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JORDAN–HÖLDER CONDITION WITH SUBSEMILATTICES
OF COALITION LATTICES

GÁBOR CZÉDLI

Dedicated to Professor László Leindler on his 70th birthday

Abstract. Given a finite partially ordered set P , for subsets or, in other
words, coalitions X,Y of P let X ≤ Y mean that there exists an injection
ϕ : X → Y such that x ≤ ϕ(x) for all x ∈ X. This definition turns the set
L(P ) of all subsets of P into a partially ordered set. When no two compa-
rable elements of P has an upper bound in P then L(P ) is a lattice, the
so-called coalition lattice of P . Using the structure theorem introduced in
[2], coalition lattices will be shown to satisfy the Jordan-Hölder condition;
not only in the classical sense but also in a stronger form which is related
to certain subsemilattices. In other words, certain subsemilattices, which
are coalition lattices with respect to their own ordering, are neatly posi-
tioned in the original lattice. An overview of former results on coalition
lattices is also given.

1. Introduction and overview

Given a partially ordered set P , always assumed to be finite, the subsets
of P will be called coalitions of P . Let L(P ) denote the set of coalitions, i.e.
subsets, of P . For X, Y ∈ L(P ), a map ϕ : X → Y is called an extensive map
if ϕ is injective and x ≤ ϕ(x) for all x ∈ X . Let X ≤ Y mean that there exists
an extensive map X → Y ; this definition turns L(P ) into a partially ordered
set. This concept, with roots in game theory and human decision making,
was introduced in [1] with a detailed motivation. When L(P ) happens to be
a lattice then it is called a coalition lattice, the coalition lattice of P . For a
general reference on lattices the reader can resort to Grätzer [5].

If incomparable elements of P have no common upper bounds, i.e., if for
all a, b, c ∈ P , a ≤ c and b ≤ c imply a ≤ b or b ≤ a, then P is called a forest.
The connected components of a forest are called the trees of P . Clearly, trees

2000 Mathematics Subject Classification. Primary 06B99; secondary 06A99, 90D99.
Key words and phrases. Coalition lattice, sum of lattices, Jordan–Hölder chain condition.
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are the maximal subsets having a least element. It is relatively easy to show
that if L(P ) is a lattice then P is a forest. The converse is also true.

Theorem 1. [1] For a finite poset P , L(P ) is a lattice if and only if P is a
forest.

Related lattices, like lattices of congruences or subalgebras, are lattices
usually by a trivial reason: one of the lattice operations is easy to describe.
However, this is far from being true for coalition lattices. There are five
different proofs of Theorem 1 so far, and four of them describe one of the
lattice operations. Since most of these proofs reveal something interesting on
coalition lattices, we give a short account on them. We will disregard from
the fact that some of these proofs are for a more general statement where P
is a quasi ordered set.

In the first proof, cf. [1], for a forest P and for A1, . . ., Ak ∈ L(P ) let
M := {b1 ∧ . . . ∧ bk : b1 ∈ A1, . . . , bk ∈ Ak , and the infimum b1 ∧ . . . ∧ bk
exists in P}. If M is empty (in particular when one of the Ai is empty) then∧k
i=1Ai = ∅. If M is nonempty then choose a maximal element c = a1∧. . .∧ak

in M where the ai belong to Ai such that, for every i, c ∈ Ai =⇒ c = ai. Let
A′
i := Ai \{ai} for i = 1, . . . , k, P ′ := P \{c}, and put C ′ :=

∧k
i=1A

′
i in L(P ′).

Then
∧k
i=1Ai = C ′ ∪ {c} in L(P ).

Now let P1 be the set of maximal elements of P , and for i ≥ 2 let Pi
be the set of maximal elements of P \ (P1 ∪ · · · ∪ Pi−1). The second proof,
cf. Theorem 1 in [1], defines the join C =

∨k
i=1Ai in L(P ) by inductively

constructing C ∩ (P1 ∪ · · · ∪ Pi).
Let v be a maximal element of P , and let P̆ := P \ {v}. To make the

previous description of C =
∨k
i=1Ai easier, the third proof, cf. Corollary 1 in

[3], reduces the problem to L(P̆ ). For X ∈ L(P ), if {a : a ∈ X and a ≤ v} is
nonempty then it has a unique largest element cX , and we put X̆ := X \{cX}.
Put X̆ := X if {a : a ∈ X and a ≤ v} is empty. Let C̆ be the join of the
Ă1, . . . , Ăk in L(P̆ ). If A1, . . . , Ak ∈ L(P̆ ) then C = C̆, otherwise C = C̆∪{v}.

The fourth proof, given by Davidson and Grätzer [4], starts with a tree P ,
rather than a forest, and, contrary to the previous approach, now let m = 0,
the least element of P . With the notations P̆ := P \ {0} and X̆ := X \ {0} for
X ∈ L(P ), if A,B ∈ L(P ) then let C := Ă∨ B̆ in L(P̆ ). Then A∨B in L(P )
is either C or C ∪ {0}; it is C iff A ≤ C and B ≤ C in L(P ). This settles the
case when P is a tree, and the rest follows from the following easy statement.

Proposition 1. [1] Let T1, . . . , Tn be the connected components of a finite
poset P . Then L(P ) ∼=

∏n
i=1 L(Ti).

Before giving any information on the fifth proof, now some other properties
of coalition lattices will be recalled.
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Proposition 2. [1] For any finite poset P , L(P ) → L(P ), X 7→ P \X is a
dual automorphism.

Notice that once we have a method to calculate one of the lattice operations
in L(P ) then, in virtue of the above statement, we can use the de Morgan laws
to calculate the other one. The various ways to compute the lattice operations
make it relatively easy to derive the last part of the following statement.

Proposition 3. Let P be a finite forest.
(A) [1] L(P ) is distributive iff it is modular iff every tree component of P

is a chain.
(B) [2] M3, the five element nondistributive modular lattice, cannot be em-

bedded in L(P ).
(C) [3] If Q is another forest with L(P ) ∼= L(Q) then P ∼= Q.
(D) [3] {X ∈ L(P ) : P \ X ≤ X}, i.e. the set of the so-called winning

coalitions, is a dual ideal of L(P ).
(E) [3] L(P ) satisfies the Jordan–Hölder chain condition, i.e., any two

maximal chains of L(P ) have the same length.
(F) [2] For A1, . . . , An ∈ L(P ) we have

⋂n
i=1Ai ⊆

∧n
i=1Ai and

∨n
i=1Ai ⊆⋃n

i=1Ai.

The former proof for (E) does not remember to Section 2 of the present
paper, where a stronger statement will be proved. In connection with (B) we
notice that, except for the Jordan–Hölder chain condition, the most important
lattice properties seem to fail in L(P ) in general. This will be demonstrated
by Figure 1, which is the coalition lattice of T = {a, b, c, u, v} where a is the
least elements, b, c, v are the maximal elements, and a ≺ b, a ≺ u, u ≺ c
and u ≺ v is the list of all covering pairs. Notice that {a1, . . . , ak} ∈ L(T ) is
denoted by a1 . . . ak in the figure.

Kira Adaricheva rased the question what nice lattice properites, other than
(E) above, hold in coalition lattices. Unfortunately we have some negative
results only. For example, coalition lattices are not join (equivalently, meet)
semidistributive in general. Indeed, for X = {c, v}, Y = {a, c, u} and Z =
{a, u, v} in L(T ) we have X ∨ Y = X ∨ Z = {a, c, v} but X ∨ (Y ∧ Z) =
X . (Notice that the same holds in L(T \ {b}).) Since {a, b, u} ∧ {b, c} =
{b, u} = {a, b} ∨ {a, u} in L(T ), and also in L(T \ {v}), coalition lattices fail
to satisfy the Whitman condition in general. Since {a, b, u} ≺ {a, b, c} but
{a, b, u} ∨ {b, v} 6≺ {a, b, c} ∨ {b, v}, L(T ) is not semimodular. The following
problem, mentioned already in [2], is still open: do coalition lattices satisfy a
nontrival lattice identity?

Now we recall a construction from [2], which will be used heavily in the
next section. Since this construction produces a lattice L from given lattices
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Figure 1

L1 and L2 such that |L| = |L1| + |L2|, we will call L as a sum of L1 and
L2. For definition, let Li be a complete lattice with bounds 0i, 1i, i = 1, 2.
Let Si be a nonempty subset of Li such that S1 is closed with respect to
arbitrary meets and S2 is closed with respect to arbitrary joins. In particular,
11 ∈ S1 and 02 ∈ S2. In short, we say that S1 is a

∧
-subsemilattice of L1 and

S2 is a
∨

-subsemilattice of L2. Notice that the Si are necessarily complete
lattices under the ordering inherited from Li but they need not be sublattices
in general. Let ψ : S1 → S2 be an order isomorphism (or, equivalently, a lattice
isomorphism). We define the sum L of L1 and L2, in notation L = L1 +ψ L2

as follows. (Notice that ψ determines its domain, S1, and its range, S2. Hence,
in contrast to Proposition 1 of [2], S1 and S2 are not included in the notation
L1 +ψ L2.) Let L be the disjoint union of L1 and L2. For x, y ∈ L let x ≤ y
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mean that either x ≤ y in some of the Li or x ∈ L1, y ∈ L2 and x ≤ z and
ψ(z) ≤ y for some z ∈ S1. Pictorially, in the finite case this means that we
add the z ≺ ψ(z) edges, z ∈ S1, to the union of the Hasse diagrams of L1 and
L2. Notice that the particular case |S1| = |S2| = 1 gives the so-called ordinal
sum of L1 and L2.

Proposition 4. [2] L = L1 +ψ L2 is a complete lattice, in which L1 is a
prime ideal and L2 is a prime filter.

The importance of L1 +ψ L2 in our investigations comes from the following
statement.

Theorem 2. [2] Let v be a maximal element of a finite forest P , let u ∈ P
and suppose that v covers u in P . Put L1 := {X ∈ L(P ) : v /∈ X}, L2 :=
{X ∈ L(P ) : v ∈ X}, S1 := {X ∈ L1 : u ∈ X}, S2 := {X ∈ L2 : u /∈ X}, and
ψ : S1 → S2, X 7→ (X \{u})∪{v}. Then L1 = L(P \{v}) ∼= L2, all conditions
in connection with Proposition 4 are fulfilled, and L(P ) = L1 +ψ L2.

Notice that it is not known if there is a nontrivial lattice variety V such that
L1 +ψ L2 ∈ V for all L1, L2 ∈ V . In virtue of the above theorem, this problem
is related to the problem mentioned before the definition of L1 +ψ L2.

Now the fifth proof of Theorem 1, which is implicit in [2], is a trivial
induction using Theorem 2 and the fact that L(P ) is a lattice when P is an
antichain.

2. More about coalition lattices

Lemma 1. If X ≤ Y in L(P ) then there is an extensive map X → Y which
acts identically on X ∩ Y .

Proof. Choose an extensive map ϕ : X → Y such that k := |{z ∈ X ∩ Y :
ϕ(z) = z}| is maximal. By way of contradiction, suppose k < |X ∩ Y |. Then
u < ϕ(u) for some u ∈ X ∩ Y . If u /∈ ϕ(X) then define ψ : X → Y , u 7→ u
and x 7→ ϕ(x) for x 6= u. If u = ϕ(w) for some w ∈ X then define ψ : X → Y ,
u 7→ u, w 7→ ϕ(u) and x 7→ ϕ(x) for x /∈ {u, w}. In both cases, ψ is an
extensive map with |{z ∈ X ∩ Y : ϕ(z) = z}| > k, a contradiction. �

For an element w of a finite forest P let J(w) := {X ∈ L(P ) : w /∈ X} and
M(w) := {X ∈ L(P ) : w ∈ X}.

Lemma 2. J(w) is a
∨

-subsemilattice and M(w) is a
∧

-subsemilattice of
L(P ). Moreover, J(w) = L(P \ {w}) ∼= M(w), and αw : J(w) → M(w),
X 7→ X ∪ {w} is an isomorphism.

Proof. The first part comes from Proposition 3 (F) while the second one follows
from Lemma 1. �
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Now let C = {A = C0 ≺ C1 ≺ C2 ≺ · · · ≺ Cn = B} be a maximal chain
in the interval [A,B] ⊆ L(P ). The length of C, denoted by `(C), is n. The
w-length of C is

`w(C) := |{i : either Ci, Ci+1 ∈ J(w) or Ci, Ci+1 ∈M(w)}|.
We also define

`JMw (C) := |{i : Ci ∈ J(w), Ci+1 ∈M(w)}|,
`MJ
w (C) := |{i : Ci ∈M(w), Ci+1 ∈ J(w)}|.

We will use ̂̀
w to denote any of `, `w, `JMw and `MJ

w . If ̂̀
w(C) is the same

for all maximal chains in [A,B], and only if, then this common value will be
denoted by ̂̀

w [A,B]. If ̂̀
w[0, 1] makes sense then so does ̂̀

w[A,B] for any
A ≤ B ∈ L(P ). Based on the notations of this section, now we can formulate
our main result.

Theorem 3. Let P be a finite forest, and let w, z ∈ P . Then for any ̂̀
w ∈

{`, `w, `JMw , `MJ
w } we have

(1) for any two maximal chains C and D in L(P ), ̂̀
w(C) = ̂̀

w(D);

(2) ̂̀
w[A, αz(A)] = ̂̀

w[B, αz(B)] for any A,B ∈ J(z).

Besides generalizing Proposition 3 (E), this theorem gives a lot of informa-
tion how certain subsemilattices, which are coalition lattices of a smaller size,
are positioned in L(P ). In connection with (2) we note that, for A,B ∈ J(z),
|[A, αz(A)]| = |[B, αz(B)]| is not always true; this is exemplified by Figure 1
with z = {c}, A = ∅ and B = {a}. Notice that the theorem would fail with
the obviously defined `JJw and `MM

w ; for example, we have two maximal chains,
say C and D, in the interval [{a}, {b, u}] in Figure 1 such that `MM

{b} (C) = 2,
`MM
{b} (D) = 0, `JJ{b}(C) = 0 and `JJ{b}(D) = 2.

Proof. Clearly, for a maximal chain C in [A,B], `JMw (C)+`MJ
w (C) = `(C)−`w(C)

and `JMw (C) − `MJ
w (C) ∈ {−1, 0, 1} depending on |{A} ∩ J(w)| and |{A,B} ∩

J(w)|. Therefore ` and `w determine `JMw and `MJ
w , and it suffices to prove (1)

and even (2) only for ̂̀
w ∈ {`, `w}. From now on let us agree that each con-

stituent of the proof (i.e., condition, formula, assertion, etc.) which includes
̂̀
w is understood as the conjunction of two constituents, one with ` and the

other with `w. In other words, ̂̀
w will always be understood as ∀̂̀

w ∈ {`, `w}
even without quantifying it explicitly. For example, (1) will mean `(C) = `(D)
and `w(C) = `w(D) for any two maximal chains C and D in L(P ).

Now the proof of Theorem 3 goes via induction on |P |.
Case 1 : P is an antichain. Now L(P ) is a Boolean lattice, the usual power

set lattice, and we clearly have `(C) = |P | and `w(C) = |P |−1 for any maximal
chain C. Further, `[A, αz(A)] = 1 and `w[A, αz(A)] = |{w, z}|−1 for A ∈ J(z).
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Case 2 : P is not an antichain and there are u, v ∈ P such that u ≺ v, v
is a maximal element of P , and v /∈ {w, z}. Let us observe that (1) and (2)
imply

(3) if A,B ∈ J(z) with A ≤ B then ̂̀
w[αz(A), αz(B)] = ̂̀

w [A,B].

Indeed, (1) allows us to apply ̂̀
w to intervals. Since αz is monotone, we have

A ≤ αz(A) ≤ αz(B). From (1) we obtain ̂̀
w[A, αz(A)] + ̂̀

w[αz(A), αz(B)] =
̂̀
w[A, αz(B)] = ̂̀

w[A,B] + ̂̀
w[B, αz(B)], whence (3) follows by (2).

Now recall the notations from Theorem 2. In particular, L1 = J(v), L2 =
M(v), αv : L1 → L2, X 7→ X ∪ {v} is an isomorphism and L1 = L(P \
{v}). By the induction hypothesis, (1), (2), and therefore (3) as well, hold
in L1. Using the isomorphism αv and v /∈ {w, z} we see that (1), (2) and
(3) hold in L2, too. We will use the previous notations J(w), αz, etc. for Li
with a subscript: Ji(w), αiz , etc. For A ∈ J1(z) we have ̂̀

w [A, α1z(A)] =
̂̀
w[αv(A), αv(α1z(A))] = ̂̀

w [αv(A), α2z(αv(A))], for αv is an isomorphism and
v /∈ {w, z}. Since αz = α1z ∪ α2,z and (2) holds in L1 and L2, we conclude
that (2) holds in L(P ) = L1 +ψ L2 as well.

To show (1) for L(P ), let D be a maximal chain in L(P ) including F =
P \{v}, the top of L1, and therefore ψ(F ) = P \{u}, too. Let C be an arbitrary
maximal chain in L(P ). Since L1 is an ideal and L2 is a filter of L(P ), we
conclude from the description of L1 +ψ L2 that there is a unique A ∈ C ∩ L1

such that ψ(A) ∈ C ∩ L2, A ≺ ψ(A), and for each X ∈ C either X ≤ A and
X ∈ L1 or X ≥ ψ(A) and X ∈ L2.

Since X ≺ ψ(X) for any X ∈ S1 = M1(u), ̂̀
w[A,ψ(A)] = ̂̀

w[F, ψ(F )].
Further, using the isomorphism αv , v /∈ {w, z}, and (3) in L2 with u instead
of z, we conclude that for any X, Y ∈ S1 with X ≤ Y we have ̂̀

w [X, Y ] =
̂̀
w[αv(X), αv(Y )] = ̂̀

w [α−1
2u (αv(X)), α−1

2u (αv(Y ))] = ̂̀
w[ψ(X), ψ(Y )]. Hence,

using (1), (2) and (3) within L1 or L2, we can compute:
̂̀
w(C) = ̂̀

w[0, A] + ̂̀
w[A,ψ(A)]+ ̂̀

w[ψ(A), 1] =
̂̀
w[0, A] + ̂̀

w[F, ψ(F )] + ̂̀
w[ψ(A), ψ(F )]+ ̂̀

w[ψ(F ), 1] =
̂̀
w [0, A] + ̂̀

w [A, F ] + ̂̀
w[F, ψ(F )] + ̂̀

w[ψ(F ), 1] =
̂̀
w [0, F ] + ̂̀

w[F, ψ(F )] + ̂̀
w[ψ(F ), 1] = ̂̀

w(D),

proving (1) for L(P ).

Case 3 : P is not an antichain, u ≺ v in P , v is a maximal element of P ,
and v ∈ {w, z}. Let (i)` denote the condition (i) with ` instead of ̂̀

w. E.g.,
(1)` is the Jordan–Hölder condition.

Since Case 2 is applicable with another w, (1)` holds in L(P ). If C is a
maximal chain in L(P ) then the description of L1 +ψ L2 gives `v(C) = `(C)−1.
This and Case 2 give that (1) holds in L(P ).
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Now let z = v and A ∈ L1 = J(z). Then `[∅, A] = `[αv(∅), αv(A)], since αv
is an isomorphism. If w 6= v then αv maps J1(w) resp. M1(w) to J2(w) resp.
M2(w), whence `w[∅, A] = `w [αv(∅), αv(A)]. If w = v then `w[∅, A] = `[∅, A]
and `w[αv(∅), αv(A)] = `[αv(∅), αv(A)]. So ̂̀

w[∅, A] = ̂̀
w [αv(∅), αv(A)] for

all w ∈ P . On the other hand, (1) gives ̂̀
w [∅, αv(∅)] + ̂̀

w[αv(∅), αv(A)] =
̂̀
w[∅, A] + ̂̀

w [A, αv(A)], whence (2) holds in L(P ).

Finally, let z 6= v. Then w = v. Case 2 yields that (2)` holds in L(P ).
Notice that both L1 and L2 are closed with respect to αz , and `v restricted to
Li, i = 1, 2, coincides with `. Hence (2) holds in L(P ). �
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