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Abstract. We prove the following theorem. Let (a1, . . . , am, c12, . . . , c1m) be a span-
ning von Neumann m-frame of a modular lattice L, and let (u1, . . . , un, v12, . . . , v1n)

be a spanning von Neumann n-frame of the interval [0, a1]. Assume that either
m ≥ 4, or L is Arguesian and m ≥ 3. Let R∗ denote the coordinate ring of

(a1, . . . , am, c12, . . . , c1m) . If n ≥ 2, then there is a ring S∗ such that R∗ is iso-
morphic to the ring of all n × n matrices over S∗. If n ≥ 4 or L is Arguesian and

n ≥ 3, then we can choose S∗ as the coordinate ring of (u1, . . . , un, v12, . . . , v1n).

1. The main result and historical background

Our goal is to prove the following theorem. Since it relies on classical notions

only, the basic definitions are postponed to Section 2.

Theorem 1. (a) Let L be a lattice with 0, 1 ∈ L, and let m, n ∈ N with n ≥ 2.

Assume that

L is modular and m ≥ 4. (1.1)

Let (a1, . . . , am, c12, . . . , c1m) be a spanning von Neumann m-frame of L and

(u1, . . ., un, v12, . . . , v1n) be a spanning von Neumann n-frame of the interval

[0, a1]. Let R∗ denote the coordinate ring of (a1, . . . , am, c12, . . . , c1m). Then

there is a ring S∗ such that R∗ is isomorphic to the ring of all n× n matrices

over S∗. If

n ≥ 4, (1.2)

then we can choose S∗ as the coordinate ring of (u1, . . . , un, v12, . . . , v1n).

(b) The previous part of the theorem remains valid if (1.1) and (1.2) are

replaced by

L is Arguesian and m ≥ 3 (1.3)

and

n ≥ 3, (1.4)

respectively.
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Notice that Arguesian lattices are necessarily modular. The statement of

the Theorem will be illustrated by Example 7. The ring S∗ in part (a) will be

explicitely constructed, see (3.1) right before Lemma 8.

If m = 2, then R∗ = R〈1, 2〉 = {x ∈ L : xa2 = 0 and x+ a2 = a1 + a2}, see

(2.5) and Section 4, is just a set, not a ring. If L is not Arguesian and m = 3,

then R∗ is not necessarily a ring. Hence the theorem does not make sense if

m = 2, or m = 3 and L is not Arguesian. Nevertheless, the forthcoming proof

still shows that

Remark 2. Lemma 9 holds even for m = 2, 3, provided L is modular.

Von Neumann normalized frames, frames shortly, are due to von Neu-

mann [16]. In order to mimic the classical coordinatization of projective ge-

ometries in modular lattice environment, he associated a ring, the so-called

coordinate ring, with each n-frame. Although von Neumann assumed that L

is a complemented modular lattice and n ≥ 4, his construction of the coor-

dinate ring (without coordinatization) extends to arbitrary modular lattices

without complementation, see Artmann [1] and Freese [6], and even to n = 3

if L is Arguesian, see Day and Pickering [4]. The equational theory of frame

generated modular lattices is given by Herrmann [9]. Many of the deep results

from [16], [4] and [9] are needed in the present paper.

To give a visual idea of the position of the two frames in Theorem 1,

(~a,~c) = (a1, . . . , am, c12, . . . , c1m) will be called the outer frame, while (~u,~v) =

(u1, . . . , un, v12, . . . , v1n) will be referred to as the inner frame. It has recently

been proved in [3] that the inner and the outer frames lie in a uniquely de-

termined product frame. Several statements on the product frame and the

notation will be taken from [3].

A notion equivalent to frames is the notion of Huhn diamonds, see [11].

Frames and Huhn diamonds are used in the proof of several deep results show-

ing how complicated modular lattices are, only to mention Freese [6], Huhn [12]

and Hutchinson [14]. Frames or Huhn diamonds were also used in the theory

of congruence varieties, see [15], [2], and Freese, Herrmann and Huhn [7]. Most

of what we know on the equational properties of modular fractal lattices, see

[3], depend on the following statement, which now becomes a corollary of

Theorem 1.

Corollary 3 ([3]). The coordinate ring of the outer frame and that of the

inner frame have the same characteristic.

2. Notation and basic notions

The lattice operations join and meet will be denoted by + and · (mostly

juxtaposition) such that meets take precedence over joins. The indices we use

will be positive integers; so i ≤ n is understood as 1 ≤ i ≤ n.

For definition, let 2 ≤ m, let L be a nontrivial modular lattice with 0

and 1, and let ~a = (a1, . . . , am) ∈ Lm and ~c = (c12, . . . , c1m) ∈ Lm−1. We say
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that (~a,~c) = (a1, . . . , am, c12, . . . , c1m) is a spanning m-frame (or a frame of

order m) of L, if a1 6= a2 and the following equations hold for all j ≤ m and

2 ≤ k ≤m:
∑

i≤m

ai = 1, aj

∑

i 6=j

ai = 0,

a1 + c1k = ak + c1k = a1 + ak, a1c1k = akc1k = 0.

(2.1)

Notice that if (~a,~c) is a spanning m-frame, then

the ai are the distinct atoms of a Boolean sublattice 2m, (2.2)

and {a1, c1k, ak} generates an M3 with bottom 0 = 0L for k ∈ {2, . . . , m}. In

particular, a frame of order two is simply a spanning M3 without 0M3
= 0L

and 1M3
= 1L.

By the order of the frame we mean m. If (~a,~c) is a spanning m-frame

of a principal ideal of L, then we will call it a frame in L. Note that von

Neumann [16], page 19, calls c1k the axis of perspectivity between the in-

tervals [0, a1] and [0, ak], and we will shortly call c1k as the axis of 〈a1, ak〉-

perspectivity.

Given an m-frame (~a,~c), we define ck1 = c1k for 2 ≤ k ≤ n, and, for 1,

j, k distinct, let cjk = (c1j + c1k)(aj + ak). From now on, a frame is always

understood in this extended sense: ~c includes all the cij, i 6= j, i, j ≤ m. Then,

according to Lemma 5.3 in page 118 in von Neumann [16] (see also Freese [5]),

for i, j, k distinct we have

cik = cki = (cij + cjk)(ai + ak)

ai + cij = aj + cij = ai + aj,

aicij = ajcij = aiaj = 0.

(2.3)

This means that the index 1 has no longer a special role.

Example 4 (Canonical m-frame). Let K be a ring with 1. Let vi denote the

vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Km (1 at the ith position). Letting ai = Kvi

and cij = K(vi − vj), we obtain a spanning m-frame of the submodule lattice

Sub(Km), where Km is, say, a left module over K in the usual way. This

frame is called the canonical m-frame of Sub(Km).

This example shows that, sometimes, to unify some definitions or argu-

ments, it is reasonable to allow the formal definition of a trivial axis cii = 0,

i ≤ m; this convention makes formula (2.3) valid also for k ∈ {i, j}. However,

according to tradition, the trivial axes do not belong to the frame.

From now on, the general assumption throughout the paper is that n ≥ 2,

L is a modular lattice, and either m ≥ 4, or m = 3 and L is Arguesian.

Next, we define the coordinate ring of (~a,~c) in two, slightly different ways.

For p, q, r ∈ {1, . . . , m} distinct, consider the following projectivities:

R
(

p
r

q
q

)

: [0, ap + aq ] → [0, ar + aq], x 7→ (x+ cpr)(ar + aq),

R
(

p
p

q
r

)

: [0, ap + aq] → [0, ap + ar], x 7→ (x+ cqr)(ap + ar);
(2.4)
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these are almost the original notations, see von Neumann [16] and Freese [5],

the only difference is that we write R rather than P . They are lattice isomor-

phisms between the indicated principal ideals. For i, j, k ∈ {1, . . . , m} distinct,

let

R〈i, j〉 = R〈ai, aj〉 = {x ∈ L : x+ aj = ai + aj, xaj = 0},

x ⊕ijk y = (ai + aj)
(

(x+ ak)(cik + aj) + yR
(

i

k

j

j

)

) and

x ⊗ijk y = (ai + aj)(xR
(

i

i

j

k

)

+ yR
(

i

k

j

j

)

) for x, y ∈ R〈i, j〉.

(2.5)

Then the operations ⊕ijk and ⊗ijk do not depend on the choice of k, and

this definition turns R〈i, j〉 into a ring. Moreover, R〈i, j〉 ∼= R〈i′, j′〉 for every

i′ 6= j′, see von Neumann [16] or Herrmann [9]. (Notice that von Neumann

uses the opposite multiplication.) This R〈i, j〉 is called the coordinate ring of

the frame.

While the above definition seems to be the frequently used one, see Her-

rmann [9], our needs are better served by von Neumann’s original definition,

which is more complicated but carries much more information. Following

Freese [5], for i, j, k, h ∈ {1, . . . , m} pairwise distinct, let

R
(

i

k

j

h

)

= R
(

i

k

j

j

)

◦R
(

k

k

j

h

)

.

We always compose mappings from left to right, that is, x(R
(

i

k

j

j

)

◦R
(

k

k

j

h

)

) =

(xR
(

i

k

j

j

)

)R
(

k

k

j

h

)

. Now, the notation R
(

i

k

j

h

)

makes sense whenever i 6= j and

k 6= h; notice that R
(

i

i

j

j

)

is the identical mapping. To make a distinction from

what will be associated with the inner frame, we will call the R
(

i
k

j
h

)

mappings

as outer projectivities.

Next, we consider two small categories. The first one, C1(~a,~c), consists of

the pairs (i, j), i 6= j and i, j ≤ m, as objects, and for any two (not necessarily

distinct) objects (i, j) and (k, h), there is exactly one (i, j) → (k, h) morphism.

The second category, C2(~a,~c), consists of the coordinate rings R〈i, j〉 of our

frame, i 6= j, as objects, and all ring isomorphisms among them, as morphism.

For a morphism (i, j) → (k, h) in the first category, let R send this morphism

to the mapping R
(

i

k

j

h

)

. Of course, for an object (i, j) in C1(~a,~c), R sends (i, j)

to R〈i, j〉. The crucial point is captured in the following lemma.

Lemma 5 (von Neumann [16], Day and Pickering [4]). R is a functor from

the category C1(~a,~c) to the category C2(~a,~c).

Proof. The notion of categories came to existence only after von Neumann’s

fundamental work in lattice theory, recorded later in [16]. Hence it is not

useless to give some hints how to extract the above lemma from [16]. If m ≥

4, then it follows from pages 119–123 that R is functor, see also Freese [5].

Although von Neumann does not consider R〈i, j〉 a ring in itself, it is implicit

in [16] that the R
(

i

k

j

h

)

are ring isomorphisms. (This becomes a bit more

explicit in Freese [5]. With slightly different notation, it is fully explicit in
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Thm. 2.2 of Herrmann [9].) If m = 3, then the lemma follows from Lemma

(4.1) of Day and Pickering [4]. �

By an L-number (related to the frame (~a,~c)) von Neumann means a system

(xij : i, j ≤m, i 6= j) of elements such that xij ∈ R〈i, j〉 and xijR
(

i
k

j
h

)

= xkh

for all i 6= j and k 6= h. (Because there will be lattice entries later, here we

use superscripts rather than von Neumann’s subscripts.) Clearly, for every

(i, j), i 6= j, each L-number x is determined by its (i, j)th component xij.

Conversely,

Lemma 6 (page 130 of [16], see also Lemma 2.1 in [5]). If u ∈ R〈i, j〉, then

there is a unique L-number x such that xij = u.

Let R∗ be the set of L-numbers related to (~a,~c). Von Neumann made

R∗ into a ring (R∗,⊕R∗,⊗R∗) such that R∗ → R〈i, j〉, x 7→ xij is a ring

isomorphism for every i 6= j. (Of course, von Neumann defined (R∗,⊕R∗,⊗R∗)

first, and later others, including Herrmann [9], transferred the ring structure

of R∗ to R〈i, j〉 by the bijection R∗ → R〈i, j〉, x 7→ xij.)

According to Lemma 6 and the previous paragraph, we can perform com-

putations with L-numbers componentwise, and it is sufficient to consider only

one component. For w ∈ R〈i, j〉, let w∗ ∈ R∗ denote the unique L-number in

R∗ such that (w∗)ij = w. However, we usually make no difference between w

and w∗.

Next, we give an example to enlighten Theorem 1; for n ≥ 4, the details

can be checked based on Theorems II.4.2 and II.14.1 of von Neumann [16].

Example 7. Let R be the ring of all n×nmatrices over a field S. Consider the

canonical m-frame, with R instead ofK, defined in Example 4. The coordinate

ring R∗ of this m-frame is isomorphic to R. Remember from Example 4 that

a1 = R(E, 0, . . . , 0) ∈ Sub(Rm), where E is the unit matrix in R. Hence the

interval [0, a1] in Sub(Rm) is isomorphic to the lattice of all left ideals of R.

The lattice of these left ideals is known to be isomorphic to the subspace lattice

Sub(Sn) of the vector space Sn . Fix an appropriate isomorphism; it sends the

canonical n-frame of Sub(Sn) to a spanning n-frame (u1, . . . , un, v12, . . . , v1n)

of [0, a1]. Clearly, the coordinate ring S∗ of this n-frame is isomorphic to S.

Hence R∗ is isomorphic to the ring of all n× n matrices over S∗.

While Sub(Rm) is coordinatizable by its construction in Example 7, it is

worth pointing out that L in Theorem 1 is not coordinatizable in general.

Although some ideas of the proof have been extracted from Example 7, Linear

Algebra in itself seems to be inadequate to prove Theorem 1. (Even if it was

an adequate tool, modular lattice theory would probably offer a more elegant

treatment, see the last paragraph of Section 2 in [3].) Notice that Herrmann [9]

reduces many problems of frame generated modular lattices to Linear Algebra,

but our L is not frame-generated in general by evident cardinality reasons.
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To help the reader to understand our calculations in modular lattices while

we save a lot of space, the following notations will be in effect. We use

=i, =f, or =L11

to indicate that formula (i), some basic property of frames, or Lemma 11 is

used, respectively. In many cases, =f means the same as =2.3. When an

application of the modular law uses the relation x ≤ z then, beside using =m,

x resp. z will be underlined resp. doubly underlined. For example,

(x+ y)(x + z) =m x+ y(x + z).

The use of the shearing identity (see Thm. IV.1.1 in Grätzer [8]) is indicated

by =s and underlining the subterm “sheared”:

x(y + z) =s x
(

y(x + z) + z
)

.

Even in some other cases, subterms worth noticing are also underlined. If

x1 ≥ x2 . . . xk for some easy reason, then we write

x1x2 . . . xk

to indicate that this expression is considered as x2 . . . xk. In other words,

overlined meetands will be omitted in the next step. Combining our notations

like

=m,5,7,L8,

we can simultaneously refer to properties like modularity, formulas and lem-

mas. Formulas, like (2.2), will also be used for the product frame, which comes

in the next section.

3. The product frame

By Theorem 1 of [3], the outer frame (~a,~c) and the inner frame (~u,~v)

determine a unique mn-frame (~b, ~d), called the product frame. We will point

out at the end of this section why the product frame is the relevant tool here

even without quoting its complicated construction from [3]. First we formulate

the most important property of the product frame in the next lemma. From

now on,

S∗ = (S∗,⊕S∗,⊗S∗) is the coordinate ring of the product frame (~b, ~d),

and Mn(S∗) = (Mn(S∗),⊕Mn
,⊗Mn

) is the n× n matrix ring over S∗.

(3.1)

This makes sense, since mn ≥ 4. The following result, taken from [3], justifies

that we can base the proof of Theorem 1 on this S∗.

Lemma 8 ([3]). If n ≥ 4, or n ≥ 3 and L is Arguesian, then (~b, ~d) and (~u,~v)

have isomorphic coordinate rings.
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In the product frame, ~b is the system of its components

b
p
i , where i ≤ n and p ≤ m,

and ~d is the system of its components

d p

i

q

j
, where i, j ≤ n, p, q ≤ m and (p, i) 6= (q, j).

Further,

d p
i
q
j

is the axis of 〈bpi , b
q
j〉 perspectivity.

(To comply with forthcoming notations, we suggest to read the indices of bpi
downwards, ”pi”, and column-wise for d p

i

q

j
, ”pi qj”.)

Let us agree that, unless otherwise stated, the superscripts of b and d belong

to {1, . . . , m}, while all their subscripts to {1, . . . , n}. For example, if d p

j

r

k

occurs in a formula, then p, r ≤ m and j, k ≤ n, and also (p, j) 6= (r, k), are

automatically stipulated. Similarly, the subscripts of a and c are automatically

in {1, . . . , m}. This convention allows us, say, to write
∑

i ai instead of
∑m

i=1 ai

without causing any ambiguity. Let us also agree that, unless otherwise stated,

we understand our formulas with universally quantified indices, that is, for all

meaningful values for the occurring indices. Define

B
p

k =
∑

i 6=k

b
p
i .

Then, by (5) and (8) of [3], we have

ap =
n

∑

i=1

b
p
i = B

p

k + b
p

k, d p

i

q

i
≤ cpq . (3.2)

Analogously to Lemma 5, the product frame gives rise to a functor and the

S
〈

p
i

q
j

〉

= S〈bpi , b
q
j〉 coordinate rings. The previous notations tailored to the

product frame are as follows:

S
〈

p
i

q
j

〉

= {x ∈ L : xbqj = 0, x+ b
q
j = b

p
i + b

q
j},

S
(

pi

pi

qj

rk

)

: S
〈

p

i

q

j

〉

→ S
〈

p

i

r

k

〉

, x 7→ (x+ d q

j

r

k
)(bpi + brk),

S
(

pi

rk

qj

qj

)

: S
〈

p

i

q

j

〉

→ S
〈

r

k

q

j

〉

, x 7→ (x+ d p

i

r

k
)(brk + b

q
j).

(3.3)

(Since we have agreed in reading the indices of, say, d q

j

r

k
column-wise, the

space-saving entries qj and rk in S
(

pi

pi

qj

rk

)

, rather than q

j
and r

k
, should not

be confusing.)

Next, we strengthen (3.2) a bit:
∑

i

d p
i
q
i

= cpq . (3.4)

Indeed, (2.3), applied also to the product frame, yields

aq +
∑

i

d p

i

q

i
=

∑

i

b
q
i +

∑

i

d p

i

q

i
=

∑

i

(bqi + d p

i

q

i
) =

∑

i

(bqi + b
p
i )

=
∑

i

b
q
i +

∑

i

b
p
i = aq + ap = 1.
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This, together with aqcpq = 0 and (3.2) show that
∑

i d
p

i

q

i
and cpq are compa-

rable complements of aq , whence modularity yields (3.4).

It is clear from Lemma 8 that it suffices to deal with the product frame (~b, ~d)

and the outer frame (~a,~c). Since the product frame determines the outer frame

via (3.2) and (3.4), it is sufficient and convenient to work with the product

frame without a closer look at its construction in [3].

4. A pair of reciprocal mappings

For i, j ≤ n, we define a mapping ϕij : R∗ → S∗ as follows. We iden-

tify R∗ with R〈1, 2〉 = R〈a1, a2〉. So we define xϕij for x ∈ R〈1, 2〉, and,

without over-complicating our formulas with writing x∗, we understand x∗ϕij

as xϕij. Similarly, we define the value xϕij in S
〈

1
i

1
j

〉

but we understand it

as (xϕij)
∗ ∈ S∗ without making a notational distinction between xϕij and

(xϕij)
∗. Finally, we will put these ϕij together in the natural way to obtain

a mapping ϕ : R∗ → Mn(S∗): the (i, j)th entry of the matrix xϕ is defined as

xϕij. So, the definition of ϕ is completed by

ϕij : R〈1, 2〉 → S
〈

1
i

2
j

〉

, x 7→ xij = (x +B2
j )(b1i + b2j). (4.1)

(We will prove soon that ϕij maps R〈1, 2〉 into S
〈

1
i

2
j

〉

.)

In the reverse direction, we will rely on the possibility offered by L-numbers

even more: distinct entries of a matrix inMn(S∗) will be represented with their

components of different positions. Let (eij : i, j ≤ n) be a matrix over S∗, that

is, an element of Mn(S∗). The truth is that eij belongs to S∗. However, we

identify eij with its component belonging to S
〈

1
i

2
j

〉

, and, again, we do this

without notational difference between eij and its corresponding component in

S
〈

1
i

2
j

〉

. Introduce the notation

E∗k =
∑

i

eik.

With this convention, we define

ψ : Mn(S∗) → R∗, (eij : i, j ≤ n) 7→
∏

k

(E∗k +B2
k). (4.2)

We will prove soon that
∏

k(E∗k +B2
k) belongs to R〈1, 2〉, which is identified

with R∗.

Next, we formulate an evident consequence of modularity:

R〈i, j〉 and S
〈

p

i

q

j

〉

are antichains in L. (4.3)

Indeed, if, say, we had x < y and x, y ∈ R〈i, j〉, then x and y would be

comparable complements of aj, a contradiction. We will often have to prove

that two elements of R〈i, j〉 or S
〈

p

i

q

j

〉

are equal; then (4.3) reduces this task

to showing that the two elements are comparable.

The rest of this section is devoted to the following lemma.
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Lemma 9. ϕ and ψ are bijections, and they are inverse mappings of each

other.

Before proving this lemma, two preliminary statements are necessary.

Lemma 10. Let j ≤ m, and suppose that, for all i ∈ {1, . . . , m} \ {j}, wi ∈

R〈i, j〉. Then aj

∑

i 6=j wi = 0.

Proof. Let Ik denote the induction hypothesis “if |{i : wi 6= ai}| ≤ k, then

aj

∑

i 6=j wi = 0”. Then I0 clearly holds by (2.2), and Im−1 is our target.

Assume Ik−1 for an arbitrary k < m. We will refer to it with the notation

=ih. We want to show Ik. By symmetry, we can assume that j = m and

wi 6= ai holds only for i ≤ k. Then

aj

∑

i 6=j

wi = am(w1 + · · ·+ wk−1 + ak+1 + · · ·+ am−1 + wk)

=s am

(

(w1 + · · ·+ wk−1 + ak+1 + · · ·+ am−1)(wk + am) + wk

)

=2.5 am

(

(w1 + · · ·+wk−1 + ak+1 + · · ·+ am−1)(ak + am) + wk

)

=s,ih am

(

(w1 + · · ·+ wk−1 + ak+1 + · · ·+ am−1)ak + wk

)

≤2.5 am

(

(a1 + am + · · ·+ ak−1 + am + ak+1 + · · ·+ am−1)ak + wk

)

=2.2 amwk =2.5 0.

�

The following easy statement on elements of a modular lattice belongs to

the folklore; it also occurs as (1) in Huhn [13].

Lemma 11. If fi ≤ gj for all i 6= j, i, j ≤ k, then

∏

i≤k

gi +
∑

i≤k

fi =
∏

i≤k

(gi + fi).

Proof of Lemma 9. Let
∏

k(E∗k +B2
k) from (4.2) be denoted by e, and remem-

ber that eij ∈ S
〈

1
i

2
j

〉

. We have to show that e ∈ R〈1, 2〉. Let us compute:

a2e =
∏

k

(

a2(E∗k +B2
k)

)

=m
∏

k

(a2E∗k + B2
k) =3.2

∏

k

(

(b2k +B2
k)E∗k +B2

k

)

=s
∏

k

(

(b2k(E∗k +B2
k) +B2

k)E∗k +B2
k

)

.

Focusing on the last underlined subterm, observe that the summands eik of E∗k

belong to S
〈

1
i

2
k

〉

, and the summands b2j , j 6= k, of B2
k belong to S

〈

2
j

2
k

〉

. Hence,

applying Lemma 10 to the product frame, we conclude that b2k(E∗k +B2
k) = 0.

Therefore,

a2e =
∏

k

(B2
kE∗k + B2

k) =
∏

k

B2
k =2.2 0. (4.4)
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Next, we compute

a2 + e =3.2
∑

k

b2k +
∏

k

(E∗k + B2
k) =L11

∏

k

(E∗k +B2
k + b2k)

=3.2
∏

k

∑

j

(ejk + b2k + a2) =3.3
∏

k

∑

j

(b1j + b2k + ak)

=3.2
∏

k

(a1 + a2) = a1 + a2.

This and (4.4) imply e ∈ R〈1, 2〉. Hence ψ maps into R∗, as desired.

Next, let x ∈ R〈1, 2〉. To show that ϕ maps into Mn(S∗), we have to show

that xij = xϕij = (x + B2
j )(b1i + b2j ) belongs to S

〈

1
i

2
j

〉

. This follows easily,

since

xijb
2
j = (x+B2

j )(b1i + b2j)b
2
j =s

(

x(b2j +B2
j ) + B2

j

)

b2j

=3.2 (xa2 +B2
j )b2j =2.5 B2

j b
2
j =f 0, and

xij + b2j = (x+B2
j )(b1i + b2j) + b2j =m (b1i + b2j)(x+ B2

j + b2j)

=3.2 (b1i + b2j)(x+ a2) =2.5 (b1i + b2j)(a1 + a2) =3.2 b1i + b2j .

Next, we show that ϕ ◦ ψ is the identical mapping. Let x ∈ R〈1, 2〉. Then

x(ϕ ◦ ψ) = (xϕ)ψ = (xϕij : i, j ≤ n)ψ

=4.1
(

(x+ B2
j )(b1i + b2j ) : i, j ≤ n

)

ψ

=4.2
∏

k

yk, where yk = B2
k +

∑

i

(x+ B2
k)(b1i + b2k).

Observe that it suffices to show that x ≤ yk for all k ≤ n, since then (4.3)

implies x = y. Let us compute:

yk =
∑

i

(

B2
k + (x+ B2

k)(b1i + b2k)
)

=m
∑

i

(x+ B2
k)(b1i + b2k + B2

k)

≥3.2
∑

i

x(b1i + a2) = x(b11 + a2) +
∑

2≤i

x(b1i + a2)

=m x
(

b11 + a2 +
∑

2≤i

x(b1i + a2)
)

= x
(

b11 +
∑

2≤i

(

a2 + x(b1i + a2)
)

)

=m x
(

b11 +
∑

2≤i

(a2 + x)(b1i + a2)
)

=2.5 x
(

b11 +
∑

2≤i

(a2 + a1)(b
1
i + a2)

)

=3.2 x
(

b11 +
∑

2≤i

(b1i + a2)
)

= x
(

a2 +
∑

i

b1i

)

=3.2 x(a2 + a1) =2.5 x.

Hence x ≤ yk, as requested, and ϕ ◦ ψ is the identical mapping.

Next, to show that ψ ◦ ϕ is the identical mapping, let eij ∈ S
〈

1
i

2
j

〉

for

i, j ≤ n, and denote (eij : i, j ≤ n)ψ =
∏

k(E∗k + B2
k) by e. We have already

shown that e ∈ R〈1, 2〉, see (4.2), and eϕij = (e + B2
j )(b1i + b2j) ∈ S

〈

1
i

2
j

〉

, see

(4.1). Since eij ≤ b1i + b2j by (3.3), eij ≤ e+ B2
j would imply eij ≤ eϕij , and
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we could derive eij = eϕij by (4.3). So, it suffices to show that eij ≤ e+ B2
j .

Let us compute:

e+ B2
j = B2

j +
∏

k

(E∗k + B2
k) = B2

j + (E∗j + B2
j )

∏

k 6=j

(E∗k +B2
k)

=m (E∗j +B2
j )

(

∑

k 6=j

b2k +
∏

k 6=j

(E∗k + B2
k)

)

=L11 (E∗j + B2
j )

∏

k 6=j

(E∗k +B2
k + b2k)

=3.2 (E∗j + B2
j )

∏

k 6=j

∑

`

(e`k + b2k + a2)

=3.3 (E∗j + B2
j )

∏

k 6=j

∑

`

(b1` + b2k + a2) =3.2 (E∗j + B2
j )

∏

k 6=j

(a1 + a2).

Since a1 + a2 ≥(3.2) b1i + b2j ≥(3.3) eij and E∗j ≥ eij , the above calculation

shows that eij ≤ e+B2
j . This completes the proof of Lemma 9. �

5. Addition and further lemmas

Lemma 12. ϕ and, therefore, ψ are additive.

Proof. Let x, y ∈ R〈1, 2〉, z = x ⊕123 y, x′ = xϕij = (x + B2
j )(b1i + b2j ),

y′ = yϕij = (y +B2
j )(b1i + b2j) and z′ = zϕij = (z +B2

j )(b1i + b2j ). It suffices to

show that, in S
〈

1
i

2
j

〉

, we have x′ ⊕1
i

2
j

3
i
y′ = z′. Let us compute:

x′ ⊕1
i

2
j

3
i
y′ = (b1i + b2j)

(

(x′ + b3i )(d
1
i

3
i

+ b2j ) + y′S
(

1i

3i

2j

2j

))

= (b1i + b2j)
(

(x′ + b3i )(d
1
i
3
i

+ b2j ) + (y′ + d 1
i
3
i
)(b3i + b2j)

)

. (5.1)

On the other hand,

z′ = (z +B2
j )(b1i + b2j)

= (b1i + b2j )
(

(a1 + a2)
(

(x+ a3)(c13 + a2) + yR
(

1
3

2
2

))

+B2
j

)

= (b1i + b2j )
(

(a1 + a2)
(

(x+ a3)(c13 + a2) + (y + c13)(a3 + a2)
)

+ B2
j

)

=m (b1i + b2j)(a1 + a2)
(

(x+ a3)(c13 + a2) + (y + c13)(a3 + a2) +B2
j

)

= (b1i + b2j )
(

(x+ a3)(c13 + a2) + B2
j + (y + c13)(a3 + a2) + B2

j

)

=m (b1i + b2j)
(

(x+ B2
j + a3)(c13 + a2) + (y + B2

j + c13)(a3 + a2)
)

. (5.2)

Now, we can see that the subterms obtained in (5.1) are less than or equal

to the corresponding subterms obtained in (5.2). Indeed, x′ ≤ x + B2
j and

y′ ≤ y + B2
j by definitions, and b3i ≤ a3, b

2
j ≤ a2 and d 1

i

3
i
≤ c13 by (3.2).

Hence (4.3) yields x′ ⊕1
i
2
j
3
i
y′ = z′. �

Lemma 13. bij + cik = bkj + cik and Bi
j + cik = Bk

j + cik.



12 Gábor Czédli and Benedek Skublics Algebra univers.

Proof. It suffices to deal only with the first equation: bij + cik =3.2 bij + d i

j

k

j
+

cik =f bkj + d i

j

k

j
+ cik =3.2 bik + cik. �

Lemma 14. Assume that x, y ∈ S
〈

1
u

2
v

〉

. Then xR
(

1
1

2
3

)

= xS
(

1u

1u

2v

3v

)

and,

similarly, yR
(

1
3

2
2

)

= yS
(

1u

3u

2v

2v

)

.

Proof. If i, j, k ≤ m are pairwise distinct, then we have

cjk(ai + ak) =s cjk

(

ai(cjk + ak) + ak

)

=2.3 cjk

(

ai(aj + ak) + ak

)

=2.2 cjkak =2.3 0.
(5.3)

The outer projectivities R
(

1
1

2
3

)

and R
(

1
3

2
2

)

are lattice isomorphisms that send

the interval [0, a1 + a2] onto [0, a1 + a3] and [0, a3 + a2], respectively. Since

S
〈

1
u

2
v

〉

⊆ [0, a1 + a2] is defined in the terminology of lattices and

b1uR
(

1
1

2
3

)

= (b1u + c23)(a1 + a3) =m b1u + c23(a1 + a3) =5.3 b1u,

b2vR
(

1
1

2
3

)

= (b2v + c23)(a1 + a3) =L13 (b3v + c23)(a1 + a3) =m,5.3 b3v,

b1uR
(

1
3

2
2

)

= (b1u + c13)(a3 + a2) =L13 (b3u + c13)(a3 + a2) =m,5.3 b3u,

b2vR
(

1
3

2
2

)

= (b2v + c13)(a3 + a2) =m,5.3 b2v,

we conclude that these outer projectivities send (the support set of) S
〈

1
u

2
v

〉

onto S
〈

1
u

3
v

〉

and S
〈

3
u

2
v

〉

, respectively. Lattice terms are monotone, so we

obtain

xS
(

1u
1u

2v
3v

)

= (x+ d 2
v
3
v
)(b1u + b3v) ≤

3.2 (x+ c23)(a1 + a3) = xR
(

1
1

2
3

)

. (5.4)

We have seen that both sides of (5.4) belong to S
〈

1
u

3
v

〉

, whence they are equal

in virtue of (4.3). The other equation of the lemma follows the same way. �

6. Multiplication

By an almost zero matrix we mean a matrix in which all but possibly one

entries are zero. We say that ψ, defined in (4.2), preserves the multiplication

of almost zero matrices, if (E ⊗Mn
F )ψ = (Eψ) ⊗R∗ (Fψ) holds for all almost

zero matrices E, F ∈Mn(S∗).

Lemma 15. If ψ is additive and preserves the multiplication of almost zero

matrices, then it is a ring homomorphism.

Proof. Since each matrix in Mn(S∗) is a sum of almost zero matrices, the

lemma follows trivially by ring distributivity. �

Next, we introduce some notations, which will be permanent in the rest of

the paper. Let E = (eij : i, j < n) ∈ Mn(S∗) and F = (fij : i, j < n) ∈

Mn(S∗) be two almost zero matrices. According to the earlier convention and
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keeping in mind that b1i is the zero of the ring S
〈

1
i

2
j

〉

, this means that there

are indices p, q, r, s, fixed from now on, such that

x := epq ∈ S
〈

1
p

2
q

〉

, eij = b1i ∈ S
〈

1
i

2
j

〉

for (i, j) 6=(p, q),

y := frs ∈ S
〈

1
r

2
s

〉

, fk`= b1k ∈ S
〈

1
k

2
`

〉

for (k, `) 6=(r, s).
(6.1)

Let G = (gij : i, j < n) = E ⊗Mn
F . By definitions, including the everyday’s

definition of a product matrix, we have

gij = b1i , the zero of S
〈

1
i

2
j

〉

, if q 6= r or (i, j) 6= (p, s); (6.2)

gps = xS
(

1p

1p

2q

2s

)

⊗1
p

2
s

α

β
yS

(

1r

1p

2s

2s

)

, if q = r; (6.3)

where α and β are arbitrary, provided (1, p) 6= (α, β) 6= (2, s). We also define

e := Eψ, f := Fψ, and, differently, g := e ⊗123 f.

The plan is to show that gϕ = G, that is, gϕij = gij for all i, j ≤ n, since

this is equivalent to Gψ = g. To prepare a formula for the gϕij , we need the

following technical lemma.

Lemma 16. For all j ≤ n, we have

B2
j + (y + B1

r + B2
s )

∏

k 6=s

(a1 +B2
k) = y +B1

r +B2
j , (6.4)

B2
r + (x+B1

p +B2
q )

∏

k 6=q

(a1 +B2
k) = x+B1

p +B2
r . (6.5)

Proof. It suffices to show (6.4), since it implies (6.5) by replacing (y, r, s, j)

with (x, p, q, r). Let u denote the left hand side of (6.4). If j = s, then

u = B2
j + (y +B1

r + B2
j )

∏

k 6=j

(a1 + B2
k)

=m (y +B1
r +B2

j )
(

B2
j +

∏

k 6=j

(a1 +B2
k)

)

=L11 (y + B1
r + B2

j )
∏

k 6=j

(a1 + B2
k + b2k)

=2.3 (y + B1
r + B2

j )
∏

k 6=j

(a1 + a2) =3.2,2.5 y + B1
r + B2

j .
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If j 6= s, then

u = B2
j + (y +B1

r +B2
s )(a1 +B2

j )
∏

k 6=j,s

(a1 + B2
k)

=m (a1 + B2
j )

(

B2
j + (y +B1

r +B2
s )

∏

k 6=j,s

(a1 + B2
k)

)

= (a1 +B2
j )

(

b2s +
∑

k 6=j,s

b2k + (y +B1
r +B2

s )
∏

k 6=j,s

(a1 + B2
k)

)

=L11 (a1 + B2
j )(y +B1

r + B2
s + b2s)

∏

k 6=j,s

(a1 + B2
k + b2k)

=3.2 (a1 + B2
j )(y + B1

r + a2 + b2s)
∏

k 6=j,s

(a1 + a2)

=3.3,3.2 (a1 + B2
j )(a1 + a2) =3.2 B1

r + b1r + b2s +B2
j

=3.3 B1
r + y + b2s +B2

j =3.2 y + B1
r + B2

j

�

Lemma 17. For every i, j ≤ n, we have

gϕij = (b1i + b2j)
(

B1
p +B2

j +B3
r + xS

(

1p

1p

2q

3q

)

+ yS
(

1r

3r

2s

2s

)

)

.

Proof. Firstly, we express e and, to obtain f , we replace (x, p, q) with (y, r, s):

e = Eψ =4.2
∏

k

(E∗k +B2
k) = (E∗q + B2

q )
∏

k 6=q

(E∗k + B2
k)

=6.1,3.2 (x+ B1
p + B2

q )
∏

k 6=q

(a1 +B2
k); (6.6)

f = (y +B1
r +B2

s )
∏

k 6=s

(a1 +B2
k). (6.7)

We need some auxiliary equations:

B2
j + fR

(

1
3

2
2

)

=2.4 B2
j + (f + c13)(a3 + a2) =m (a3 + a2)(B

2
j + f + c13)

=6.7 (a3 + a2)
(

c13 + B2
j + (y +B1

r +B2
s )

∏

k 6=s

(a1 +B2
k)

)

=6.4 (a3 + a2)(c13 + y +B1
r +B2

j )

=L13 (a3 + a2)(c13 + y + B3
r + B2

j )

=m B3
r + (a3 + a2)(c13 + y +B2

j ), and

(6.8)
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B3
r + eR

(

1
1

2
3

)

=2.4 B3
r + (e+ c23)(a1 + a3) =m (a1 + a3)(B

3
r + e+ c23)

=L13 (a1 + a3)(c23 +B2
r + e)

=6.6 (a1 + a3)
(

c23 + B2
r + (x+B1

p +B2
q )

∏

k 6=q

(a1 + B2
k)

)

=6.5 (a1 + a3)(c23 + x+B1
p +B2

r )

=m B1
p + (a1 + a3)(c23 + x+B2

r ). (6.9)

Armed with the previous equations, we obtain

gϕij =4.1 (b1i + b2j)(g +B2
j )

=2.5 (b1i + b2j)
(

B2
j + (a1 + a2)

(

eR
(

1
1

2
3

)

+ fR
(

1
3

2
2

))

)

=m (b1i + b2j )(a1 + a2)
(

B2
j + eR

(

1
1

2
3

)

+ fR
(

1
3

2
2

))

=6.8 (b1i + b2j)
(

eR
(

1
1

2
3

)

+B3
r + (a3 + a2)(c13 + y + B2

j )
)

=6.9 (b1i + b2j)
(

B1
p + (a1 + a3)(c23 + x+ B2

r ) + (a3 + a2)(c13 + y + B2
j )

)

=L13 (b1i + b2j)
(

B1
p + (a1 + a3)(c23 + x+ B3

r ) + (a3 + a2)(c13 + y + B2
j )

)

=m (b1i + b2j )
(

B1
p + B3

r + (a1 + a3)(c23 + x) + B2
j + (a3 + a2)(c13 + y)

)

=2.4 (b1i + b2j)
(

B1
p + B2

j + B3
r + xR

(

1
1

2
3

)

+ yR
(

1
3

2
2

)

)

,

whence Lemma 17 follows by Lemma 14. �

Lemma 18. ψ preserves the multiplication of almost zero matrices.

Proof. Keep the previous notations, and let

x′ := xS
(

1p
1p

2q
3q

)

∈ S
〈

1
p

3
q

〉

, y′ := yS
(

1r
3r

2s
2s

)

∈ S
〈

3
r

2
s

〉

. (6.10)

We know from Lemma 17 that

gϕij = (b1i + b2j)(B
1
p +B2

j +B3
r + x′ + y′). (6.11)

According to (6.2), our first goal is to show that gϕij = b1i whenever q 6= r or

(i, j) 6= (p, s). Notice that if

b1i ≤ B1
p + B2

j + B3
r + x′ + y′, (6.12)

then gϕij = b1i follows from (4.3), so we can aim at (6.12). Since x′ ∈ S
〈

1
p

3
q

〉

and y′ ∈ S
〈

3
r

2
s

〉

, (2.3) and (3.3) provide us with the following computation

rules:

α 6= q =⇒ B3
α + x′ ≥ b1p, (6.13)

β 6= s =⇒ B2
β + y′ ≥ b3r. (6.14)

We can assume that i = p, since otherwise b1i ≤ B1
p gives (6.12). If r 6= q, then

B3
r + x′ ≥6.13 b1p yields (6.12) again. Hence we assume that q = r. If j 6= s,

then B2
j +y′ ≥6.14 b3r together with b3r +x′ = b3q +x′ ≥3.3 b1p yields (6.12) once

more. Therefore, we can assume that j = s.
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Now, our task is restricted to the case i = p, q = r, j = s. Substituting

these indices into (6.11) and computing:

gϕps = (b1p + b2s)(B
1
p +B2

s +B3
r + x′ + y′)

≥ (b1p + b2s)(x
′ + y′) =6.10 (b1p + b2s)(xS

(

1p
1p

2r
3r

)

+ yS
(

1r
3r

2s
2s

)

)

=L5 (b1p + b2s)(xS
(

1p

1p

2r

2s

)

S
(

1p

1p

2s

3r

)

+ yS
(

1r

1p

2s

2s

)

S
(

1p

3r

2s

2s

)

)

=2.5 xS
(

1p

1p

2r

2s

)

⊗1
p

2
s

3
r
yS

(

1r

1p

2s

2s

)

=6.3 gps.

Hence (4.3) yields that gϕps = gps, indeed. �

Proof of Theorem 1. Lemmas 9, 12, 15 and 18. �

Added in the editorial process. Several comments of an anonymous referee

and the historical remarks of Luca Giudici are acknowledged.

For the most recent developments in coordinatization theory the reader can

see Herrmann [10], Wehrung [17] and [18], and their bibliography.
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