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Abstract. Following G. Grätzer and E. Knapp (2007), a slim semimodular

lattice, SPS lattice for short, is a finite planar semimodular lattice having no

M3 as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly
two doubly irreducible elements and these two elements are complements of

each other. A finite poset P is said to be JConSPS-representable if there

is an SPS lattice L such that P is isomorphic to the poset J(ConL) of join-
irreducible congruences of L. We prove that if 1 < n ∈ N and P is an n-element

JConSPS-representable poset, then there exists a slim rectangular lattice L

such that J(ConL) ∼= P , the length of L is at most 2n2, and |L| ≤ 4n4. This
offers an algorithm to decide whether a finite poset P is JConSPS-representable

(or a finite distributive lattice is “ConSPS-representable”). This algorithm is

slow as G. Czédli, T. Dékány, G. Gyenizse, and J. Kulin proved in 2016 that
there are asymptotically (k−2)! ·e2/2 many slim rectangular lattices of a given

length k, where e is the famous constant ≈ 2.71828. The known properties and
constructions of JConSPS-representable posets can accelerate the algorithm;

we present a new construction.

1. Introduction

Following Grätzer and E. Knapp [20], a slim planar semimodular lattice, SPS
lattice for short, is a finite planar (upper) semimodular lattice having no M3 as a
sublattice. By Grätzer and E. Knapp [21], an SPS lattice L is a slim rectangular
lattice if it has exactly two doubly irreducible elements (denoted by lc(L) and rc(L)
and called the left corner and the right corner of L) and these two elements are
complements of each other. As usual, J(L), the set of join-irreducible elements is
{x ∈ L : x has exactly one lower cover}; M(L) is defined dually. As in Czédli and
Schmidt [16], a lattice L is slim if it is finite and J(L) is the union of two chains.
We know from Czédli and Schmidt [16, Lemma 2.3] that for a lattice L,

L is an SPS lattice ⇐⇒ L is a slim semimodular lattice. (1.1)

In the paper as in many earlier ones, “slim semimodular” means the same as “slim
planar semimodular”, that is, “SPS”. A finite lattice D is ConSPS-representable if
it is isomorphic to the congruence lattice ConL of an SPS lattice L. Similarly, a
finite poset P is JConSPS-representable if P ∼= J(ConL) for an SPS lattice L.
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Due to (the historical) Section 2 in Czédli and Kurusa [14], the surveying part
of this section is reduced to a few comments. The four dozen element list1 in the
Appendix of Czédli https://arxiv.org/abs/2107.10202 shows that since 2007,
SPS lattices form an intensively investigated class of lattices. In addition to their
impact on and connection with geometry, group theory, and combinatorics as ex-
plained in [14], SPS lattices have connections with finite model theory, see Czédli
[8]. SPS lattices (or their duals) are particular cases of some other classes of lat-
tices and combinatorial structures; indeed, they are also join-distributive lattices,
meet-semidistributive lattices, and subspace lattices of antimatroids (or convex ge-
ometries); see, for example, Czédli [5]. Thus, benefiting from the fact that SPS
lattices are well understood by means of several structure theorems and represen-
tation theorems, the study of these lattices can lead to discoveries for larger classes
of lattices and related structures; for example, see Adaricheva and Czédli [1]. Ac-
tually, even purely geometric papers are in connection with SPS lattices; see, for
example, Czédli and Kurusa [14]. By Grätzer and Knapp [20, Section 3], the theory
of planar semimodular lattices is satisfactorily reduced to that of SPS lattices. So
last (and least) we note that there are some problems where it could be possible
or it was possible to prove more for planar semimodular or SPS lattice than for all
finite lattices; see, e.g., Ahmed and Horváth [2] and Czédli and Schmidt [15].

Within lattice theory, the interest in SPS lattices is mainly fueled by Grätzer
[18, Problem 1] asking for a characterization of ConSPS-representable distributive
lattices. Note that [18, Problem 1] is motivated by the fact that M3 sublattices
played a key role in Grätzer, Lakser, and Schmidt [22] representing all finite dis-
tributive lattices by congruence lattices of planar semimodular lattices, whereby it
was natural to ask what happens when M3 sublattices are not permitted, that is,
when SPS rather than planar semimodular lattices are used.

Since ConSPS-representability implies distributivity and a finite distributive lat-
tice D is perfectly described by J(D), a satisfactory characterization of JConSPS-
representable posets would yield a characterization of ConSPS-representable lat-
tices. However, the two representability problems are not the same in the aspect of
axiomatizability. Indeed, Czédli [8] proves that JConSPS-representable posets can-
not be described by finitely many axioms in the first-order language of finite posets
but it is still unknown whether ConSPS-representable lattices have a finite first-
order axiomatization in the class of finite lattices. Note that the class of JConSPS
representable posets has many known properties and is closed under some construc-
tions; see Remark 6.3 for bibliographic details. However, we do not know whether
these properties and constructions themselves offer an algorithm to decide whether
a poset is JConSPS-representable or not. Indeed, since we do not know whether
the collection of the above-mentioned known properties and constructions is sound
and even a very large SPS lattice can JConSPS-represent a small poset2 P , it is
not clear at first sight whether it suffices to check J(ConL) for finitely many L.

2. Goal

In Theorem 5.1, we give an upper bound on the length of the shortest slim
rectangular lattices L that JConSPS-represents a given JConSPS-representable fi-
nite poset P . Therefore, there exists an algorithm to decide if a finite poset P

1See http://www.math.u-szeged.hu/~czedli/m/listak/publ-psml.pdf for an update.
2E.g., with S

(1)
7 , S

(2)
7 , . . . in Figure 2, we have that |J(ConS

(k)
7 )| = 5 for all (large) k.

 http://www.math.u-szeged.hu/~czedli/m/listak/publ-psml.pdf
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is JConSPS-representable; indeed, we know from Czédli, Dékány, Gyenizse, and
Kulin [12] that up to isomorphism,

the number of slim rectangular lattices of a given length k is asymp-
totically (k − 2)! · e2/2, where e = limn→∞(1 + 1/n)n ≈ 2.71828.

}
(2.1)

By (2.1), there are only finitely many slim rectangular lattices up to a given length.
Thus, Theorem 5.1 implies the existence of an algorithm that for each finite poset
P decides whether P is JConSPS-representable. Moreover, if P is such and |P | > 1,
then the algorithm constructs a slim rectangular lattice L such that P ∼= J(ConL).
Remark 6.3 points out that known properties and constructions, including the mul-
tifork extension construction, make the algorithm faster. Proposition 6.1 presents
a new construction that extends a JConSPS-representable poset to a larger one.

3. Concepts, terminology, and tools from earlier papers

As in Czédli [7] and thereafter, to avoid subscripts of subscripts, the bottom 0I
and the top 1I of an interval I are denoted by Foot(I) and Peak(I), respectively.
For u in a lattice L, ↓u = ↓Lu := {x ∈ L : x ≤ u} and ↑u = ↑Lu := {x ∈ L : x ≥ u}.
Edges in a planar diagram are straight line segments denoting prime intervals p =
[Foot(p),Peak(p)]. A usual coordinate system of the plane is always fixed. Edges
(or lines) parallel to (1, 1) or (1,−1) are of normal slopes. Edges parallel to (1, t)
for some t ∈ R with |t| > 1 and vertical edges are said to be precipitous.

Going after Grätzer and Knapp [20] and [21], let L♯ be a planar diagram of a
slim rectangular lattice L. The left boundary chain and the right boundary chain
of L♯ are denoted by LBnd(L) and RBnd(L), respectively. (Actually, LBnd(L♯)
and RBnd(L♯) would be more precise but we always fix L♯ in a way to be defined
soon. This comment applies for several other concepts we are going to define.)
The boundary of L is Bnd(L) = LBnd(L) ∪ RBnd(L). The elements of Bnd(L)
and those of L \ Bnd(L) are called boundary elements and internal elements. For
example, the already mentioned corners are boundary elements: lc(L) ∈ LBnd(L)
and rc(L) ∈ RBnd(L). For x ∈ L, the left support and the right support of x are3

lsupp(x) := x ∧ lc(L) and rsupp(x) := x ∧ rc(L). Note
that x = lsupp(x) ∨ rsupp(x), lsupp(x) is on the lower left
boundary ↓L lc(L), ↓L lc(L) ⊆ LBnd(L), rsupp(x) is on the
lower right boundary ↓L lc(L), and ↓Lrc(L) ⊆ RBnd(L).

 (3.1)

The upper left boundary and the upper right boundary of L are the principal filters
↑L lc(L) and ↑Lrc(L); note that ↑L lc(L) ⊆ LBnd(L) and ↑Lrc(L) ⊆ RBnd(L).

Recall from Czédli [7, Definition 2.1] (as Czédli [6] would be too general here)
that the diagram L♯ of L is a C1-diagram if for every edge p = [Foot(p),Peak(p)]
of the diagram, p is either precipitous or it is of a normal slope and, furthermore,
p is precipitous ⇐⇒ Foot(p) is an internal meet-irreducible element of L.

Convention 3.1. Together with each slim rectangular lattice occurring in the
paper, a C1-diagram of our lattice is fixed. Moreover, even if we do not say it all
the time, whenever we construct a lattice (like a sublattice or a larger lattice), then
we always construct its fixed C1-diagram as well. In notation, we rarely distinguish
a slim rectangular lattice from its C1-diagram.

3The third equality in (3.1) follows from (1.1) and Grätzer and Knapp [21, Lemmas 3 and 4].
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Complying with Convention 3.1, all lattice diagrams in this paper are C1-diagrams.
Let L denote a slim rectangular lattice. Note in advance that quite often,

we do not distinguish between lattice theoretic and geometric objects. (3.2)

If a < b ∈ L and C1, C2 are maximal chains of the interval [a, b] such that C1∩C2 =
{a, b} and all elements x of C1 are on the left of C2 (including the possibility of
x ∈ C2), then the elements [a, b] that are simultaneously on the right of C1 and on
the left of C2 form a so-called lattice region; see Kelly and Rival [23] for a more
exact definition. The corresponding geometric area, which is bordered by C1 and
C2, is a geometric region. Note that whenever we define a geometric area (like
a geometric region) or a line segment, then (unless otherwise explicitly stated) it
contains its boundaries, that is, it is topologically closed. Minimal non-chain regions
are cells. If a cell contains exactly four lattice elements, then it is a 4-cell. Note
that 4-cells are cover-preserving boolean sublattices with 4 elements but, as M3

exemplifies, not conversely. A 4-cell lattice is a planar lattice in which all cells are
4-cells (in a fixed planar diagram). Grätzer and Knapp [20, Lemmas 4 and 5] and
[21] proved that for a planar lattice L (which is finite by definition),

if L is a 4-cell lattice, no two distinct 4-cells have the same bottom, L
has exactly two doubly irreducible elements, and these two elements are
complementary, then L is a slim rectangular lattice. Conversely, every
slim rectangular lattice is a 4-cell lattice with these properties.

 (3.3)

Figure 1. A trajectory

On the set of prime intervals (i.e., edges) of a slim rectangular lattice L, let τ be
the smallest equivalence relation that collapses the opposite sides of every 4-cell. As
in Czédli and Schmidt [16], the blocks of τ are called trajectories; e.g., the double-
lined edges form a trajectory in Figure 1. Going from left to right, a trajectory does
not branch out and neither it does so backwards. The unique edge p of a trajectory
such that Foot(p) ∈ M(L) is the top edge of the trajectory. The ascending part of
a trajectory consists of the top edge and all of its edges left to the top edge; the
descending part is defined left-right symmetrically. Any two consecutive edges of a
trajectory form a 4-cell of a the trajectory ; they are orange-filled in the figure.

Given a 4-cell H of L and a positive integer k ∈ N+, we obtain the k-fold

multifork extension of L at H by changing H to a copy of S
(k)
7 and proceeding

to the southeast and to the southwest to preserve semimodularity. For the exact
definition, see Czédli [4], where this construction was introduced, or see Figure 2,
where the construction is illustrated by performing a 1-fold multifork extension at
H1 of L0 to obtain L1 and performing a 3-fold multifork extension at H2 of L1 to
obtain L2. (To save space, our figures are multi-purpose figures; some ingredients
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of Figure 2 will be explained later.) Note in advance that the thick edges of our
lattice diagrams will be called neon tubes. Note also that 1-fold multifork extensions
are also called fork extensions; see Czédli and Schmidt [17]; in this case the new
elements form a so-called fork in the new lattice; see (4.1) later.

A grid is (the fixed C1-diagram of) the direct product of two non-singleton finite
chains. A 4-cell H of L is a distributive 4-cell if the principal ideal ↓LPeak(H) is a
distributive lattice. By Czédli and Schmidt [17] and the following lemma,

if H is a distributive 4-cell of L, then ↓LPeak(H) is a grid. (3.4)

The most useful structure theorem of slim rectangular lattices is the following.

Lemma 3.2 (Multifork Sequence Lemma [4, Theorem 3.7]). For each slim rectan-
gular lattice L, there exist positive integers m1, . . . ,mk, a sequence L0, L1, . . . , Lk

of slim rectangular lattices, and a distributive 4-cell Hi of Li−1 for i ∈ {1, . . . , k}
such that L0 is a grid, Lk = L, and Li is obtained from Li−1 by performing an mi-
fold multifork extension at Hi for i ∈ {1, . . . , k}. Furthermore, any lattice obtained
in this way from a grid is a slim rectangular lattice.

The system (L0, H1,m1, L1, H2,m2, . . . , Lk−1, Hk,mk, L = Lk) with compo-
nents as above is the multifork sequence of L; it is not necessarily unique but
we always fix one. (Note, however, that k is unique.)

Definition 3.3 (Czédli [11]). Let n be an edge on the upper boundary of the initial
grid L0. The union of the 4-cells of the trajectory containing n is the original
territory of n; it is denoted by OT(n). When we obtain Li from Li−1, then we add
several new edges and exactly mi of these new edges have the same peak as H.
Let n be one of these new edges. In Li, the union of the 4-cells of the trajectory
containing n is a geometric area; we call it the original territory OT(n) of n in L.
Note that we have defined OT(n) if and only if n is an edge of the upper boundary
or n is a precipitous edge. If n is an edge of the upper left boundary chain, then the
essential part of the original territory, denoted by EOT(n), and the right essential
part of the original territory, denoted by REOT(n), of n are OT(n) while the left
essential part of the original territory, denoted by LEOT(n), of n is the empty set.
Similarly, for n on the right upper boundary, EOT(n) = LEOT(n) := OT(n) and
REOT(n) = ∅. Next, let n be a precipitous new edge of Li and denote by T the
trajectory of Li that contains n. The union of the 4-cells of T that do not contain
n as an edge is the essential part EOT(n) of the original territory of n; it is a
geometric area and the union of two (geometrically) connected subsets that are,
in a self-explanatory manner, called the left essential part LEOT(n) and the right
essential part REOT(n) of the original territory of n.

For examples of OT(n), . . . , REOT(n), see Figures 2, 3, and 4. Even though
their definition relies on L0 or Li, we also use these concepts in L, where OT(n),
. . . , REOT(n) have no connection with the trajectory containing n in general; this
is exemplified by n1 and n2 in L′ (but not in L) of Figure 3. (3.4) implies that

if OT(n) is defined, then it is bordered by edges of L and all of these
edges with peaks different from Peak(n) are of normal slopes. Fur-
thermore, each of LEOT(n) and REOT(n) is either the empty set or a
rectangle bordered by edges of normal slopes. See also (3.6) later.

 (3.5)

Definition 3.4 (Czédli [7]). Let L be a slim rectangular lattice.



6 G. CZÉDLI

(A) The prime intervals p of L with Foot(p) ∈ M(L) are called neon tubes.
If Foot(p) ∈ Bnd(L), then p is a boundary neon tube and it is of a normal slope.
Otherwise, p is an internal neon tube and it is precipitous. (Convention 3.1 applies.)

(B) Boundary lamps are the same as boundary neon tubes. (However, if I = p is
a boundary lamp, then we sometimes say that p is the neon tube of I). An interval
I is an internal lamp if Peak(I) is the peak of an internal neon tube and Foot(I)
is the meet of the feet of all internal neon tubes with peak Peak(I). (These neon
tubes are called the neon tubes of I.)

(C) In our lattice diagrams (which are C1-diagrams), the neon tubes are exactly
the thick edges and the feet of the lamps are black-filled. We know from Czédli [7,
Lemma 3.1] that a lamp is uniquely determined by its foot. Thus, for a lamp I, we
label the black-filled vertex Foot(I) in our figures by I rather than by Foot(I).

3 45

Figure 2. Multifork extensions and some geometric objects

Lamps have been the fundamental tool to study JConSPS-representability in
Czédli [7], [8], [10], [11], and Czédli and Grätzer [13]. Lamps are particular intervals
I. Sometimes, we need to consider them pairs (Foot(I),Peak(I)). The (geomet-
ric) rectangle bordered by LBnd(L) and RBnd(L) is the full geometric rectangle
FullRect(L) of L. Combining Definition 3.3 with Czédli [7], recall the following.

Definition 3.5 (Some geometric areas and polygons; Czédli [7]). For a slim rect-
angular lattice (diagram) L, let K be an interval, I and J be lamps, and p be a
neon tube of L.
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(A) The illuminated area Lit(I) of I is the union of the original territories of the
neon tubes of I.

(B) The left roof and the left floor of the interval K of L are the line seg-
ments of slope (1, 1) with lower endpoints on the left boundary chain and upper
endpoints Peak(K) and Foot(K), respectively. They are denoted by LRoof(K) and
LFloor(K), respectively. With slope (1,−1), the right roof RRoof(K) and the right
floor RFloor(K) are defined analogously. The roof Roof(K) and the floor Floor(K)
of K are LRoof(K) ∪ RRoof(K) and LFloor(K) ∪ RFloor(K), respectively.

(C) For a set X of planar points, GInt(X) stands for the geometric (i.e., topo-
logical) interior of X. Let h be a (geometric) polygon with endpoints a and b such
that h \ {a, b} ⊆ TopInt(FullRect(L)), a ∈ LBnd(L), and b ∈ RBnd(L). Then
h cuts FullRect(L) into an upper half ↑gh and a lower half ↓gh; by convention,
h = ↑gh∩↓gh. Note that Lit(I) = ↑gFloor(I)∩↓gRoof(I), and similarly for Lit(p).

(D) The body Body(I) of I is the geometric region determined by I; if I has
only one neon tube, then Body(I) is a line segment. For example, in Figure 2,
C2 ∈ Lamp(L2) and Body(C2) is yellow-filled.

(E) If I is a internal lamp, then the circumscribed rectangle CircR(I) is the region
determined by the interval [x,Peak(I)] where x is the meet of the leftmost lower
cover and the rightmost lower cover of Peak(I). (Equivalently, x is the meet of all
lower covers of Peak(I).)

Since the edges occurring in Definition 3.3 are the same as the neon tubes of L,
the following lemma in the present setting is not surprising.

Lemma 3.6 (Czédli [7, (2.10)]). For the fixed multifork sequence of L, see Lemma
3.2, the set of internal lamps of L is {Ij : 1 ≤ j ≤ k} where, for j ∈ {1, . . . , k},
the lamp (Foot(Ij),Peak(Ij)) comes to existence by the j-th multifork extension,
CircR(Ij) in L = Lk is the geometric region determined by Hj in Lj−1, and
Foot(Ij) ∈ Lj \ Lj−1.

Since the multifork extensions in Lemma 3.2 are performed at distributive 4-cells,
it follows easily that, using the notations of Lemma 3.6, for any j ∈ {1, . . . , k},

the lower covers of Peak(Ij) are the same in Lj as in L =
Lk. In particular, Ij has the same neon tubes in Lj as in L.
Furthermore, if a neon tube n comes to existence in Lj , then
EOT(n), LEOT(n), and REOT(n) are the same in Lj as in L.

 (3.6)

Definition 3.7. With the notation used in Lemma 3.6, let Ii and Ij be lamps of
L. If i < j, then we say that Ij is younger than Ii and Ii is older than Ij . (This
concept depends on the multifork sequence, but this sequence is always fixed.)

By an edge segment we mean a geometric line segment g of positive length with
endpoints lying on the same edge e of (the fixed C1-diagram of) L. In this case,
we say that g is an edge segment of e. Based on the fact that the neon tubes of L
are exactly the prime intervals occurring in Definition 3.3, we can recall a part of
Czédli [7, Definition 2.9] and extend it as follows.

Definition 3.8. Let I and J be lamps of a slim rectangular lattice L.
(A) Let (I, J) ∈ ρfoot mean that I ̸= J , Foot(I) ∈ Lit(J), and I is an internal

lamp.
(B) Let (I, J) ∈ ρOTfoot mean that I ̸= J , I is an internal lamp, and J has a

neon tube n such that Foot(I) ∈ GInt(LEOT(n)) or Foot(I) ∈ GInt(REOT(n)).
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(C) Let (I, J) ∈ ρOTCR mean that I ̸= J , I is an internal lamp, and J has a
neon tube n such that CircR(I) ⊆ LEOT(n) or CircR(I) ⊆ REOT(n).

(D) Let (I, J) ∈ ρCircR mean that I ̸= J , I is an internal lamp, and CircR(I) ⊆
Lit(J).

(E) Let Lamp(L) be the set of lamps of L, and let “≤” be the reflexive and
transitive closure of the relation ρfoot. The relational structure (Lamp(L);≤) is
also denoted by Lamp(L).

The congruence generated by a pair (x, y) of elements will be denoted by con(x, y).

Lemma 3.9 (Mostly Czédli [7, Lemma 2.11]). If L is a slim rectangular lattice,
then ρfoot = ρCircR = ρOTfoot = ρOTCR, Lamp(L) = (Lamp(L);≤) is a poset,
and whenever I ≺ J in Lamp(L), then (I, J) ∈ ρfoot. Furthermore, we have that
(Lamp(L);≤) ∼= (J(ConL);≤) and the map

φ : (Lamp(L);≤) → (J(ConL);≤) defined by I 7→ con(Foot(I),Peak(I)) (3.7)

is an order isomorphism.

The advantage of this lemma over its precursor, [7, Lemma 2.11], is that (I, J) ∈
ρfoot is a mild condition, which is easy to verify, while (I, J) ∈ ρOTCR is a strong
condition, which gives more chance to draw conclusion from.

Proof. With the exception of “ρfoot = ρOTfoot = ρOTCR”, the lemma is already
known; see Czédli [7, Lemma 2.11]. So we need only to show the just-mentioned
equalities. Clearly, ρOTCR ⊆ ρOTfoot ⊆ ρfoot. Assume that Ii, Ij ∈ Lamp(L) such

that (Ii, Ij) ∈ ρfoot. Since S
(mi)
7 is not distributive, it follows from (3.4) and Lemmas

3.2 and 3.6 that Ii is younger than Ij , that is, i > j. In particular, Ii is an internal
lamp. With m := mj , let n1, . . . , nm be the neon tubes of Ij . As i > j, these neon
tubes are present in Li−1, and so are their original territories OT(n1),. . . , OT(nm)
as well as their essential original territories; see (3.6). By (3.5) applied to Li−1,
these territories are separated by polygons consisting of lattice edges. By planarity,
these “separating polygons” cannot cross the 4-cell Hi of Li−1; this 4-cell becomes
CircR(Ii) in Li and in L. So CircR(Ii) ⊆ OT(nt) for some t ∈ {1, . . . ,m}. But the
4-cell Hi in question cannot have the same top as Ij since the opposite case would
contradict the distributivity of Hi in Li−1. (Alternatively, [11, Lemma 6.2] would
also lead to a contradiction.) Hence, CircR(Ii) = Hi ⊆ EOT(nt). Since EOT(nt) is
the union of its two connected “components”, LEOT(nt) and REOT(nt), and these
components are in a positive geometric distance from each other (provided none of
them is the empty set), the planarity of the diagram yields that CircR(Ii) = Hi ⊆
LEOT(nt) or CircR(Ii) = Hi ⊆ REOT(nt). Hence, (Ii, Ij) ∈ ρOTCR, implying that
ρOTCR ⊆ ρfoot and completing the proof of Lemma 3.9. □

Since we work with the C1-diagram of our slim rectangular lattice L, the illumi-
nated sets Lit(I) and the Foot(I), and so the relation ρfoot are perfectly described
by the geometric structure

Str(L) :=
(
FullRect(L), {(Foot(I),Peak(I)) : I ∈ Lamp(L)}

)
. (3.8)

In particular, if L and L′ are slim rectangular lattices such that
Str(L) = Str(L′), then Lamp(L) ∼= Lamp(L′) and so ConL ∼= ConL′.

}
(3.9)
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Figure 3. Illustrating the proof of Lemma 4.5 by Lamp(L) ∼= P ∼= Lamp(L′)

4. Auxiliary statements

The following definition is motivated by ρOTCR; see Definition 3.8 and Lemma 3.9.

Definition 4.1. For a slim rectangular lattice L and J ∈ Lamp(L), let p be a
neon tube of J . We say that the original territory of p is used if there is a lamp
I ∈ Lamp(L) such that I ̸= J and CircR(I) ⊆ LEOT(p) or CircR(I) ⊆ REOT(p).
If I is such, then we say that I uses the original territory of p. If there is no such
I, then the original territory of p is not used.

Remark 4.2. Lemma 3.9 implies that in Definition 4.1, “I ̸= J” is equivalent to
“I < J”. Furthermore, I ̸= J occurs in Definition 4.1 only for emphasis, so it could
be omitted; analogous comments would apply to Lemma 4.3 below.

Lemma 4.3. For p and J as in Definition 4.1, the following four conditions are
equivalent.

(a) The original territory of p is used, that is, there is lamp I such that p is not
a neon tube of I and CircR(I) ⊆ LEOT(p) or CircR(I) ⊆ REOT(p).

(b) There is a lamp I ∈ Lamp(L) \ {J} such that Foot(I) is in GInt(LEOT(p))
or it is in GInt(REOT(p)).

(c) There is a lamp I ∈ Lamp(L) \ {J} such that Foot(I) is in EOT(p).
(d) There is a precipitous edge segment in EOT(p).
Furthermore, if a lamp I satisfies one of (a), (b), and (c), then it satisfies all

the three.

Proof. Since we never change I to another lamp, the last sentence of the lemma
will automatically follow when the equivalence of (a), (b), and (c) has been proved.

Since Foot(I) ∈ GInt(CircR(I)), (a) implies (b). By the equality EOT(p) =
LEOT(p) ∪ REOT(p), we obtain that (b) implies (c).

Next, assume that (c) holds. Then Foot(I) ∈ EOT(p) ⊆ Lit(J) and so (I, J) ∈
ρfoot. By Lemma 3.9, (I, J) ∈ ρOTCR and so Body(I) ⊆ CircR(I) ⊆ Lit(I). Thus,
It := I is younger than Ik := J in the sense of Definition 3.7, that is, t > k; indeed,
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if I = It was older than J = Ik, then the 4-cell Hk would not be distributive in
Lk−1. In Lk, each of LEOT(p), REOT(p), and FullRect(Lk) \EOT(p) were unions
of 4-cells. Some of these 4-cells could have been divided into smaller ones later,
but even in Lt−1, each of LEOT(p), REOT(p), and FullRect(Lt−1) \ EOT(p) were
unions of 4-cells. Hence, Ht ⊆ LEOT(p), Ht ⊆ REOT(p), or Ht is outside EOT(p).
Since Foot(I) = Foot(It) ∈ GInt(Ht) and Foot(I) ∈ EOT(p), Ht was not outside
EOT(p). Hence, CircR(I) = CircR(It) = Ht ⊆ LEOT(p) or CircR(I) ⊆ REOT(p),
whereby the original territory of p is used. Thus, (c) implies (a), and we have
proved that (a), (b), and (c) are equivalent conditions.

By Remark 4.2, the implication (a) ⇒ (d) is trivial.
Finally, assume that (d) holds. Then we have a precipitous edge segment in

LEOT(p) or in REOT(p), say, in LEOT(p). By the second half of (3.5), we can
assume that a precipitous edge segment lies in GInt(LEOT(p)). This edge segment
lies on a neon tube q of a lamp I. By planarity and (3.5), q cannot cross the four
sides bordering (the geometric rectangle) LEOT(p), so q lies fully in LEOT(p). In
particular, Peak(I) = Peak(q) ∈ LEOT(p) and Foot(q) ∈ LEOT(p). Observe that
Peak(I) cannot lie on the lower boundary of LEOT(p) since otherwise q, going
down from Peak(I) with a precipitous slope, could not include an edge segment
lying in LEOT(p).

Next, let r be an arbitrary neon tube of I. It goes down from Peak(r) = Peak(I)
with a precipitous slope. Thus, since Peak(r) is not on the lower boundary, (3.5)
yields that an edge segment lying on r lies also in GInt(LEOT(p)). So r satisfies
the same condition as q above, and it follows that Foot(r) ∈ LEOT(p).

Now let r′ and r′′ be the leftmost neon tube and the rightmost neon tube of I.
If r′ = r′′, then q is the only neon tube of I, and the required Foot(I) ∈ LEOT(p)
follows from Foot(I) = Foot(q) ∈ LEOT(p). So we can assume that r′ ̸= r′′. Then
Foot(r′) and Foot(r′′), as distinct lower covers of Peak(I), are incomparable; see
(3.6). By the main result of Czédli [9] and Foot(I) = Foot(r′) ∧ Foot(r′′), the
interval [Foot(I),Foot(r′)] is a chain (and so a line segment) of slope (1,−1) while
[Foot(I),Foot(r′′)] is a line segment of slope (1, 1). The top endpoints Foot(r′)
and Foot(r′′) of these line segments are in LEOT(p), whereby so is their common
bottom Foot(I) by the second half of (3.5). Hence, Foot(I) ∈ LEOT(p), that is,
(a) holds. This completes the proof of Lemma 4.3. □

Let p be an internal neon tube of a slim rectangular lattice L. As in Czédli and
Schmidt [17] (but with different terminology), the fork determined by p is

F (p) := [lsupp(Foot(p)),Foot(p)] ∪ [rsupp(Foot(p)),Foot(p)] to-
gether with the edges of these two intervals and the edge p.

}
(4.1)

For the particular case when ↓L′Peak(p) is distributive, the following lemma occurs
implicitly in [17].

Lemma 4.4. If p is a neon tube of a slim rectangular lattice L and L′ := L \F (p),
see (4.1), then L′ is meet-subsemilattice of L.

Proof. First, we prove that

[lsupp(Foot(p)),Foot(p)] = {x ∈ L : lsupp(x) = lsupp(Foot(p))}. (4.2)

Denote Foot(p) by w and lsupp(Foot(p)) by u; so u = lsupp(w) and we need
to show that [u,w] = {x ∈ L : lsupp(x) = u}. For y ∈ [u,w], we have that
u = lsupp(u) ≤ lsupp(y) ≤ lsupp(w) = u. Hence, y ∈ {x ∈ L : lsupp(x) =
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u} and we obtain that [u,w] ⊆ {x ∈ L : lsupp(x) = u}. To exclude that “⊂”
holds here, suppose for contradiction that there is a z ∈ {x ∈ L : lsupp(x) = u}
such that z /∈ [u,w]. Then z = lsupp(z) ∨ rsupp(z) = u ∨ rsupp(z) implies that
u ≤ z, and if rsupp(z) ≤ rsupp(w), then z ≤ u ∨ rsupp(w) ≤ w would contradict
that z /∈ [u,w]. But rsupp(z) and rsupp(w) belong to the same chain, RBnd(L),
so they are comparable, and we obtain that rsupp(w) < rsupp(z). Hence, w =
lsupp(w) ∨ rsupp(w) = u ∨ rsupp(w) ≤ u ∨ rsupp(z) = lsupp(z) ∨ rsupp(z) = z.
Now the inequality w ≤ z and z /∈ [u,w] imply that Foot(p) = w < z. Taking
the meet-irreducibility of Foot(p) into account, we have that Peak(p) ≤ z. Thus,
lsupp(Peak(p)) ≤ lsupp(z). With the notation used in Lemmas 3.2 and 3.6, let Ii
be the lamp to which p belongs. Then Peak(p) = Peak(Ii), and it is clear in Li that
u = lsupp(Foot(p)) < lsupp(Peak(I)) = lsupp(Peak(p)). Since Li is a sublattice
of L, the inequality u < lsupp(Peak(p)) also holds in L. Combining this with the
already established lsupp(Peak(p)) ≤ lsupp(z), we obtain that u < lsupp(z). This
contradicts the assumption z ∈ {x ∈ L : lsupp(x) = u} and proves (4.2).

Next, for the sake of contradiction, suppose that L′ is not meet-closed. Pick
elements s, c, d ∈ L such that s = c ∧ d, s ∈ F (p) = L \ L′ but c, d /∈ F (p). By
(4.1), (4.2), and symmetry, we can assume that lsupp(s) = lsupp(Foot(p)). Since
the function L → LBnd(L) defined by t 7→ lsupp(t) is clearly an idempotent meet-
endomorphism by (3.1), lsupp(s) = lsupp(c) ∧ lsupp(d). As LBnd(L) is a chain,
lsupp(s) ∈ {lsupp(c), lsupp(d)}. Let, say, lsupp(s) = lsupp(c). Then lsupp(c) =
lsupp(Foot(p)), so (4.1) and (4.2) give that c ∈ F (p), a contradiction. □

For I ∈ Lamp(L), let NumTube(I) = NumTubeL(I) denote the number of neon
tubes of I. The total number of neon tubes of L is denoted by NumTubeall(L), so
NumTubeall(L) :=

∑
I∈Lamp(L) NumTube(I).

Lemma 4.5 (Sandwiched Neon Tube Lemma). For a slim rectangular lattice L,
let n1, p, and n2 be three consecutive neon tubes of an internal lamp I ∈ Lamp(L)
such that the original territory of p is used but those of n1 and n2 are not used.
Then there is a slim rectangular lattice L′ such that Lamp(L′) ∼= Lamp(L) but
|L′| < |L| and NumTubeall(L

′) = NumTubeall(L) − 1; in fact, there is an isomor-
phism φ : Lamp(L) → Lamp(L′) such that NumTube(φ(I)) = NumTube(I)−1 and
NumTube(φ(J)) = NumTube(J) for all J ∈ Lamp(L) \ {I}.

Proof. With reference to (4.1), denote by L′ the subposet of L that we obtain from
L by removing the fork F (p) determined by p; see Figure 3 for an illustration. We
are going to show that L′ does the job. By left-right symmetry, we can assume that
n1 is to the left of p and p is to the left of n2.

First, we prove that L′ is a sublattice. By the main result of Czédli [9],

both intervals occurring in (4.1) are chains of normal
slopes. Hence, by (3.2), F (p) = Floor(p).

}
(4.3)

In Figure 3, these chains are [u6, u6∨v6] and [v6, u6∨v6]. Since none of the original
territories of n1 and n2 are used, we obtain from Lemma 4.3 that

none of REOT(n1) and LEOT(n2) contains a precipitous line segment. (4.4)

These two areas border F (p) = Floor(p) from below. Thus, for any edge r of L,

if Peak(r) ∈ F (p), then r is of a normal slope. (4.5)
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For the sake of contradiction, suppose that L′ is not join-closed. Then we can pick
x′, y′ ∈ L′ such that z := x′ ∨ y′ /∈ L′, that is, z ∈ F (p). (The join is taken in L.)
By (4.1) and left-right symmetry, we can assume that z ∈ [lsupp(Foot(p)),Foot(p)].
In Figure 3, the situation is illustrated with z as the (unique) element drawn by a
lying oval. Let T := [lsupp(Foot(n2)),Foot(p)] in L; it is [u5, u6 ∨ v6] in Figure 3.
The (area determined by) T is LEOT(n2) ⊆ EOT(n2). Hence, by (4.4), T contains
no precipitous line segment. Furthermore, as a lattice interval,

T is the direct product of a chain and the two-element chain. (4.6)

Hence, z has only two lower covers, x and y (the standing ovals in the figure),
and the edges [x, z] and [y, z] are of normal slopes. Let, say, x be to the left
of y. Now x′, y′ ∈ ↓Lz \ {z}, but {x′, y′} ⊈ ↓Ly since otherwise z = x′ ∨ y′ ≤
y ≺ z would be a contradiction. Hence, at least one of x′ and y′ is in ↓Lz \
↓Ly ⊆ [lsupp(Foot(p)),Foot(p)] ⊆ F (p), contradicting that x′, y′ ∈ L′ = L \ F (p).
Therefore, L′ is closed with respect to joins. Since it is also closed with respect to
meets by Lemma 4.4, we have proved that L′ is a sublattice of L.

Let e be an edge in the interval [lsupp(Foot(p)),Foot(p)] distinct from the top
edge of this interval. Using (4.6), it is clear that if we merge the two 4-cells that
share e as a common side, we obtain a 4-cell of L′. The situation is similarly for
the non-top edges of [rsupp(Foot(p)),Foot(p)]. The top edges of these two intervals
disappear when Foot(p) and its two lower covers are omitted and three “old” 4-cells
merge into a “new” 4-cell of L′. Now that we have described the new 4-cells, it
follows from (3.3) that L′ is a slim rectangular lattice.

It is clear by the paragraph above that with the exception of p, only some
edges of normal slopes are removed when passing from L to L′. The removal
of p does not influence the pair (Foot(I),Peak(I)) since Foot(I) is the meet of
the feet of the leftmost neon tube and the rightmost neon tube of I but p is a
“middle” neon tube of I. Therefore, Str(L′) = Str(L), see (3.8), and so (3.9)
implies that Lamp(L′) ∼= Lamp(L). Finally, since only one neon tube, p, has
been removed, NumTubeall(L

′) = NumTubeall(L)− 1. The existence of φ is clear:
for J ∈ Lamp(L), φ(J) is defined by the property (Foot(φ(J)),Peak(φ(J))) =
(Foot(J),Peak(J)). The proof of Lemma 4.5 is complete. □

Lemma 4.6 (No Neighboring Neon Tubes Lemma). Let L be a slim rectangular
lattice. Assume that n1 and n2 are two neighboring neon tubes of an internal lamp
I ∈ Lamp(L) such that their original territories are not used. Then there exists a
slim rectangular lattice L′ such that |L′| < |L| and (Lamp(L′);≤) ∼= (Lamp(L);≤)
but |NumTubeall(L

′)| = |NumTubeall(L)|−1; in fact, there is an order isomorphism
φ : (Lamp(L);≤) → (Lamp(L′);≤) such that |NumTube(φ(I))| = |NumTube(I)|−1
but |NumTube(φ(K))| = |NumTube(K)| for any K ∈ Lamp(L) \ {I}.

Proof. The proof borrows some ideas from Czédli [11]. Note, however, that the
present situation is different from that in [11] since now L′, to be defined below, is
not a quotient lattice of L in general.

Let, say, n2 be to the right of n1; see Figure 4 for an illustration. Observe that,
by Lemma 4.3 (or see the figure) and the fact that REOT(n1) is not used,

the peak of no precipitous edge of L belongs to RFloor(n2) and, in
particular, Foot(n2) cannot be the peak of a precipitous edge of L.

}
(4.7)
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Figure 4. Illustrating the proof of Lemma 4.6 by Lamp(L) ∼= P ∼= Lamp(L′)

Keeping Convention 3.1 in mind, we define L′ by describing its C1-diagram. From
(the diagram of) L, we remove the fork F (n2) together with all edges that have one
or two endpoints in F (n2). Writing this formally, L′ = L \ F (n2). On the left of
Figure 4, the vertices to be omitted are drawn in blue while the edges to be omitted
are the blue dashed edges. Let L′ be the set of the remaining vertices (drawn in
black). (Note that L′ in Figure 4 is not a sublattice of L since u4, v6 ∈ L′ but
u4 ∨L v6 /∈ L′.) At this stage, L′ with the remaining (black solid) edges is not even
a lattice diagram.

Next, let q denote the right neighbor of n2 among the neon tubes of I or, if n2
is the rightmost neon tube of I, then let q be the upper right edge of CircR(I).
Actually, it is only Foot(q) that we will need, and it is the right neighbor of Foot(n2)
among the lower covers of Peak(n2) = Peak(I). For each edge r of L, we define or
not define an edge r′ of L′ as follows.

If Foot(r) ∈ Floor(n2), then r′ is undefined and r is called an
omitted old edge.

}
(4.8)

If Foot(r) /∈ Floor(n2) and Peak(r) /∈ Floor(n2), then r′ := r and r
is called a remaining old edge of L′.

}
(4.9)

If Foot(r) /∈ Floor(n2) and Peak(r) ∈ LFloor(n2), then let
Foot(r′) := Foot(r) and Peak(r′) := Peak(r) ∨L lsupp(Foot(n1)).

}
(4.10)

If Foot(r) /∈ Floor(n2) and Peak(r) ∈ RFloor(n2), then let
Foot(r′) := Foot(r) and Peak(r′) := Peak(r) ∨L rsupp(Foot(q)).

}
(4.11)

If r is in the scope of (4.10) or (4.11), then r′ and r are called a new edge and a
changing old edge, respectively. In Figure 4, lsupp(Foot(n1)) = u7, rsupp(q) = v9,
and the new edges are the red dashed ones. It follows from (4.7) that each edge r of
L belongs to the scope of exactly one of (4.8)–(4.11). With its new edges and the
remaining old ones, L′ turns into a Hasse diagram of a poset L′ = (L;≤), which is
a subposet of L = (L;≤). Actually, we need to verify that the diagram is a poset
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diagram. We need to show that no two edges of the new diagram overlap; this will
be done a bit later. We also need to show that for every edge [x, y] of the new
diagram L′, there are no edges [x, z1], [z1, z2], . . . , [zk−1, y] of L

′ for some k ≥ 2.
This is clear if [x, y] is a new edge, as the only possible z1 ∈ L is not in L′; the case
when [x, y] is a remaining old edge is even more obvious. To exclude overlapping
edges and to show that the poset L′ is actually (the diagram of) a slim rectangular
lattice, we have to work more. Since none of the original territories OT(n1) and
OT(n2) is used, Lemmas 3.2 and 3.6 imply the following.

Let i ∈ {1, 2}. Then every edge r in LEOT(ni) is either of
(normal) slope (1, 1) and lies on the boundary of LEOT(ni)
or r is of (normal) slope (1,−1). Similarly, every edge r in
REOT(ni) is either of (normal) slope (1,−1) and lies on the
boundary of REOT(ni) or r is of (normal) slope (1, 1).

 (4.12)

Hence, even though L can be more complicated in general than in Figure 4, the
original territories indicated by appropriate fill patterns in the figure reflect the
general case well. The new edges of L′, which originate from changing old edges of
L, belong to three categories, which will be discussed separately.

Category 1. We assume that r is a precipitous edge in the scope of (4.10). Then
r is a neon tube of a lamp J ∈ Lamp(L) such that Peak(J) = Peak(r) lies on
LFloor(n2). In Figure 4, J can be J1 or J2. It follows from (4.12) that we obtain
r′ from r by moving the peak of r to the northwest along an edge of slope (1,−1).
Thus, using that r is precipitous, it follows trivially that r′ is also precipitous; for
more details, the reader can (but need not) see [11, (6.8)]. Since no precipitous
edge will occur in other categories for changing edges, let us summarize for later
references that

if a precipitous old edge h of L is a changing edge, then it changes
to a precipitous new edge h′ and Foot(h′) = Foot(h).

}
(4.13)

A line or an edge is of a slight slope if it is parallel to the vector (1, t) for some
t ∈ R such that |t| < 1. That is, a line or edge is of a slight slope if and only if it is
neither of a normal slope nor precipitous. We know from [11, (6.9)] (and it is easy
to see) that

if ℓ is a (geometric) line through two distinct lower
covers of Peak(J), then ℓ is of a slight slope.

}
(4.14)

Next, let UHCircR(J) stand for the union of the 4-cells whose peaks are Peak(J);
it is a geometric area. (The acronym, taken from [11], comes from “upper half of
the circumscribed rectangle”.) For J ∈ {J1, J2} in Figure 4, UHCircR(J) in L is
curl-filled. Note that on the right of the figure, the curl-filled areas are UHCircR(J1)
and UHCircR(J2) understood in L but not in L′. It follows from Lemmas 3.2 and
3.6 (and, in a different terminology, it is explicitly stated in [11, (6.3)]) that

GInt(UHCircR(J)) contains no edge segment
that is not a part of a neon tube of J .

}
(4.15)

Practically, (4.15) means that the curl-filled areas in the figure reflect generality
well. Let h′ be an edge of L′ such that h′ ̸= r′. Since neither the curl-filled area
GInt(UHCircR(J)) nor the 4-cell of LEOT(n2) that is the upper left neighbor of
CircR(J) contains an edge of L not mentioned in (4.15), r′ neither crosses nor
overlaps h′ if h is of a normal slope. Next, assume that h is precipitous and so it is
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a neon tube and h belongs to J , that is, to the same lamp to which r belongs. As
Peak(h′) = Peak(r′), the edges h′ and r′ do not cross. It follows from (4.14) (applied
to the common geometric line that contains both h′ and r′) that h′ and r′ do not
overlap. In the remaining case when h is precipitous but not a neon tube of J and
Peak(h) ∈ LFloor(n2), then let K denote the lamp having h as a neon tube. Then
K is an internal lamp and K ̸= J . Since an internal lamp is clearly determined
by its peak, Peak(J) ̸= Peak(K), and they are comparable since LFloor(n2) where
they belong is a chain by (4.3). The role of J and K is interchangeable, so let
Peak(K) < Peak(J). Then (the line determined by) RRoof(K) separates J and K,
and we obtain easily again that r′ and h′ neither cross nor overlaps. We have seen
that

if r′ originates from a precipitous edge r of L, then r′

neither crosses nor overlaps any other edge of L′.

}
(4.16)

Category 2. We assume that r is of a normal slope and r′ is defined in (4.10). Then
b := Peak(r′) ∈ L even though r′ is not an edge of L. It is clear either by Lemmas
3.2 and 3.6 or by comparing the present situation to (4.6) that Peak(r) ≺L b. Hence,
d := [Peak(r), b] is an edge. This edge lies in LEOT(n2), and we obtain from (4.12)
that d is of slope (1,−1). So is r since it is of a normal slope but does not lie
on LFloor(Foot(n2)). This means that r′ comes to existence by merging r and d,
which are adjacent edges lying on the same line of slope (1,−1). Hence, r′ is also of
slope (1,−1). Therefore, since Category 3 will be analogous to the current one by
left-right symmetry and we are armed with (4.13), we can conclude even now that

if g is a changing old edge of a normal slope, than the edge
g′ of L′ is of the same (normal) slope and, furthermore, g′ is
obtained by merging two collinear adjacent edges of L.

}
(4.17)

It follows from (4.16) and (4.17) that if r′ crossed or overlapped an edge g′ of L′,
then g′ would be of the other normal slope, (1, 1), and it would come to existence
by merging g to a collinear other edge of L at b. But then g would lie on RFloor(n2)
and instead of merging it to a collinear edge to obtain g′, g would have been omitted.
Thus,

if r belongs to Category 2, then r′ neither
crosses nor overlaps any other edge of L′.

}
(4.18)

Category 3. We assume that r is in the scope of (4.11). By (4.7), r is of (a normal)
slope (1, 1). Hence, the situation is basically the left-right symmetric counterpart
of the one discussed in Category 2, whereby no details will be given.

Now that the three categories have been investigated, (4.16), (4.18), and the
left-right symmetric counterpart of (4.18) for Category 3 imply that L′ is a planar
Hasse-diagram. We know from Kelly and Rival [23, Corollary 2.4] that planar posets
with 0 and 1 are lattices. Hence, L′ is a planar lattice. By construction, the number
of upper covers of an element x ∈ L′ is the same in L′ as in L. Furthermore, an
element of L′ belongs to the boundary of L′ if and only if it belongs to the boundary
of L. Therefore, (3.3) and the construction of L′ yield in a straightforward but a
bit tedious way that L′ is a slim rectangular lattice.

Since x ∈ L′ has the same number of covers in L′ as in L, we obtain that M(L′) =
L′∩M(L). Moreover, we already have (4.13) and (4.17), and it is clear that an edge
r′ of L′ lies on Bnd(L′) if and only if it lies on Bnd(L). Clearly, lc(L), rc(L) ∈ L′.
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Therefore, taking the just mentioned facts of the present paragraph and Convention
3.1 (for L) into account, we conclude that L′ is (given by) a C1-diagram.

Since OT(n2) is not used, it follows from (4.3) and Lemma 4.3 that

if h is a neon tube of L and h ̸= n2, then Foot(h) /∈ F (n2) = Floor(n2). (4.19)

It follows from (4.13), (4.17), and the construction of L′ that

the neon tubes of L′ are exactly the r′ where r is a neon tube
of L and r ̸= n2. Furthermore, for neon tubes r and h of
L such that r ̸= n2 ̸= h, Peak(r′) = Peak(h′) if and only if
Peak(r) = Peak(h) and Foot(r′) = Foot(r).

 (4.20)

Hence, for a lamp K ∈ Lamp(L) \ {I}, {r′ : r is a neon tube of K} is exactly the
collection of neon tubes of a lamp K ′ of L′. Furthermore, {h : h is a neon tube of
I and h ̸= n2} is the set of neon tubes of an internal lamp I ′ of L′ — this is the
definition of I ′. Note that Lemma 4.4 and (4.20) give that Foot(K ′) = Foot(K)
for K ∈ Lamp(L) \ {I}. Now (4.20) and the facts mentioned thereafter allow us to
conclude that the function φ : Lamp(L) → Lamp(L′) defined by

K 7→

{
K ′ if K ′ ∈ Lamp(L′) such that Foot(K ′) = Foot(K),

I ′ if K = I
(4.21)

is bijective. (Remark that if n2 is not the rightmost neon tube of I, then I belongs
to the scope of both lines of (4.21).) Note the rule, which follows from (4.20): for
any K ∈ Lamp(L), we have that Peak(φ(K)) = Peak(K).

We know from Lemma 3.9 that, in order to see that φ is an order isomorphism,
it suffices to show that, for J,K ∈ Lamp(K),

(J,K) ∈ ρfoot ⇐⇒ (J ′,K ′) ∈ ρfoot. (4.22)

Assume that (J,K) ∈ ρfoot and J ̸= I. Since Peak(K ′) is to the northwest
(that is, to the (−1, 1) direction) of Peak(K) or Peak(K ′) = Peak(K), we have
that Lit(K) ⊆ Lit(K ′). Hence, Foot(J ′) = Foot(J) ∈ Lit(K) ⊆ Lit(K ′) gives the
required (J ′,K ′) ∈ ρfoot. If (I,K) ∈ ρfoot, then CircR(I ′) = CircR(I) ⊆ Lit(K) ⊆
Lit(K ′) by Lemma 3.9, whereby (I ′,K ′) ∈ ρCircR = ρfoot, as required. This proves
the “⇒” part of (4.22).

Next, assume that (J ′,K ′) ∈ ρfoot and I /∈ {J,K}. We know that Foot(K ′) =
Foot(K) and Foot(J ′) = Foot(J). If Peak(K ′) = Peak(K), then Foot(J) =
Foot(J ′) ∈ Lit(K ′) = Lit(K) gives the required (J,K) ∈ ρfoot. So assume that
Peak(K ′) ̸= Peak(K). By construction, Lit(K ′) ⊆ Lit(K) ∪ LEOT(n2); see Fig-
ure 4. Hence, Foot(J) = Foot(J ′) ∈ Lit(K ′) gives that Foot(J) ∈ Lit(K) or
Foot(J) ∈ LEOT(n2). If the second alternative, Foot(J) ∈ LEOT(n2), holds, then
Foot(J) ⊆ EOT(n2), which contradicts Lemma 4.3 as OT(n2) is not used. Hence,
Foot(J) ∈ Lit(K), which gives that (J,K) ∈ ρfoot, as required.

We are left with the case when one of J and K is I.
Assume that (J ′, I ′) ∈ ρfoot. Then Foot(J) = Foot(J ′) ∈ Lit(I ′) ⊆ Lit(I) gives

the required (J, I) ∈ ρfoot. (Note that Lit(I ′) ⊂ Lit(I) if n2 is the rightmost neon
tube of I, and Lit(I ′) = Lit(I) otherwise.)

Finally, assume that (I ′,K ′) ∈ ρfoot. Then (I ′,K ′) ∈ ρCircR by Lemma 3.9.
This fact and CircR(I) = CircR(I ′) give that

Peak(I) = Peak(CircR(I)) = Peak(CircR(I ′)) ∈ CircR(I ′) ⊆ Lit(K ′).
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Hence, (Foot(K ′),Peak(K ′)) = (Foot(K),Peak(K)), and so Lit(K ′) = Lit(K).
These facts lead to CircR(I) = CircR(I ′) ⊆ Lit(K ′) = Lit(K). Thus, (I,K) ∈
ρCircR = ρfoot, as required. The proof of Lemma 4.6 is complete. □

5. An estimate

The length of a lattice K is denoted by len(K). Our goal is to prove that

Theorem 5.1. Let D be a ConSPS-representable distributive lattice with n :=
|J(D)| join-irreducible elements. If n ∈ {0, 1}, then D is the (n+ 1)-element chain
and K ∼= D. If n = 2, then D is the four-element boolean lattice and either K ∼= D
or K is the three-element chain. If n ≥ 3, then the following two assertions hold.

(A) There is a slim rectangular lattice L such that ConL ∼= D and

len(L) ≤ 2n2 − 10n+ 15, and so len(L) < 2n2. (5.1)

(B) For any slim semimodular lattice L′, if ConL′ ∼= D, then len(L′) ≥ n.

Proof. The case n ≤ 2 is trivial. In the rest of the proof, let n ≥ 3. Let L be a slim
rectangular lattice. A trivial induction by Lemmas 3.2 and 3.6 shows that

len(L) = NumTubeall(L) = |M(L)|. (5.2)

Now if ConL ∼= D, then Lamp(L) ∼= J(D) by Lemma 3.9, so (5.2) gives that
len(L) =

∑
I∈Lamp(L) NumTube(I) ≥

∑
I∈Lamp(L) 1 = |Lamp(L)| = n. Hence, Part

(B) holds for the particular case of rectangular SPS lattices.
We know from Grätzer and Knapp [21, Theorem 7] and its proof that

each slim semimodular lattice L′ with at least three
elements is a sublattice of a slim rectangular lattice
L such that ConL ∼= ConL′ and len(L) = len(L′).

 (5.3)

This statement also follows from Czédli and Schmidt [17, Lemma 21] (applied in
the reverse directions) and Czédli[3, (Corner) Lemma 5.4]. Therefore, Part (B)
follows from its particular case mentioned above.

Next, we turn our attention to part (A). We can assume that J(D) is not an
antichain since otherwise with any grid G of length n and L := G, we have that
ConG ∼= D and len(G) = n ≤ 2n2. Take a slim rectangular lattice L of minimal
length such that ConL ∼= D. We know from Lemma 3.9 that Lamp(L) ∼= J(D),
and so |Lamp(L)| = n. Let J ∈ Lamp(L) be an internal lamp. Let t+J denote the

number of neon tubes of J whose original territories are used. Similarly, t−J stands
for the number of neon tubes of J whose original territories are not used; note that
t+J + t−j = NumTube(J). Listing the neon tubes from left to right, let us write a
letter u for a used neon tube and a zero for an unused neon tube. Then we obtain a
sequence s⃗ of length NumTube(J) consisting of t+J u’s and t−J zeros. Subsequences
0u 0 and 0 0 are forbidden by (5.2) and Lemmas 4.5 and 4.6 since len(L) is minimal.
For another look at s⃗, take the sequence w⃗ := ⋆ u ⋆ u ⋆ u · · · ⋆ u ⋆ u ⋆ u ⋆ of t+J u’s

and t+J + 1 stars that alternate. We can obtain s⃗ from w⃗ by removing some stars
and replacing the remaining stars by zeros. Observe that only one zero can replace
a star since 0 0 is a forbidden subsequence. Furthermore, for any two consecutive
stars (which occur in a subsequence ⋆ u ⋆), at most one of the two stars can change
to 0 and so the other one should be removed since 0u 0 cannot be a subsequence.
Hence, at most every second star can turn to 0 and the rest of the stars are removed.



18 G. CZÉDLI

Therefore, the number t−J of zeros is at most4 ⌈(t+J + 1)/2⌉, the upper integer part

of (t+J + 1)/2. Since ⌈(t+J + 1)/2⌉ ≤ t+J , we obtain that, for any J ∈ Lamp(L),

NumTube(J) = t+J + t−j ≤ 2 · t+J . (5.4)

Letm denote the number of boundary lamps, that is, the number of maximal ele-
ments of Lamp(L) (or, equivalently, those of J(D)). Each of LBnd(L) and RBnd(L)
contains at least one boundary lamp, whence m ≥ 2. Since Lamp(L) ∼= J(D) is
not an antichain, m < n. So k := n − m, the number of internal lamps of L,
is at least 1. If p is a neon tube of an internal lamp J and I uses the original
territory of J , then I < J and, in particular, I is also an internal lamp. Fur-
thermore, if p1,. . . , pt+J

denote the neon tubes of J whose original territories are

used, then the GInt(LEOT(p1)), . . . , GInt(LEOT(pt+J
)) are pairwise disjoint, and

so are GInt(REOT(p1)), . . . , GInt(REOT(pt+J
)). Therefore, using Lemma 4.3(b),

it follows that the lamp I can use the original territories of at most two of the neon
tubes of J . The number of lamps I that use the original territory of a neon tube
of J is at most |↓J \ {J}|, whereby J has at most 2 · |↓J \ {J}| neon tubes5 whose
original territories are used. By (5.4), it has at most twice as many neon tubes all
together. Hence, the total number of neon tubes of the internal lamps is at most6∑

internal J∈Lamp(L)

2 · 2 · |↓J \ {J}| = 4 ·
∑

internal J∈Lamp(L)

|↓J \ {J}|. (5.5)

Observe that |↓J \ {J}| is the number of pairs (I, I ′) of internal lamps subject to
I < I ′ and I ′ = J . Therefore, the second sum in (5.5) is the number of pairs
(I, J) of internal lamps such that I < J . This sum reaches its maximum when the

internal lamps form a chain. Then there are
(
k
2

)
= k(k − 1)/2 such pairs, and so

the maximum that (5.5) can take is 2k(k− 1); it might seem to be an upper bound
on the number NumTubeinternal(L) of the neon tubes of the internal lamps of L.

There are two imperfections with the argument above. First, any two minimal
internal lamps are incomparable. Hence, letting s denote the number of minimal
internal lamps,

(
k
2

)
= k(k − 1)/2 has to be reduced by

(
s
2

)
= s(s − 1)/2. Second,

instead of 2 · |↓J \ {J}| = 0, a minimal lamp J has exactly one neon tube (trivially
or by Lemma 4.5), whereby we s · 1 = s has to be added. So we obtain that

NumTubeinternal(L) ≤ 4 ·
(
k(k − 1)/2− s(s− 1)/2

)
+ s

= 2k2 − 2k + 3s− 2s2 ≤′ 2k2 − 2k + 1, (5.6)

where “≤′” holds since 3s− 2s2 is negative for s ≥ 2 and so we substituted 1 for s.
Next, taking the m boundary lamps, k = n−m, and (5.6) into account,

NumTubeall(L) = m+NumTubeinternal(L)

≤ m+ 2(n−m)2 − 2(n−m) + 1

= 2n2 − 2n+ 1 + 2 ·
(
m2 − (2n− 3/2)m

)
︸ ︷︷ ︸ . (5.7)

Let f(m) = m2 − (2n − 3/2)m denote the under-braced term. By the elementary
theory of quadratic univariate real functions, f(m) decreases in the closed interval

4Provided that t+J > 0; this correction will be taken into account about seven lines after (5.5).
5For minimal lamps, this will be corrected soon.
6To be improved soon by taking the minimal internal lamps of L into account.
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[0, n − 3/4]. This fact and 2 ≤ m ≤ n − 1 imply that the largest value of f(m) is
f(2) = 7− 4n. Substituting this value into (5.7), we obtain that

NumTubeall(L) ≤ 2n2 − 10n+ 15 < 2n2. (5.8)

Finally, (5.2) and (5.8) complete the proof of Theorem 5.1. □

Remark 5.2. The inequality (5.1) is not sharp. Indeed, no matter which 4-element
poset J(D) is, there is a slim rectangular lattice L such that |J(ConL)| ∼= D and
len(L) ≤ 5 while 2n2− 10n+15 for n := 4 is 7. Note that “≤ 5” is sharp for n = 4;
to see this, let J(D) be the 4-element poset with the “Y-shaped diagram”.

Corollary 5.3. For L in Part (A) of Theorem 5.1, |L| ≤ (2n2−10n+15)2 < 4n4.

Proof. By (5.3) and Theorem 5.1, it suffices to show that if L is a slim rectangular
lattice of length k, then |L| ≤ k2. By (1.1), there are chains C,U ⊆ J(L) such that
J(L) = C ∪ U . Since 0 /∈ C and, by rectangularity, 1 /∈ C, |C| ≤ k − 1. Similarly,
|U | ≤ k−1. Since any element of L\{0} is of the form c∨u with c ∈ C and u ∈ U ,
L has at most 1 + |C| · |U | = 1+ (k− 1)2 ≤ k2 elements, completing the proof. □

6. Odds and ends

Let P be a poset, and let j ∈ P . We define a new poset P ′ as follows. The
base set of P ′ is (P \ {j}) ∪ {j′, j′′} where P ∩ {j′, j′′} = ∅. The ordering in P ′

is defined as follows: for a, b ∈ P ′ \ {j′, j′′} = P \ {j}, a ≤P ′ b ⇐⇒ a ≤P b,
a ≤P ′ j′ ⇐⇒ a ≤P ′ j′′ ⇐⇒ a ≤P j, j′ ≤P ′ b ⇐⇒ j′′ ≤P ′ b ⇐⇒ j ≤P b, and
j′′ ≺P ′ j′. We say that P ′ is obtained from P by doubling the element j of P . For
an example, see P and P ′ in the middle of Figure 5.

Proposition 6.1. Let P ′ be a poset obtained from a JConSPS-representable poset P
by doubling a non-maximal element j ∈ P . Then P ′ is also JConSPS-representable.
Furthermore, if L is a slim rectangular lattice such that P ∼= J(ConL), then there
is a slim rectangular lattice L′ such that P ′ ∼= J(ConL′) and len(L′) = len(L) + 2.

Figure 5. The construction for Proposition 6.1 with a “magnify-
ing glass” at the bottom right

Czédli [7, Corollary 3.5] shows that if we double amaximal element of a JConSPS-
representable poset P , then the new poset P ′ is never JConSPS-representable.
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Proof of Proposition 6.1. By Grätzer and Knapp’s result, see (5.3), it suffices to
deal with the second half of the statement. Assume that L is a rectangular lattice.
For m ∈ N+, the m-th neon tube of a lamp I is understood as the m-th neon
tube of I from the left; see Convention 3.1. We also count on the fixed multifork
sequence of L, see Lemmas 3.2 and 3.6. We know from Lemma 3.9 that there is
an order isomorphism P → Lamp(L); we denote its action by capitalization, that
is, x 7→ X. The notation used in Lemma 3.6 is in effect. Since j is not a maximal
element of P , J is an internal lamp; let, say, J = It. In Figures 5 and7 6, t = 3.
Note that P ∩ P ′ = P \ {j} = P \ {j′, j′′} is a subposet both in P and in P ′. For
any x ∈ P ∩P ′, the lamp corresponding to x will be denoted by X both in L and in
L′; this should not cause confusion since it will be clear from the context whether
X ∈ Lamp(L) or X ∈ Lamp(L′). The pair (Foot(X),Peak(X)) is the same in L′

as in L. So, implicitly, the proof mostly considers lamps as pairs.
We define L′ in the following way. Let ϵ ∈ R, ϵ > 0, be the smallest one out of

the geometric lengths of the edges of (the fixed C1-diagram of) L. With reference
to the multifork sequence of L, let L′

0 := L0, L
′
1 := L1,. . . , L

′
t−1 := Lt−1; these

equations also mean the exact coincidence of the corresponding C1-diagrams in the
plane. As for the forthcoming notation, we will continue the sequence by L′

t−0.5,
L′
t, L

′
t+1, . . . , L

′
k =: L′. In L′

t−1 (which is the same as Lt−1), let H ′
t−0.5 be the

same 4-cell (even geometrically the same) as Ht in Lt−1.
Later, Ht turns into CircR(It) in L; in the figure, CircR(It) = CircR(I3) is the

“3-filled” area in L. In L′, only the “major part” of CircR(I ′t−0.5) = CircR(I ′2.5)
is 3-filled; the rest of CircR(I ′t−0.5) = CircR(I ′2.5) is yellow-filled. At Ht in Lt−1,
we perform a NumTube(It)-fold multifork extension, which produces J = It. (In
the figure, where It = I3 = J , NumTube(It) = 4.) However, in L′

t−1, we add a
2-fold multifork at H ′

t−0.5 to obtain a new lattice L′
t−0.5. Geometrically (in the C1-

diagram), this new multifork extension and the lamp J ′ = It−0.5 it produces look
unusual compared to other figures. Namely, we require that the 4-cell H ′

t whose
peak is the foot of the leftmost neon tube of J ′ should be almost as large as H ′

t−0.5.
That is, the width η of the “legs” of the Λ-shaped difference H ′

t−0.5 \H ′
t, which is

yellow-filled in the figure, should be very small. (We may think of η = ϵ/1000.) On
the right of the Figure, H ′

t = H ′
3 in L′ is 3-filled.

Next, we perform a NumTube(It)-fold multifork extension at H ′
t to obtain L′

t

from Lt−0.5 and to produce the lamp J ′′ = It of L′
t (and of L′). The feet of the

neon tubes of J ′′ = It in L′
t (and in L′) should be the same geometric points as the

feet of the neon tubes of J = It in Lt (and in L). So the geometric shape of J and
that of J ′′ are almost the same (and they tend to be the same as η tends to 0).

From L′
t, we continue the multifork sequence for L′ in the same way as we

continue the sequence from Lt to reach L. Even in geometric sense, we do almost
the same, that is, with very little differences that would diminish if we formed
the limit at η → 0. To be more specific, let us agree that we use the alternative
notation I−1 = A1, I−2 = B1, I−3 = A2, I−4 = B2, . . . , I−2k+1 = Ak, I−2k = Bk,
. . . for the boundary lamps. (The purpose of this notation is that now each lamp
is of the form Im for some m ∈ R.) For s = t, t + 1, . . . , k − 1, we select H ′

s+1 as
follows. In Ls, the trajectory through the top left edge of the 4-cell Hs+1 contains
exactly one neon tube, p. Since the top left edge of Hs+1 is of slope (1, 1), it is

7Apart from scaling, the two figures are the same. Figure 5 illustrates the idea of the construc-
tion better while Figure 6 is more readable.
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in the descending part of the trajectory. The neon tube p belongs to exactly one
lamp, which is older than or as old as Is; let Iu denote this lamp. Note that we
never use the trajectory through the leftmost neon tube of It−0.5 (in the figure, the
“narrow” trajectory through the yellow-filled area), whereby u ̸= t − 0.5 and so u
is an integer and Iu will also make sense in L′, not only in L.

Among the neon tubes of Iu, let p be the α-th neon tube (from the left). In L′
t,

let p′ be the α-th neon tube of Iu. By left-right symmetry, the top right edge of
Hs+1 defines a neon tube q of a lamp Iv in Ls and its counterpart q′ in L′

s. The top
right edge of Hs+1 is in the ascending part of the trajectory in question. Now we
can simply select H ′

s+1 as the unique 4-cell of L′
s where the descending part of the

trajectory through p′ and the ascending part of the trajectory through q′ cross each
other8. Once H ′

s+1 has been selected, we perform a NumTube(Is+1)-fold multifork
extension at this 4-cell of L′

s to obtain L′
s+1 and its lamp Is+1. This multifork

extension should almost be the same geometrically as in the passage from Ls to
Ls+1; in particular, the feet of the new neon tubes have to be geometrically the
same in L′

s+1 as in Ls+1. For later reference, note that

the left upper edge of CircR(Is+1) = Hs+1 belongs to
the trajectory through a neon tube of Iu both in L an
L′, and similarly for the right upper edge and Iv.

 (6.1)

Finally, we obtain L′ = L′
k.

Next, in order to recall Czédli [11, Lemma 7.5], we need some notation. Let U be
an internal lamp of a slim rectangular latticeK. Then the top edge of the trajectory
containing the upper left edge of CircR(U) is a neon tube of a lamp; we denote this
lamp by Nwl(U). Left-right symmetrically, Nel(U) stands for the unique lamp that
has a neon tube whose trajectory contains the upper right edge of CircR(U). For a
poset Q, let Min(Q) stand for the set of minimal elements of Q. Now [11, Lemma
7.5] asserts that if K is a slim rectangular lattice and U, V ∈ Lamp(K), then

U ≺ V in Lamp(K) if and only if U is an internal
lamp and V ∈ Min({Nwl(U),Nel(U)}).

}
(6.2)

Comparing (6.1) and (6.2) and taking into account that only internal lamps, which
all occur in (6.1), can be covered by another lamp, the construction implies that
Lamp(L)\{J} is order isomorphic to Lamp(L′)\{J ′, J ′′}. We obtain from Lemma
3.9 that J ′ < J ′′ in Lamp(L′), Lamp(L) ∼= Lamp(L′) \ {J ′}, and Lamp(L) ∼=
Lamp(L′)\{J ′′}. Thus, using that P ∼= Lamp(L), we conclude that P ′ ∼= Lamp(L′),
as required. Furthermore, the construction and (5.2) yield that len(L′) = len(L)+2.

However, the proof is not complete yet. Indeed, we need to show that the trajec-
tories mentioned earlier do cross in L′

s. To be more precise, we need to show that
if the geometric areas REOT(p) and LEOT(q) cross in Ls, than so do REOT(p′)
and LEOT(q′) in L′

s. Of course, REOT(p′) and LEOT(q′) are perpendicular if we
disregard their thickness but, in principle, they could avoid each other like the right
leg of the upper ∧∧∧ and the left leg of the lower ∧∧∧ do in∧∧∧∧∧∧

. (6.3)

8The possible doubts whether they cross will be dissolved later.
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Fortunately, it is clear by continuity that whenever η is small enough (compared to
ϵ), then REOT(p′) and LEOT(q′) are close enough to REOT(p) and LEOT(q), re-
spectively. Thus, since REOT(p) and LEOT(q) cross each other at a rectangle with
sides at least ϵ, REOT(p′)∩LEOT(q′) is a rectangle of a positive area. Furthermore,
in Ls, REOT(p) ∩ LEOT(q) is a 4-cell. Since, except when J ′′ = It was created,
OT(J ′) = OT(It−0.5) is never used, we conclude that REOT(p′) ∩ LEOT(q′) is
also a 4-cell. This shows that the definition of L′

s+1 and that of L′ make sense,
completing the proof of Proposition 6.1. □

Figure 6. The construction for Proposition 6.1, rescaled

Remark 6.2. In most of the cases, the estimate given in (5.1) of Theorem 5.1 is
far from being optimal. For example, if J(ConL′) ∼= J(D) ∼= P ′ and P ′ is obtained
from a smaller poset P by doubling a non-maximal element j ∈ P , then, with the
notation of Proposition 6.1, the lamp J ′ corresponding to j′ ∈ P ′ has only two neon
tubes and contributes to len(L′) by 2 regardless the size of ↓Lamp(L′)J

′.

To present another example, let 4 ≤ n ∈ N+ and let Pn be the n-element poset
consisting of two maximal elements, a and b, n− 3 minimal elements, c1, . . . , cn−3,
and an element u such that u ≺ a, u ≺ b, and ci ≺ u for all i ∈ {1, . . . , n−3}. Then
there is a slim rectangular lattice L such that J(ConL) ∼= Pn and len(L) = n + 1,
which is much smaller than what the estimate (5.1) gives.

In our third example, 3 ≤ n ∈ N+ and Qn is the poset with two maximal
elements and n − 2 minimal elements such that every minimal element is covered
by both maximal elements. Then there is a slim rectangular lattice L such that
J(ConL) ∼= Qn and len(L) = n. This example shows that the lower estimate given
in Theorem 5.1(B) cannot be improved.

As Remarks 5.2 and 6.2 allow us to guess, there are many factors that can reduce
the number len(L) = |NumTubeall(L)| and improve the estimate (5.1). However,
it seems to be difficult to take more factors into account without making Theorem
5.1 and the corresponding proof too complicated. Corollary 5.3 is not sharp either.
Indeed, in addition to that this corollary is built on the non-sharp Theorem 5.1,
there is another reason for this. Namely, if J(D) ∼= J(ConL) has few non-maximal
elements (in particular, if J(D) is an antichain and so D is Boolean), then |L| has
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few internal lamps and |L| is close to len(L)2 but then len(L) is much smaller than
what (5.1) gives. On the other hand, if J(D) has many non-maximal elements, then
L has many internal lamps and |L| is considerably smaller than len(L)2.

Remark 6.3. In order to decide whether a given n-element poset P is JConSPS-
representable, it is not economic and usually not even feasible to list all slim rectan-
gular lattices of lengths at most 2n2−10n+15; see (2.1) and (5.1), or those of size at
most (2n2−10n+15)2; see Corollary 5.3. It is much faster to rely on the known prop-
erties and constructions. To exclude the JConSPS-representability of P in many
cases, we can check the known properties of JConSPS-representable posets, see
(5.3), Czédli [7], [10], and Czédli and Grätzer [13] (where two earlier properties from
Grätzer [18] and [19] are also recalled). To conclude the JConSPS-representability
of P and to obtain a slim rectangular lattice L such that P ∼= J(ConL), we can
often use the known constructions; see Proposition 6.1, Czédli [11, Theorems 3.14
and 3.16], and Czédli and Grätzer [13, Theorem 1.2]. If the known properties and
constructions do not help, then, compared to what (5.1) gives, the ideas in their
proofs radically reduce the number of cases to be inspected for the given P .

If |P | is a small poset, then Remark 6.3 offers a way to decide, in few hours
without computers, whether P is JConSPS-representable. (We feel but have not
checked that every at most 6-element poset is small in this aspect.) Note that by
Czédli [11, Corollary 3.11], each finite poset P that is not JConSPS-representable
gives a property (but not always a new property) of JConSPS-representable posets.
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semimodular lattices. Algebra Universalis 66, 69–79 (2011)

[17] Czédli, G., Schmidt, E.T.: Slim semimodular lattices. I. A visual approach. Order 29, 481–497

(2012)
[18] Grätzer, G.: Congruences of fork extensions of slim, planar, semimodular lattices. Algebra

Universalis 76, 139–154 (2016)
[19] Grätzer, G.: Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices.

Algebra Universalis 81 (2020), Paper No. 15, 3 pp.

[20] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta Sci.
Math. (Szeged) 73, 445–462 (2007)

[21] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. III. Rectangular lattices.

Acta Sci. Math. (Szeged) 75 (2009), 29–48.
[22] Grätzer, G., Lakser, H., Schmidt, E. T.: Congruence lattices of finite semimodular lattices.

Canad. Math. Bull. 41, 290–297 (1998)

[23] Kelly, D., Rival, I.: Planar lattices. Canad. J. Math. 27, 636–665 (1975)

Email address: czedli@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/~czedli/

University of Szeged, Bolyai Institute. Szeged, Aradi vértanúk tere 1, HUNGARY
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