicted in Figures 1 and 2 is just a particular case of a more
general structure, which we introduce under the name “box”.

Definition 2. By a bor we mean a structure
A = (Avd’h’Eva’ﬂ,’%&)

provided

(b1) A is a set with |A] > 6, and d, h € A are distinct constants;

(b2) a,B,7,6 € Equ{A) such that a6 = 0;

(b3) E C (A\ {d,h})?, each e = (be,ae,b.,a.) € E (called an edge pair) has four
distinct components, and {b., a., b,, a,} N {by, ay, b’f, a'f} = { for all distinct
e,f € E;

(b4) For all e € E, the restriction of a to {b, a., b}, a,} is (a.,a,) + (be,b,) in
Equ({be, ae, b, a.}), while the restrictions of 3, v and 6 to {be, a., b, a.}
are 0;

(b5) (d, k) € B, but (d,h) ¢ a, (d,h) ¢ 7, (d,h) ¢ 6;

(b6) the é-classes [d]8, [h]6 and, for every e € E, [b.]6, [a.]é, [b,]6, [a.]é are single-

~ tons; and
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(b7) for all e € E, none of (b,d), (b,,d), (a., ), (a., ) belongs to .

The conditions defining a box are not quite independent; (b6) implies the &-
part of (b4) and (b5). The idea behind this notion is that {c, 3, v, 6} will, by the
end of the proof, generate Equ(A). Let A; = (A, d;, hi, E;, ai, B, ¥i, 6;) be boxes
for i = 1,2. A bijective map ¢: A; — Aj is called an isomorphism if o(d;) = d2,
@(h1) = ha, p(an) = {(p(z),0(¥)): (z,y) € a1} = a2, p(B1) = B2, p(Mm) = 72,
p(61) = 62, and @(E1) = {(p(z), ¥(y), ¥(2), ¥(t)): (z,y,2,t) € E1} = Ea. Since
we want to create large boxes from smaller ones, we introduce a concept that
expresses how the small boxes can be put together.

Definition 3. Suppose Ag = (Ao, do, ho, Eo, o, Bo, Y0, 60) and B = (B, d, h,
E, a, B, v, 6) are boxes and I is a partition on the set B. Let A; (i € I) denote
the classes of this partition. We assume that 0 € I, so the support of the box Ay
is one of the classes. For i € I\ {0}, let p;: Ag — A; be a bijection, and define
di = pi(do), hi = pi(ho), Ei = pi(Eo) = {(vi(z), vi(y), vi(2), wi(t)): (z,y,2,t) €
Eo}, o = pi(ao), Bi = i(Bo), 1 = wpi(w), and & = pi(bo). Let po denote
the identical automorphism of Ag. For p € Ay or e € Ey, we use the notation
i = wi(p) or e; = pi(e), respectively. Then A; = (A, di, hi, Ei, o, Bi, 1, 6i) is a
box isomorphic to Ag. Let us assume that

(el) B= Uiel Bi, Y= Uiel Yis

(€2) a=Uer i + 2, jer(didj);

(e3) there exist F,G C Eg x I and H C Ep x I x I such that (e,i) € FUG implies
{(e,,7), (e,5,0)}NH =0 forallje I, FNG =0, (e,4,7) € H implies i # j,
(e,i,7) € H implies (e,¢,i) ¢ H for all £ € I, (e,i,j) € H and (e,¢,j) € H
imply ¢ = £, and

6=U6;‘+ Z (be;’ae;)+ Z (b;;)a’ei)'l'

i€l (e,i)EF (e.s)€EG
+ Y (faenbe,) + (br, +2))i
(e.ij)EH

(e4) d = do, h = hg; and

(€5) E C Use; Ei-

Then B is called an extension of Ag, in notation B | Ag. Let ® = (T, {p:: i € I});
it is called the way of ertension. Sometimes, when @ is relevant, we say that B is
an extension of Ag by @, in notation B |¢ Ag. For Egq C Eo, U;c; E{ = {ei: i e I,
e € E}} is called the extension of Ej to B (by ®). If the extension of Ej (C Ep)
is included in E, then the box extension B | Ay is called Ej-preserving. By the
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degree of the box extension B | Ao we mean |I|; the degree is denoted by [B : A).
(We will use this notation only when the meaning of & — at least implicitly — is
already given. Note that |B| = [B: Ag] - [4o].)

For example, if Ao = Lg is the box defined by Figures 1 and 2, I = {,
Uy, Uz, Us}, H = {(b1,a4,b2,a5)} x {0} x {U1,U2,U3}, E = {(bs,a10,bs,011),
(bg, a2, b10,a13)} x I, and F and G are appropriately chosen, then an extension B
of Ay is depicted in Figure 3. Notice that Ao C B but Ey € E.
d@) a

a a a a a a a a
0’1 2 4 4.5 l'rlo‘wn 12 18

.
______
Lo

0 Py Py Py >l 8

by b b bib b by b b bbb, b, hU)b,

.."~.’ a a ‘35' a, a, a, &, & 8,8, 2, ‘d(ua) B

o
28 " . - o -

bo bI b! bs b‘ bﬁ b‘ b7 b‘ b. blo b" bn h(uS) b15

Figure 3

Now, for better understanding and later reference, we formulate (e3) less
formally. For an edge pair e, the atoms (b, a.) and (b, a.) are called the left atom
and right atom of e, respectively. For distinct edge pairs e and f, let (a.,bs) +
(b, b}) be called the connecting equivalence from e to f. Now (e3) means
(e3’) To obtain § from |J;c;6;, we can add some left atoms, some right atoms,

and some connecting equivalences but we have to follow the following rules.
Every edge pair can be used for at most one of the following purposes: either to
determine a left atom or to determine a right atom or (together with another
edge) to determine a connecting equivalence. If e and f are edge pairs and
we use (e, f) to obtain a connecting equivalence (from e to f), then f cannot
be used at other connecting equivalences, and e can be used only as the first
edge pair to obtain other connecting equivalences.
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Now we formulate some kind of transitivity for extensions. Let By = (By, dp,
ho, Eo, &0, Bo, 7o, 8o) be an extension of Ag by ® = (T, {y;: i € I}). Further,
let C =(C,d, h, E, a, B, 7, 6) be an extension of By by ¥ = (A, {¢;: j € J}).
Le., A = {Bj: j € J} is a partition of C, ¢;: By — B; is a bijection (j € J, 1 is
the identical map of By), d; := ¥;(do), h; := ¥;(ho), &; := ¥;(a@0), etc. For i € I
and j € J, let A;; = v¥;(pi(Ao)) = (¥; 0 v;)(Ao), and define g;; = ¥; o ;. Then
the A;; ((4,4) € J x I) form a partition of C, which we denote by AoT'. Let us
identify (0,0) with 0. Then we obtain ¥ o ® := (AoT, {p;:: (j,%) € J x I}), which
we call the composition of ¥ and ®. With the above notations we have

Claim 4. Suppose Ay, By and C are bozes, By | Ap and C | By. Then
(i) if Bo |le Ao and C |y By, then C |wod Ao;
(ii) [C : Ag] =[C : By - [Bo : Ao);
(iii) if By C Eo, Bo |o Ao is an Ej-preserving extension, the extension of Ej to By
is denoted by E}), and C |¢ By is an E}-preserving extension, then C |yoe Ao
is an Ej-preserving extension.

We do not know if ¥ o @ is the only way of extension C | Ap, but permitting
other ways would cause trouble in the sequel.

Proof. It suffices to show (i}); the rest will follow as evident consequence. Roughly
speaking, the proof is based on the fact that the edge pairs that we used to obtain
6; from the §;,; according to (e3’) are not edge pairs in B; by (b6). Conditions
(el), (e4) and (e5) are obvious. Now (e2) for Ag and C asserts that

(1) a= |J au+ Yo (dindie),

(5.5)eIx1 (4,:9),(5" 3" )ET XTI

where a,; = gj.i(a0) = ¥;(wi(a)), dji = 05,i(do), etc. We know that

(2) a=Ja;+ Y (ddy),
i€ i€l

and

(3) a;=Josi+ D (dyirdjisr).
el i,i'€l

Suppose (p,q) € a, p € Aj;, ¢ € Aj . If j = j/, then p,q € By, so, by (2),
(p,q) € &;, so (p, q) is in the righthand side of (3), which is included in the righthand
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side of (1). Assume j # j'. Thenp a py (d_j,d_j:) q1 @ q by (2), where p; € B;,
q1 € Bj.. By the previous case, (p,p1) and (g1, ¢) are in the righthand side of (1).
But so is (d;,dj) = (dj0,d;:,0), and therefore (p,q) as well. This proves the ”C”
part of (1).

By (2) and (3),

U Qi = U Uaj,ig Udjga.

(i)eIxI jE€J i€l jeJ

On the other hand,
(dji,djr.ir) C {dii,ds0) + (dj, dj) + (djr 0, djr ir)-

Since these summands belong to a; C o, o and o C a, respectively, we obtain
the ” 2" part of (1). Hence (e2) for A¢ and C holds.

To prove (e3) we work with (the equivalent) (e3’). We obtain é from the §;;
in two steps. In the first step, within every B;, we add some left/right atoms and
some connecting equivalences to | J;c; 6;,:- L.e., we add these atoms and connecting
equivalences to |J, ;yesxs 854 Since the B; are boxes, (b6) applies for them and
implies that the edge pairs used in the first step cannot be edge pairs of B; (i.e., they
do not belong to E;). Therefore, when we add atoms and connecting equivalences
to {J6; in the second step (to obtain & from the §;), the edge pairs used in this
second step are necessarily distinct from those used in the first step. We can, of
course, replace these two steps by one in which we add all the atoms and connecting
equivalences to {J; ;)e s« 1 8j,i at the same time. Since different edge pairs were used
in the two original steps, now every edge pair is still used at most once, and (e3')
for Ap and C holds. This proves (i) of Claim 4. .

Now let B |¢ Ag, and let us use the notations of Definition 3. For p,q € Ap
we introduce the notation :

(p,q) 4B = (p,q)A0B:®) =% "(p;,¢;) € Equ(B).

i€l
For i € I, we will also use the notations (p;,q;)(40B:®) := (p,q)(40:B:?) apd
(pi,qi) A0 B) = (p,q)(40B). le., for u,v € A; we define (u,v)(40-B:®) 55

(o7 (w), 97 (v))(A0B:2). Usually we drop ® from these notations but we must
be careful: always a fixed ® should be understood when it is not indicated.
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Definition 5. A box A is called a good boz if, for every extension B = (B, d,
h, E, a, B, v, 8) of A by & and every complete sublattice Q of Equ(B) with
{2, 8,76} CQ, (,9) "B € Q for all p,q € A.

Notice that A is an extension of itself, and (p,q)(44) = (p,q) in this case.
Since Equ(A) is clearly generated by its atoms (p,q) (p # ¢), we conclude that
Equ(A) is four-generated, provided A is a good box. This is why we want to find
good boxes of any cardinality below the first inaccessible cardinal. To accomplish
this task, first we show that Lo (given in Figures 1 and 2) is a good box, then we
give two methods to obtain larger good boxes from given good boxes, and finally we
show that we can reach all infinite cardinals m (such that no inaccessible cardinal
is < m) this way.

Claim 6. Ly, the box defined in Figures 1 and 2, is a good boz.

Proof. Let A = Ag = Ly, and let us consider an extension B of A; the notations
from Definition 3 (except for p;) will be in effect. Let Q be a complete sublattice
of Equ(B) such that {a, 8,v,6} C Q. For X C B and © € Equ(B), X is said to be
closed with respect to O if [£]© C X holds for every z € X. E.g., each A; is closed
with respect to 8 and 4. So it is closed with respect to go := $6 and Hp := ~6,
whence we easily infer that go = (ag, bo)(4'B) and Hp = (b15, a16)4*E) belong to Q.
Now, similarly to Zadori [6], we can define some further members of @ inductively:

h‘i+l = ((gt+7)a+gt)7 ("':011’,15)’
g1 = ((hrr +Ba+hiun)B  (i=0,1,...,14),
Gis1 = ((Hi+ﬁ)a+H,-)ﬁ (i=0,1,...,15), and

Hip = ((Gi+1 +7)a+ Gi+1)‘7 (1=0,1,...,14).

Since 6 does not occur in the above inductive equations and a occurs only in meets,
all the A; (j € J) are closed with respect to every g;, h;, G; and H;. Now an easy
induction shows that

2
g9;j = Z(ai,b,’)(A’B) (] = 0,1,...,15),
i=0
J
hj = z(b;_l,ai)(A'B) (] = 1,2,...,16),

i=1
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J
H; = Z(als—i» bls—i)(A'B) (=0,1,...,15), and

=0
j
Gj= Z(als-i,bls—i)(A’B) (j=12,...,16).

i=1

(Note that, for B = A = Ly, these formulas with notational changes occur in
Zéadori {6, p. 582).) Therefore the following elements

(aj,bj)(A'B) = gj 'G16—j ¢ =0,1,...,15),
(bj_l,aj)(A'B) = hj . Hls—j (J = 1,2, ey 16),
(a.]-_l,aj)(A'B) = ((aj_l,bj_l)(A'B) + (bj_l,aj)(A’B))a (J =12,..., 16), and

(bj1,b5) AP = ((bj1,05) 4P + (05,04 P)a (j=1,2,...,15)

all belong to Q. Now let p,g € A = Ay be distinct elements. Then there is a circle
P = Ug, Ul,.. ., Ui = g, Uit1,...,Ui+j—1, Ui+; = P in the graph depicted in Figure 1
such that |{ug,u1,...,ui+j-1}] = ¢+ j. Since the (ug_l,ut)(A'B) already belong
to Q,

¢ i+j
(p, ) B = (Z(ul—l’"t)m'm) : ( ZJ (ut—l,ul>(A'B)) €Q.
¢

This proves Claim 6. -

Given a cardinal m, the smallest cardinal that is greater than m will be
denoted by m*. For a finite set X, let R(X) = P(X), the set of all subsets of
X. When X is infinite, R(X) will always denote a fixed subset of P(X) such that
@ € R(X) and, unless explicitly otherwise stated, |[R(X)| = |X|*. R*(X) will
always stand for R(X) \ {0}.

Definition 7. Suppose A = A = (Ao, do, ho, Eo, ao, Bo, Yo, o) is a box. Choose
c € Ey, D C Eg and F C Ep such that Eg = {c} U DU F and, further, the sets
{c}, D and F are pairwise disjoint. For each U € R(D) we take an isomorphic
copy A(U) = (A(U), do(U), ho(U), Eo(U), ao(U), Bo(U), 10(U), b6(U)) of 4
such that these copies are pairwise disjoint, and A(@) coincides with A = Ay. Let
pu: A — A(U) be a fixed isomorphism for U € R*(D); wp = o will stand for the
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identity map on A = A(§). Let

B= |J 4, 8= U 6O, 1= |J »w)

U€eR(D) U€ER(D) UeR(D)
a= |J @+ D (do(9),do(V)), and
UeR(D) UeR+(D)
5= U a@+ 3 ((60)a@)+ X (G(U),a, )+
UeR(D) UER(D) eeU e€ D\U
+ Y ((ac(®),be(U)) + (0,0, 5.L)))
UER* (D)

Define E = Uyep(py F(U), d = do(9), and h = ho(B). This way we obtain B = (B,
d, h, E, a, 3, 7, 6), which we call a successor of A.

For example, if A = Lo (cf. Claim 6), D = {(b3,as, b4, a7), (bs,as,bs,a9)},
F = {(b7,a10,b3,a,11), (bg,alg,blo,am)} and ¢ = (b1,a4,b2,a5), then the corre-
sponding successor of A is depicted in Figure 3, where U; = {(b3,as,bs,0a7)},
U2=D\U1 and U3=D.

Claim 8. Let B be a successor of a box A. Then B is a box. Moreover, B |¢ A for
the “canonical” ® = (T, {py: U € R*(D)}), where the classes of T" are the A(U),
U € R(D).

Proof. Let as assume that A is a box, and denote by (bi) 4 resp. (bi)g the satisfac-
tion of (bi) for A resp. B. First we show (b2)p. Given 8; € Equ(B) for j € J, we
call 3_.c,©; a direct sum of the ©; if for every choice of a non-singleton ©;-class
C; for each j € J the sets Cj, j € J, are pairwise disjoint. By (b6) 4, ¢ is a direct
sum of certain equivalences, and each of these direct summands is of the form

1= |J &), ©2=(b(U)a)), 6s=(d.(U)aLU)),

U€eR(D)
1= (ac(®).b(U)) or ©5= > (b.(0),6,(V)).
U€ER+(D) UeR* (D)

Hence, to show aé = 0, it suffices to show a®, = 0 for £ = 1,2,3,4,5.
For £ = 1,2,3 this is obvious from a|sw) = o(U), (b2)a and (b4)4. Sup-
pose now that (u,v) € a4 and u # v. If {u,v} = {a.(0),b.(U)}, say
u = a.(0) and v = b.(U), then, by U # @ and the definition of o, we obtain
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(ac(9),d(0)) € (@) and (d(U),b.(U)) € a(U), contradicting (b7)4. The other
possibility, {u,v} = {bo(V),b-(U)} for distinct U and V, and the case of ©5 (where
{w,v} = {(84(V),6,(0)}) lead to (b(U),d(V)) € a(U) or (B,(U),d(V)) € a(U),
which contradicts (b7) 4 again. Therefore ad = 0.

We have seen (b2)p; (bl)p and (b3)p are trivial. Since a4y = a(U) and
similarly for 8 and «, the a, 3 and v parts of (b4) g follow. We do not have to deal
with the 6 part of (b4) g, for it will follow from (b6)p. Since the edge pairs of E =
Uver(p) F(U) were not used in the construction, (b6) s follows form (b6) 4. Since
ala) = a(9), Blaw) = B(®) and v|49) = ¥(9), we obtain (b5)p from (b5)4 and
(b6) . Now let e = e(U) € E. If (b, d) = (be(U),d(D)) € , then (d(8),d(V)) €
gives (be(U),d.(U)) € a, which is impossible by o] 4y = a(U) and (b7) 4. (b},d) ¢
« is obtained similarly. Suppose now that (ae,h) = (ae(U),h(0)) € a. IfU =0
then a| 49y = (@) and (b7) 4 gives a contradiction. So let U # 0. By the definition
of a, we obtain (a.(U),d(U)) € a(U), (d(U),d(®)) € o and (d(D), h(B)) € (D),
contradicting (b5)4. (al,h) € « is derived similarly. Hence (b7)p holds, and B is

a box. Finally, it is trivial that B |¢ A. -

Claim 9. Let B be a successor of A. If A is a good bozx, then so is B.

Proof. Let Ap = A and use the notations of Definition 7. We know that B |¢ A
with the canonical ®. Let us consider an extension C = (C, d, h, E, &, 8, ¥, )
of B, say C |y B. Then C is an extension of Ag by ¥ o ®, ¢f. Claim 4. So we
can use the following, self-explaining, notations: By = B, ¥ = (A, {¢;: j € J}),
B; = v%;(Bqg), A(j,U) := ¢;(A(U)) for U € R*(D) and A(0,U) = A(U). Then
B; := Uyerp)A(,U) and C = U; 1yesxr(p) Al U); both of these unions are
disjoint ones. Similar notations (with obvious meaning) will be used for d, o, etc.
The smallest complete sublattice of Equ(C) that contains &, 3, 7, and 8 will be
denoted by Q.

First we deal with the case p =d{0,U) € B = Bg and ¢ = h(0,U) € B. Then
we assert

#,0) %9 = 2,94 [T (P64 +8 + (0, ) 49)-
eelU

11 ((p,b’,)(""C)+5+(a;,q)("'c’).
e€e D\U

(4)

Before proving (4) let us point out that it easily implies (p,q)(®:©) € Q. Indeed,
this follows from Claim 4 and the goodness of A. Similarly, all the subsequent
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equations will automatically imply that their lefthand sides belong to Q; we will
rely on this fact implicitly.

The “C” inclusion in (4) is an obvious consequence of the definitions. To
show the reverse inclusion, let us assume that (u,v) belongs to the righthand side
of (4), u,v € C and v # v. From (u,v) € (p,q)*©) we infer that u and v
are in the same copy of A; say they are in A(j,V) C B;. It also follows from
(u,v) € (p,q)4) = (d(4, V), h(5, V))4©) that {u,v} = {d(j, V), h(j, V)}. Hence,
for any e € U, (4) yields

() (G, V),h(5,V)) € [d(G: V), be (G, V))AC) + 8 + (ae(4, V), h(j, V)4,

By the construction of B; (2 B), {ae(j,V),be(j,V)} is disjoint from the set of
components of every edge pair of B;. Let us observe that the restriction of 6 to
{ae(5, V), be(j,V)} coincides with the restriction of §;. Indeed, (e3’) says that we
add some pairs (z,y) to 6; and both components of these pairs are components of
edge pairs. But formerly, by (b6), |[z]é;] = |[y]6;] = 1, so enlarging é; in B; this
way induces no change on

(6) Y = B; \ {z: z is a component of an edge pair}.

Since e was used when we obtained B; from A = A(j,V), e is not an edge pair
of B;. Therefore a.(j,V) and b.(j, V) belong to Y; and the above-mentioned two
restrictions coincide, indeed.

Hence, from the construction of B, we obtain

(7) [be(]v V)]g c {be(Ja V)$ a'e(jv V)}a and
(8) (be(§, V), ae(j, V) €6 = e € V.

Since d and & belong to Y, defined in (6), we infer from (b6) for B; that
(9 [[d(, V)18 = I[r (5, V)I8] = 1,

while

[d(, V)I(d(5, V), be(G, V)Y = {d(4,V),be(5, V) }
[h(4, V)I(ae(5, V), h(G, VIO = {h(}, V), a(5,V)}
is trivial. Now (5), (7), (9) and (10) imply (be(j,V),ae(j,V)) € 6, and e € V

follows from (8). This shows U C V.. Using the [].cp\y part of (4), D\U C D\V
comes similarly. Hence U = V, and we obtain (u,v) € (p,¢)(®'©), showing (4).

(10)
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If p,q € A(0,U) € B = By such that |{p,q,d(0,U),h(0,U)}| = 4, then we
easily obtain

(7, 9)® = (p,q) 4 - ((p,d(0,U))*) + (d(0, V), h(0, U)) B+

+(h(0, V), q) ).

Now let p,q € A(0,U) C By be arbitrary distinct elements. Since [A(0,U)| >
6 by (bl), we can choose distinct p;,q1 € A(0,U) \ {d(0,U), h(0,U),p,q}. The
previous formula applies for (p;,q1), and we obtain

?.9)"% = (2,94 - (2.2) 4 + (p1,0) 7 + (@1,9)49).

The next step is to deal with the case p = d(0,0) € A(0,0) and ¢ = d(0,U) €
A(0,U) for U € R*(D). We assert that

(d(0,8),d(0,1))(B:<)

- = & ((d(0,0),5,(0,0))%%) +  + (4,0, ), (0, U))>).

The “C” part is evident. Before proving the converse inclusion we show that

(12) (d(5,V),b.(j,W)) ¢ & forall j€J, and V,W € R(D), and
(13) [be(5,0)16 = {be(4, W): W € R(D)}.

If V = W, then (12) follows from Claim 4, &| 4(;,v) = a(4,V) and (b7) for A(j,V).
If V # W, then (d(4,V),b.(5,W)) € & would imply (d(j,W),b.(j, W)) € &, but
this case has already been excluded. This proves (12). If we are within Bj, i.e. if we
write §; instead of &, then (13) is clear by the construction of B; from the A(j, U)
and (b6) for A. With the notation of (6) we have {b.(j,W): W € R(D)} CY, so
the validity of (13) for §; implies (13) for é.

Suppose now that u # v € C, and (u,v) belongs to the righthand side of (11).
Let, say, u € B;. Then there is a shortest sequence wo = u, wy, ..., We—1, W =v
such that every (w;~;,w;) belongs to

(d(0,0),.(0,0)) B U U (b.(0,U),d(0,U)) B
= (d(5,9), b,(5,0)) BV U U (b, (5, U), d(5, U))B:©).

Since & = 0 by (b2), not all the (w;_1,w;) belong to §. Hence there is an £ with

(wl—lywl) € (d(J) 0)’blc(.7y @))(B'C) = el
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or there is an r with
(wr—1,wy) € (b.(5,U),d(5,U))BC = @,.

We can assume £ < r if both exist, for otherwise we could use (v,u) instead of
(u,v). By (12) and the meaning of ©, and 2, some (w;—_;,w;) must belong to &.
Based on (9), (13) and the meaning of ©; and O3, all the w; belong to Bj, and
only the following sequences are possible:

() wo = d(j,0) ©, wi=Y(,0) & HG,W)=u,

(ii) wo = b (4, W) 6 wy=0:(5,0) ©:1 d(j,0) =w,

(iii) wo = d(J, 0) © wi= b::(J’ 0) 5_ Wy = b::(.71 U) 62 d(j,U) = wy,

(iv) wo =d(7,U) ©2 w;=bl(5,U) & bl(j,W)=wy, and

(v) wo =b.(j,W) 8§ w1 =0b.(,U) ©2 d(j,U)=ws.
But (12) together with (wp, w,) = (u,w) € & exclude (i), (ii), (iv) and (v). There-
fore (u,v) = (d(4,0),d(j, U)) € (d(0,®),d(0, U)}B:C) proving (11).

Now we assert that, for U € R*(D),

(14)

(bL(O, 0), b’c(O, U))(B’C) =

= - ((6.(0,), (0, 8))(P:) + (d(0,0), d(0,U)) (B + (d(0, 1), b(0, U))P:?)).

The “C” part is clear. Conversely, suppose u # v and (u,v) is in the righthand
side of (14). Then u and v are in the same B;, and u,v € {b.(5,0), d(4,9),
d(5,U), b.(4,U)}. Applying (9) we obtain u,v € {b.(4,0),b.(j,U)}, whence (u,v) €
(b.(0, ), b.(0, U))(B:C), indeed.

Based on (11) and (14), we can handle the case p = p(0,0) € A(0,0), ¢ =
q(0,U) € A(0,U), U # 0, as follows
(15)

(2.0 ®9 =((p,d(0,0)®O + (d(0,0),d(0,V)) B + (d(0,U),q)("?).

(2,620,097 + (B1(0,0), BL(0, UNPD) + (5(0,U), ) D).

The “C” part is clear. To show the converse inclusion in (15), suppose u # v and
(u,v) is in the righthand side of the formula. Any factor of the righthand side
implies that u and v are in the same B;. Moreover, we obtain

u,v € {p(4,0),d(5,0),d(5,U), (5, U)}

from the first factor, and

u,v € {p(3,9), b.(4,9), b.(3, U), a(4, U)}
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from the second one. Hence {u,v} = {p(j,9),9(j,U)}, and (u,v) € (p,q)(B:C)
follows. This proves (15).

Finally, for p = p(0,U) € A(0,U) and ¢ = ¢(0,V) € A(0,V) with distinct
U,V € Rt(D) we assert

(p, g)(BO) =((p, d(0,8))B©) + (d(o, w)’q)(B,C))_
(0,005 + (h(0,8),9)5),

The “C” part in (16) is clear. Conversely, suppose u_# v and (u,v) is in the
righthand side of (16). Any factor of the righthand side implies that « and v are
in the same B;. Moreover, we obtain

u,v € {p(5,U),d(4,0),9(, V)}

(16)

from the first factor, and

u,v € {p(5,U), h(4,0),9(5,V)}
from the second one. Hence {u,v} = {p(j,U),q(5,V)}, and (u,v) € (p,q)(B:©)
follows.

Finally, (16) yields (p, q)(8:©) € Q for all p,q € B, proving Claim 9. -
Definition 10. Let u be an ordinal number. For v < u let 4, = (A,, d,, h,,
E,, ay, By, v, 6,) be a box. Suppose that A, |s,, Ax for A < v < u such that
b, = ®), 0P, for all kK < A < v < u. (This condition will be referred to as “the
ways of extensions are compatible”.) Then we say that the A, (v < pn) together
with the &5, (A < v < p) form a directed system of bozes. Associated with this
directed system we define

A=A, a=Ja, B8=JB, v=Um andé=]J6.

v<u v<y vy <y v<p
We let d = dp and h = hy; note that d = d, and h = h, for all v < pu. Let us
choose a subset E C | J, . u E, such that

(17) Ecly N B
v<p A

v<A<u
Then A = (A, d, h, E, «, B3, 7, 8) is called a limit of the A, (v < u).

Note that A, o, 8, v and § are unions of ascending chains. If u is a successor
ordinal, say g = g + 1, then the limit is A, (with less edge pairs, perhaps). Hence
the limit of boxes is interesting (and will be used) for limit ordinals x4 only. Unfor-
tunately, the union of the righthand side of (17) (and therefore E) can be empty.
This phenomenon is responsible for a lot of work put in the present paper.
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Claim 11. The limit A defined above is a box. There are canonical ®,,, such that
Als,, Ay for allv < p. Moreover, denoting A by A, the A, (v < p+ 1) with the
&, (v < X< u+1) form a directed system of bozes.

Proof. We can assume that y is a limit ordinal. First we show that A is a box. (b1)
is evident. The definition of an extension ensures that a, C «, for A < v, whence
« is an equivalence; so are 8, v and 6 by the same reason. Since a, 6, = 0 for all
v, ad = 0 follows. This shows (b2). By (e5), all edge pairs in E are edge pairs of
copies of Ayp; this gives (b3). Let e € E, then e € E,, for some v. Since ax|a, =
for all v < A < u by (e2), the restriction of & to {be, ae, bl,a.} is the same as that of
a,. This implies the & part of (b4). The 3 and 7 parts come similarly. The § part
follows from (b6) for A. This proves (b4). Since d = d, and h = h, for all v < p,
(b5) holds for A. To show (b6), let e € E. By (17), there is a v such that e € E,,
for all v < A < . Then the §) class of each component of E is a singleton by (b6)
for Ay, and this property is inherited by U, <)<, 6x = 6. If we had |[d]6| > 1 or
|[R]6] > 1, then |[d]65| > 1 or |[A]65] > 1 for some A < p, which would contradict
(b6) for Ay. Now, to show (b7), suppose that (a.,h) € o for some e € E. Then
there is a v; < p such that (al,h) € a) for all v; < A < p. Since e € E, there is a
vy < u such that e € E), for all v, < A < p. For A = max{v,, v2} this contradicts
(b7) for Ax. Hence (al,h) ¢ a, and the rest of (b7) follows similarly.

Now as we already know that Aisaboxletusfixav < u. Forv <A <y, let
®,5 = (Tua, {@i: i € I,x}), where the classes of I', ), are denoted by A, ; (i € I,.,).
By the compatibility of the ®,, we may assume that I,y C I, for A < &, and
@i and A, ; are the same for i € I, as they are for ¢ € I,x. (This is clear from
definition if we choose I,5, = I',y, i.e. the set of classes, for all p < A < p.) Let
I1=1,, = Uu5A<u I,x. Then {A,;: i € I} is a partition 'y, on A, and (the
collection of these) ¥,, = ([yu, {pi: © € I}) is compatible with all ®,, in the
(original) directed system.

So all we have to show is that ®,, establishes an extension. Since 8, =
Uier,, Bv.i (where B, ; = ¢i(B,)), we obtain 8 = Uv<acu Bv = Uier Bu.i- The case
of v is similar, so (el) holds. For v < A < u we have

(18) ay = U ay,; + Z (dv i du,5)

i€l 1,J€L

where d,; = pi(d,), and we want to show

(19) a= U ayi + Z (dv,idy,;j) -

i€l i,j€I
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Since the righthand side of (19) clearly includes the righthand side of (18), by
forming the union of (18) for all A (v < A < p) and using o = Uscacu @r we
obtain the “C” part of (19). If d, 3, d, j € Ay, then (d,;,d,, ;) C ax C a by (18),
whence the “2” part of (19) is clear. This proves (e2).

For v < A < u, (e3) for Ay | A, gives that

6A= U 6u.i+ Z <b¢i’a5i)+ z (ble;’a'e,-)"'

(20) i€l (ed)EF (e,i)€G>
+ Z ((aenbe,-> + (b,e.dblej ))'
(e,i,5)EH)

Using (b6) for A, it is not hard to observe that

F,\ = {(e,i) € E x Iu)‘: (bc‘.,ae‘.) € 6,\},
(21) Gi ={(e,i) € E x L,x: (b.,,a,) € 8,}, and
Hy = {(e,4,7) € Ex Ix x Lx: (ae;sbe;) € 2},

Since ), C o, for v <A< kK < u, weinfer F\ C F, Gy, C G, and H), C H,.. Let
F=U,cxcufr G=U,<rcuGr and H = {J, <), Hr. Forming the union of
(20) for all permitted A we obtain the “C” part of

5=U6u,t’+ Z <b€i’aei)+ Z (b’e;’alc;>+

(22) iel (e)EF (e.i)efv' ’
+ Z ((ae.: e, (be vbe ))
(e.ij)EH

while the “2” part is clear from the fact that each of the 6, ;, the (left and right)
atoms and the connecting equivalences occurring in the sum on the righthand side
is smaller than some 8, C 6. Now (22) yields (e3) for A and A,, for all necessary
conditions on F, G and H are implied by these conditions on all F, G\ and H,.
(e4) for A and A, hardly needs any proof.

Finally, to show (e5) for A and A,, suppose e € E. By (17), there is a v; such
that e € E), for all ¥; < A < u. Choose A = max{v,v1}. Then e € E) and A) | A,

gives that e € E, ; for some i € I, C I, showing (e5). .

Claim 12. With the notations of Definition 10, if all the A, (v < u) are good
bozes, then their limit, A, is a good box as well.
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Proof. Let B = (B, d, h, E, &, B, %, ) be an extension of A = A, by ¥. We know
from Claim 11 that A |p,, A, for v < p. Claim 4 yields that B is an extension of
A, by ¥o®,,. Now all the necessary ways of extensions are fixed and compatible,
so the notations (p, ¢)(4B) and (p, ¢)(4+*B) will make sense later in the proof.

Let ¥ be of the form (T, {¢;: i € I}) where ' = {A®): i € I} and A = A(®),
Let @ denote the smallest complete sublattice of Equ(B) that includes {&, 3,7, }.
Denote ;(A,) by A,(f). Suppose that p,q € A are distinct elements. Then there is
a smallest ) such that p,q € Ay. The goodness of A, yields (p, ¢)(4*B) € Q for all
A < v < u. We assert that

(23) p)*® = J[ 9P €@

Av<p

only the equality has to be checked. The “C” part follows from the fact that
the ways of extensions are compatible. For the converse inclusion, suppose (u,v)
belongs to the righthand side of (23), u # v € B. From (u,v) € (p,q)(4*5)
we obtain that u and v are in the same copy of Ax. Hence, by compatibility,
they are in the same AF‘). Choose a (sufficiently large) A < v < u such that
{¢i(p), £i(a),u,v} € AL, Then (u,9) € (p, )4 = (i(p), pi(q)) 4P gives
{u,v} = {pi(p), pi(q)}. Consequently, (u,v) € {p:(p),pi(q))*?) = (p,q)*B),

proving (23). -

lil. Enlarging boxes at infinity

Starting from Lg = (Lo, do, ho, Eo, @, Bo, Y0, 60) (cf. Claim 6) we intend
to define a directed system L; = (L;, d;, hi, E;, oy, B, i, 6;) of boxes, i €
No = {0,1,2,...}, together with ways ®,; of extension (i < j) such that, for all
i € No, Lit1 is a successor of L; and Liy1 |e,,,, Li is the canonical extension
associated with the successor construction. Denoting by ¢;, D; and F; the para-
meters establishing that L, is a successor of L; (cf. Definition 7, note that ¢; € E;
and D;, F; C E;), we also want that Fp C F1 C F, C F3 C.... Let L; be the box
defined by Figure 3; the meaning of ®¢; is obvious. Now suppose that i > 1 and
Lo, Ly, ..., L; are already defined together with compatible ®; (j < k < 7). By
the construction of L; from L;_; and L; |e,_, ; Li~1 we obtain Fj_; C E;. Choose
F; C E; such that F;_; C F; and |F;| = 1|E;| (we will see that this is possible); let
ci € E;\ F; and let D; = E; \ ({¢;} U F;). These parameters determine a unique
successor L4y of L; and a unique (canonical) ®; ;1 with Liy, |e, ., Ls; for j <
we set ®;;11 = Pii41 0 Pji. The sequence s; = (|E;|,|Fil,|Dil), ¢ = 1,2,3,.. .,
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clearly obeys the following rule:

s1=(8,4,3), s2=1(32,16,15), s3=(16-2'5,16-2',16-2! —1),
Siy1 = (lFt' . 2lDi|7 Iﬂl : 2|D‘|_l! |Ft| : 2ID‘I—1 - 1)1

It is easy to see that 2-|F;_]| < |E;| for i = 1,2,3,..., so the choice of F; is always
possible. Since Fp C F; C Fo C F3 C ... and F; C E; , for all natural numbers
n we obtain nnse E, > ﬂnst Fy = Fp. Hence, the choice E = J, ¢y, Fn is in
accordance with (17). Now let A = (A, d, h, E, a, B3, v, 6) be the limit of the
directed system we have just defined. The fast growing of the sequence (s;)ien,
makes it clear that |E| = Wg. Therefore |A| = |E|, and this property will be so
important in the sequel that it deserves a separate name.

Definition 13. A box A = (4, d, h, E, a, 8, v, 6) is called a perfect bozx if A is
good and |4] = |E|. A cardinal m will be called small if Xy < m and there is no
inaccessible cardinal < m.

In virtue of Claim 12, the box we have defined before Definition 13 is a
countable perfect box. Clearly, every perfect box is necessarily infinite. We want
to show that for each small cardinal m there is a perfect box of power m. However,
we need an even stronger induction hypothesis.

Definition 14. Given a small cardinal m, we say that the condition H(m) holds if
(i) for each small cardinal n < m there is a perfect box of cardinality n; and

(ii) for any two small cardinals n < k < m, for every perfect box A = (A4, d, h,

E, a, B, v, 8) with |A] = n, and for each E' C E with |[E\ E’| = n there is a
perfect box B of power k such that B is an E’-preserving extension of A.

Clearly, if a cardinal m is small, then so is m*, the least cardinal that is
greater than m. The existence of a countable perfect box trivially implies that
H(Ro).

Claim 15. Suppose m is a small cardinal and H(m) holds. Then H(m™) holds as
well.
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Proof. It suffices to show H(m*)(ii) for n < m and k = m*. Let us take a perfect
box A = (A, d, h, E, a, B, v, 6) of power n (such a box exists by H(m)), and a
subset E' C E with |E'\ E'| = |[E| = n. We want to construct an E’-preserving
extension B of A such that [B] = m™*. Since n = n+n by the cardinal arithmetics,
we can chose an E” such that E' C E” C E and |[E\ E"| = |E"\ E'| = n. In virtue
of H(m) we obtain a perfect box C = (C, d, h, E, a, ,6, ¥, 6) of power m such that
C is an E"-preserving extension of A. Let E’ and E” denote the extension of E’
and E” to C, respectively. Then m = IEI >|E\E|>|E"\E| = |E" \E'|-[C:

Al =|A]-[C: A] =|C| =m, ie, |E \ E'| = m. Hence we can partition E into
{¢}, D and F such that E' C F and |F| = |D| = m. These parameters determine
a successor B of C. By Claim 8 and Definition 7, B is an E'-preserving extension

of C. Therefore, by Claim 4, B is an E’-preserving extension of A. -

Claim 16. Suppose that k is a small limit cardinal (i.e., k = m™ holds for no m)
and H(m) holds for all m < k. Then H(k) holds as well.

Proof. We can assume that k& > Ng. Since k is small, either
(*) 2™ > k for some m < k, or
(*x) there is a set M of cardinals such that [M| < k, m < k for all m € M, and
sup{m: me M} =k.
The treatment of (*) is very similar to that of Claim 15; the only difference is that
to obtain B from C we use the successor construction with |[R(D)| = k instead of
|R(D)| = |DI* = m*.

From now on we deal with (%*). Again, we have to prove only (ii) in a
particular case. le., let A = (4, d, h, E, a, 8, 7, §) be a perfect box of power
n < k, and let E' C E with |[E\ E'| = |A} = n. By H(n), A and E’ exist. Our
task is to give an E’-preserving extension of A to a perfect box of power k. We
can assume [M| < m and n < m for all m € M, for otherwise we can replace M
by {m € M: m > |M|, m > n}. Clearly, we can also suppose that n € M. Since
any set of cardinals is well-ordered, M is of the form M = {m¢: § < pu} where
u is a limit ordinal, {u| = |M| < k, mg = n, and m¢ < m,, for £ < n < u. For
convenience, define m, = k; then m,, = sup{me: £ < u}.

Like in the previous proof, we can choose an E” such that E' C E” C F and
|E\ E"| = |E"\ E'| = n = mg. Since n = 2n-|u+ 1|, we can choose a partition
{Xe: € S p}U{Ye € < pu} of E”\ E' such that |X¢| = [Y¢| =n for all £ < pu. We

define
EO =g\ (JX,uU¥a)

n<§ n<§
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and
T© = E"\ (U x,uJ yn) =E©\v®

n<§ n<§

Then T®),E€) C E” for all £ < u, T = E', and, for all £ < 5 < p,

E® 5 7@ 5 g 57t and
,E(E) \T(E)I = IT(E) \E(”)I = IE(") \T(n)| ——

Via induction on v, for each v < i we want to define a directed system S, of
perfect boxes A¢ = (Ag, dg, he, E¢, ag, Be, Ye, 6¢) (€ < V) together with compatible
¢, (€ < 1 < v) such that |A¢| = m¢, A¢ |o, Ao is a T(®)_preserving extension,
and S) C S, for all A < v. Let I(v) denote this collection of conditions that we
expect from S,.

Let Sp consist only of A9 = A; I(0) is evident.

Now suppose that S, satisfying I(v) is already constructed; we want to con-
struct Sy41. Since A, |s,, Ao is T(*)-preserving, we can extend T™) and T+1)
to A,; let T8 and Té"“s denote their extension, respectively. We have

m, = |E,|
> |E, \TY | 2 |78\ T+
= [T\ TWHY| . (A, : Ag) = |Ao| - [AL : Ao] = |AL] = m,.

Le., |E, \ T,S"+l)| = m,. Hence, by H(m,,;), there exists a perfect box
Avt1 = (Avsr, du+1, hu+1, E,+1, avt1, Bugty Vo1, Ouy1) of power m, oy such
that A,41|A, is a TS"*V-extension. From Claim 4 we infer that A, is a T(+1)-
preserving extension of Ag. Let ®,,41 denote the way of A,,1]A,, and define
Pevt1 = Pupi10Pg, for £ < v. Hence, augmenting S, by A,41 and by the ®¢ .4,
(€ < v+ 1), we obtain a directed system S,,1. S,41 clearly satisfies I(v + 1).
Now let v (v < u) be a limit ordinal, and suppose that the S¢ satisfying I(€)
are already defined for all £ < v. The union |J,, S¢ is clearly a directed system
again; let B, = (B,, dy, hy, E,, &u, By, A, 5,,) be its limit. (EU will be given
soon.) By Claim 11, B, |y, A¢ such that the ¥¢, (£ < v) are compatible with the
B¢, (€ < o < V). For £ < v, A¢|Ao is a T(®)-preserving extension, and E*) C T,
So E™) extends to Ag; let Eé") denote its extension. For £ < ¢ < v we have

Eé") C E{), for ®g, = B¢, 0 Boe. So we obtain

U N&2y Ns=ys

E<v €E<p<v E<v €<p<v E<v
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Hence, according to (17), we can let E, = Ue<r Eé"), and B, becomes an EW)-
preserving extension of Ag. Since m¢ = |E¢| > |E§")l = |[EW)| . [A¢ : Aq) =
|Ao| - [A¢ : Ao] = |A¢| = me, we obtain |E,| = sup{m¢: § < v} = |B,|. Hence B,
is a perfect box, and it is an E)-preserving extension of Ag.

Now we have to distinguish two cases. First assume that v < u. Since
T ¢ E®, T®) extends to B,. Let TS and E{”) denote the extension of T(*)
and E® to B,, respectively. Then

|ENTY) 2 |EQ\NTP| = |[EV\TO)| - [B, : Ao = |B.|.

On the other hand, |B,| = sup{m¢: £ < v} < m,. Thus H(m,) applies and yields
a perfect box A, = (4., dy, hy, Ey, o, B, Y, 8,) of power m, such that 4, |; B,
is a T.S”)-preserving extension. Then A, is an extension of A¢ by ®¢, := Vo Pey
(€ < v), and A, is a T™)-preserving extension of Ay, cf. Claim 4. Further, for
E§<eo<vy,

Qo 0 Pgp = (‘i’ oWy)odey = Yo (Vo 0 Bgo) = Yo Ve, = P¢y.

This shows I(v).

The other case is v = p. Then |B,| = |B,| = sup{m¢: £ < p} = k = m,,.
Hence we do not have to (and we are even not allowed to) apply H(m,) to extend
this B, to A,. We simply let A, := B, ®¢, := V¢, (€ < ), and I(p) clearly
holds.

From I(y) we obtain that A, is a T(*) = E’ extension of A = Ap. This proves
Claim 16.

]

Finally, from the existence of a countable perfect box (i.e., H(Rg)) and Claims
15 and 16 we derive H(m) for all small cardinals m via induction. According to
the remark after Definition 5, this proves Theorem 1.

References

{1} I. Cnaspa and G. CzEpLl, How to generate the involution lattice of quasiorders?,
Studia Sci. Math. Hungar., to appear.

[2] K. Kurarowski, Sur I’état actuel de ’axiomatique de la théorie des ensembles,
Ann. Soc. Polon. Math., 3 (1925), 146-147.

[3] A. LEvy, Basic Set Theory, Springer-Verlag, Berlin — Heidelberg — New York,
1979.

[4] H. STrIETZ, Finite partition lattices are four-generated, Proc. Lattice Th. Conf.
Ulm (1975), 257-259.




Generation of equivalence lattices 69

[5] H. STriETZ, Uber Erzeugendenmengen endlicher Partitionverbinde, Studia Sci.
Math. Hungar., 12 (1977), 1-17.

[6] Z. ZApor1, Generation of finite partition lattices, Lectures in Universal Algebra,
Colloquia Math. Soc. J. Bolyai 43, (Proc. Conf. Szeged, 1983), North Holland,
Amsterdam — Oxford — New York, 1986, 573-586.

G. CzépLl, JATE Bolyai Institute, Szeged, Aradi vértanik tere 1, H-6720 Hungary;
e-mail Czedli@math.u-szeged.hu



