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This paper is probably self-contained for those who know the concept of
a lattice as an algebraic structure. Our goal is two-fold. First, we present
a historical remark on the connection between equivalence lattices and qua-
siorder lattices. Second, we prove a new theorem, which corresponds to the
title of the paper.

1 Introduction and a historical remark

We begin with some notations and well-known definitions. The set of
equivalences (in other words, equivalence relations, that is, reflexive, sym-
metric, and transitive relations) of a set A will be denoted by Equ(A). With
intersections and the transitive hulls of unions acting as meets and joins,
respectively, Equ(A) is a lattice, the equivalence lattice of (or over) A; the
notation Equ(A) will stand for this lattice, too. By the canonical bijective
correspondence between equivalences and partitions of a set, Equ(A) is iso-
morphic to the partition lattice Part(A) of A, which consists of all partitions
of A. We will often consider equivalences as partitions. For X ⊆ Y , we say
that X is a proper subset of Y if X 6= Y . A sublattice or a complete sub-
lattice of Equ(A) is a nonempty subset that is closed with respect to binary
joins and meets or to arbitrary joins and meets, respectively. A subset X of
Equ(A) is a generating set or a complete-generating set of Equ(A) if there is
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no proper sublattice Y or a proper complete sublattice Y of Equ(A), respec-
tively, such that X ⊆ Y . Quasiorders are reflexive and symmetric relations.
The quasiorders of a set A form a lattice, the quasiorder lattice Quo(A) of
A. Note that Equ(A) is a complete sublattice of Quo(A).

In the middle of the seventies, Henrik Strietz proved that for any fi-
nite set A with |A| ≥ 3, Equ(A) is four-generated, that is, it has a four-
element generating set; see Strietz [10]–[11]. Since Strietz’s work, more than
a dozen papers have been devoted to four-element (or small) generating sets
of equivalence lattices and quasiorder lattices; for details, see the ‘‘Refer-
ences’’ section here and the bibliographic sections and the survey parts of
the papers listed there. Hence, instead of giving another survey, we focus
only on the connection between the small generating sets of Equ(A) and
those of Quo(A). In one direction, we recall an important statement from
[9, page 61]; see also Lemma 2.1 of [7], where the original lemma is recalled.

Lemma 1.1 (Kulin’s Lemma). If A is an arbitrary set with at least three
elements and S is a complete sublattice of Quo(A) such that Equ(A) is a
proper subset of S, then S = Quo(A).

Figure 1: Zádori’s construction for |A| = 19

In other directions, neither any connection nor the forthcoming Claim
1.4 has been published before. To present such a connection of historical
value, let |A| = 19; the case of |A| = 2k + 1 ≥ 5 would be similar. The
construction visualized by Figure 1 is taken from Zádori [12].

Claim 1.2 ([12]; exemplifying the odd case of Zádori’s construction). If
|A| = 19, then Equ(A) has a four-element generating set.

For later reference, we present Zádori’s proof and his generating set.

Proof. For p, q ∈ A, the smallest equivalence collapsing p and q is an atom
in Equ(A); we denote it by at(p, q). So (x, y) ∈ at(p, q) if and only if x = y
or {x, y} = {p, q}. Denote the elements of A as follows: A = {a0, a1, . . . , a9,
b0, b1, . . . , b8}; see Figure 1. The figure defines a subset X := {α, β, γ, δ} of
the equivalence lattice Equ(A) as follows. Assume that the horizontal edges,
the vertical edges, and the slanted straight edges of the graph are labeled
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by α, β, and γ, respectively. To avoid a crowded figure, these labels are
not indicated in the figure, but the triangle on the right reminds us of this
convention. There are also two δ-labeled edges, which are drawn as curves.
For ε ∈ X, the figure defines ε as follows; walks of length zero are allowed.

ε := {(x, y) ∈ A2 : we can walk from x to y along ε-colored edges}. (1.1)

For example, {b1, a2} is a block of γ and {b0, . . . , b8} is a block of α. Let S be
the sublattice generated by X. In Figure 2, where A is drawn three times,
some equivalences are given by their non-singleton blocks. The meanings
of these blocks, with different geometric orientations, line styles, and colors,
are defined on the right of the figure. For example, ρ0 = at(a0, b0) and λ′1 =
at(a9, a8)∨ at(a8, a7)∨ at(b8, b7). We can easily show that, in this order, ρ0,
ρ′0, ρ

′′
0, ρ1, ρ

′
1, ρ

′′
1, ρ2, ρ

′
2, ρ

′′
2, ρ3, ρ

′
3, ρ

′′
3, ρ4, . . . belong to S, since each of them

is expressible from the generators and the earlier ones. Indeed, ρ0 = β ∧ δ
and, for i = 0, 1, 2, . . . , we have that ρ′i = (ρi ∨ γ)∧α, ρ′′i = (ρ′i ∨ β)∧ γ, and
ρi+1 =

(
((ρ′′i ∨ β) ∧ α) ∨ ρ′′i

)
∧ β. The increasing sequences (ρ0, ρ1, ρ2, . . . ),

(ρ′0, ρ
′
1, ρ
′
2, . . . ), and (ρ′′0, ρ

′′
1, ρ
′′
2, . . . ) are right-going in the sense that when the

subscript increases by 1, the subscripted equivalence obtains a new ‘‘edge’’ on
the right of the earlier edges. By interchanging the role of β and γ, we obtain
three increasing ‘‘left-going’’ sequences (λ0, λ1, λ2, . . . ), (λ′0, λ

′
1, λ
′
2, . . . ), and

(λ′′0, λ
′′
1, λ

′′
2, . . . ). Where a right-going sequence ‘‘reaches’’ the appropriate

left-going one, the meet of the two sequences yields an atom of Equ(A).
Namely, for i ∈ {0, 1, . . . , 8}, at(ai, bi) = ρi ∧ λ′′8−i ∈ S, at(ai+1, bi) = ρ′′i ∧
λ8−i ∈ S, and at(ai, ai+1) = ρ′i ∧ λ′8−i ∈ S. Furthermore, for i ∈ {0, . . . , 7},
at(bi, bi+1) =

(
at(ai+1, bi) ∨ at(ai+1, bi+1)

)
∧ α ∈ S. Hence, for every edge

(x, y) of the graph, at(x, y) ∈ S. Therefore, the following lemma implies
easily that X generates Equ(A).

Lemma 1.3. If 3 ≤ n ∈ N+ = {1, 2, 3, . . . }, A = {a0, a1, . . . , an−1}, and
|A| = n, then {at(ai−1, ai) : i ∈ {1, . . . , n − 1}} ∪ {at(an−1, a0)} generates
Equ(A).

In some form, this easy lemma occurs in several papers; see, e.g., [3,
Lemma 2.2] and [8, Lemma 2.5].

In 1995, the author visited Ivan Chajda at Palacký University in Olo-
mouc. The research plan looked easy: by orienting the edges of the graph
in Figure 1 in some way, we should find a small generating set of Quo(A).
Our first construction was soon developed into a more sophisticated one,
and so the first construction does not occur [1]. However, we need the first
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Figure 2: Right-going and left-going sequences

construction1 here even though [1] contains a stronger result and we have
an even stronger one nowadays.

Figure 3: Generating a quasiorder lattice

Let A = {a0, a1, . . . , a9, b0, b1, . . . , b8} be the 19-element set drawn in
Figure 3, which is quite similar to Figure 1. Some edges are directed by
arrowheads, some others are not. The figure defines a set Y0 = {α, β, γ, δ}
of quasiorders of A by (1.1) with the only modification that we cannot
walk along a directed edge in the opposite direction. Along an undirected
edge, we can walk in both directions. At present, it makes no difference
whether an edge is red and thick or not. For example, (a3, a2), (a3, a4) ∈ α,
(a3, b2), (b2, a3) ∈ γ, but (b4, a4) /∈ β and (a2, a3), (a3, a7) /∈ α. For ε ∈ Y0,

1Its exact details have been lost but the idea of Claim 1.4 is the same.
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denote ε−1 = {(y, x) : (x, y) ∈ ε} ∈ Quo(A) the inverse of ε. Note that γ
and δ are equivalences, and so γ−1 = γ and δ−1 = δ. Let Y := Y0 ∪ {ε−1 :
ε ∈ Y0} = {α, α−1, β, β−1, γ, δ}.

Claim 1.4. The six-element set Y generates Quo(A).

Outline of the proof. For x, y ∈ A, qu(x, y) denotes the smallest quasiorder
containing (x, y). Let S stand for the sublattice generated by Y . Since
f : Quo(A) → Quo(A) defined by µ 7→ µ−1 is an automorphism of Quo(A)
and Y is f -closed, S is also closed with respect to forming inverses. In
particular, whenever qu(x, y) is in S, then so is qu(y, x); this fact will be
used without further explanation. Let us compute; each containment ‘‘∈ S’’
below follows from the earlier ones and Y ⊆ S:

qu(a0, b0) = β ∧ δ ∈ S, (1.2)

qu(a1, b0) = (α ∨ qu(a0, b0)) ∧ γ ∈ S, by (1.2), (1.3)

qu(a1, a0) = α ∧ (qu(a1, b0) ∨ qu(b0, a0)) ∈ S by (1.3) and (1.2), (1.4)

qu(b1, a1) = (α ∨ qu(b0, a1)) ∧ β ∈ S by (1.3), (1.5)

qu(b1, b0) = α ∧ (qu(b1, a1) ∨ qu(a1, b0)) ∈ S by (1.5) and (1.3), (1.6)

qu(b1, a2) = γ ∧ (qu(b1, a1) ∨ α) ∈ S by (1.5), (1.7)

qu(a1, a2) = α ∧ (qu(a1, b1) ∨ qu(b1, a2)) ∈ S by (1.5) and (1.7), (1.8)

qu(a2, b2) = β ∧ (qu(a2, b1) ∨ α) ∈ S by (1.7), (1.9)

qu(b1, b2) = α ∧ (qu(b1, a2) ∨ qu(a2, b2)) ∈ S by (1.7) and (1.9), (1.10)

qu(a3, b2) = γ ∧ (α ∨ qu(a2, b2)) ∈ S by (1.9), (1.11)

qu(a3, a2) = α ∧ (qu(a3, b2) ∨ qu(b2, a2)) ∈ S by (1.11) and (1.9), (1.12)

qu(b3, a3) = β ∧ (α ∨ qu(b2, a3)) ∈ S by (1.11), (1.13)

qu(b3, b2) = α ∧ (qu(b3, a3) ∨ qu(a3, b2)) ∈ S by (1.13) and (1.11), (1.14)

and so on. Computations (1.2)–(1.14) and the fact that S is closed with
respect to forming inverses show that for each thick and red edge (x, y) of the
graph, qu(x, y) and qu(y, x) are in S. The figure and (1.2)–(1.14) also show
how we can proceed further to the right. Hence, qu(x, y) and qu(y, x) are in
S for every edge (x, y) of the graph. Thus, the straightforward counterpart
of Lemma 1.3 for quasiorder lattices completes the proof of Claim 1.4.

In the proof above, δ was needed only in the first step, (1.2). This step
and the whole proof still work if we omit the dashed curve in Figure 3 and
replace δ by the equivalence at(a0, b0). Now we do not need a left-going
sequence of quasiorders. Hence, and this was a surprise in 1995, we do not
need the figure to end on the right. So A can be {ai : i ∈ N0}∪{bi : i ∈ N0},
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where N0 = {0, 1, 2, . . . }; this was the moment when an infinite base set
came into the picture.

Infinite base sets required new techniques, first for quasiorder lattices, see
[1]. The new techniques were soon adapted to infinite equivalence lattices;
see, e.g., [2]. Later, it appeared that these techniques are useful for finite
equivalence lattices; see [3] and [8]. Due to the results of these two papers, a
connection with cryptography has been discovered; see [3] and, mainly, [4].
This connection and many earlier results on four-element generating sets
motivate Section 2, where a new four-element generating set is constructed.
To summarize our historical remark: In some sense, most papers mentioned
so far and the present one grew from the unpublished proof of Claim 1.4.

Finally, to conclude this section, note that we can obtain a four-element
generating set of Quo(A) for |A| = 19, that is, a stronger result, as follows.
(However, this argument does not show how to step from the class of finite
equivalence and quasiorder lattices to that of the infinite ones.) Going after
[7] and using Figure 1, add a new δ-curve, a directed one, from a1 to a2.
That is, we change δ to δ ∨ qu(a1, a2). By the proof of Claim 1.2; we obtain
all members of Equ(A) from X := {α, β, γ, δ}. Thus, X generates Quo(A)
by (Kulin’s) Lemma 1.1.

2 A new four-element generating set with a

special property

The block count of an equivalence µ ∈ Equ(A) is the number blnum(µ) of
blocks of (the partition corresponding to) µ. We say thatX = {µ1, µ2, µ3, µ4}
is a four-element generating set of Equ(A) with consecutive block counts if
X generates Equ(A) and blnum(µ1+i) = blnum(µ1) + i for i ∈ {1, 2, 3}. We
are going to prove the following theorem.

Theorem 2.1. If the number of elements of a finite set A is six or it is at
least eight, then Equ(A) has a four-element generating set with consecutive
block counts.

Similar properties (namely, ‘‘same block counts’’ and ‘‘the difference be-
tween the block counts ≤ 2’’) have been studied in [5] and [6]; the property
we consider in this section is more difficult to fulfill. Despite some similarities
with [5] and [6] in the approach, the present paper remains self-contained.

Remark 2.2. We know that if |A| < 6, then Equ(A) has no four-element
generating set with consecutive block counts; we guess the same for |A| = 7.
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A pair (µ, ν) of elements of Equ(A) is complementary if µ ∨ ν = 1A, the
top element of Equ(A), and µ ∧ ν = 0A, the bottom element of Equ(A).

Definition 2.3 ([5]). A 7-tuple A = (A;α, β, γ, δ;u, v) is called an eligible
system if A is a nonempty set, {α, β, γ, δ} is a generating set of Equ(A), and
the pairs (α, δ),

(
β, γ ∨ at(u, v)

)
, and

(
β ∨ at(u, v), γ

)
are complementary.

For ρ ⊆ (A′)2, eq ′(ρ) will denote the smallest equivalence of A′ that
includes ρ. For distinct elements x, y ∈ A′, let at′(x, y) := eq ′({(x, y)}).
The lattice operations in Equ(A′) will be denoted by ∨′ and ∧′.

Lemma 2.4. Let A be an eligible system with components denoted as in
Definition 2.3. Assume that u′, v′ /∈ A and u′ 6= v′. Let A′ := A ∪ {u′, v′},
α′ := eq ′(α) ∨′ at′(u, u′), β′ := eq ′(β) ∨′ at′(u, v′), γ′ := eq ′(γ) ∨′ at′(v, v′),
δ′ := eq ′(δ) ∨′ at′(u′, v′). Then A′ := (A′;α′, β′, γ′, δ′;u′, v′) is an eligible
system, too. Furthermore, if Φ := {α, β, γ, δ} is of consecutive block counts,
then so is Φ′ := {α′, β′, γ′, δ′}.

Proof. The situation is visualized in Figure 4, where the blocks of some
elements, all important elements from our perspective, are drawn. The three
blocks drawn by solid lines are blocks of some members of Φ ⊆ Equ(A).
The seven blocks drawn in non-solid line styles (dotted and various kinds
of dashed) are blocks of the equivalences belonging to Φ′ ⊆ Equ(A′). The
figure uses different line styles or distinct colors for the blocks of different
equivalences, but we use the same color for ε ∈ Φ and ε′. Note that the
geometrically large blocks on the left could be singletons and, on the other
hand, u/α := {x : (x, u) ∈ α} and v/γ can be but need not be disjoint. Not
all blocks of all ε and ε′ are drawn for ε ∈ Φ. However, for any x ∈ A and
ε ∈ Φ, if the block x/ε is not drawn, then x/ε = x/ε′. The last sentence of
Lemma 2.4 follows from the trivial fact that blnum(ε′) = 1 + blnum(ε) holds
for every ε ∈ Φ. Applying a lemma from [5] twice (in a ‘‘twisted way’’ and
in a ‘‘straight way’’), we could derive the rest of Lemma 2.4 from [5]. To
keep the paper self-contained, we give a different and direct proof.

The existence of an x ∈ u/β ∧ v/γ would violate the conjunction of
β ∧ (γ ∨ at(u, v)) = 0A and γ ∧ (β ∨ at(u, v)) = 0A —call them the meet
conditions for β and γ— and u 6= v. Thus, u/β and v/γ are disjoint.

By the two paragraphs above, Figure 4 faithfully represents the situa-
tion and contains all the details the proof needs. Hence, it is straightforward
to verify that the three pairs in Definition 2.3 for Equ(A′) are complemen-
tary. Let S and E denote the sublattice generated by Φ′ in Equ(A′) and
the sublattice {µ ∈ Equ(A′) : both u′/µ and v′/µ are singletons}. Then
f : Equ(A)→ E defined by µ 7→ eq ′(µ) is a lattice isomorphism.
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Figure 4: Illustrating the proof of Lemma 2.4

Observe that {u′} is a singleton block of β′ ∨′ γ′. Furthermore, {v′} is a
singleton block of both α′ and δ′ ∧′ (β′ ∨′ γ′). Thus {v′} is a singleton block
of α′ ∨′

(
δ′ ∧′ (β′ ∨′ γ′)

)
. Therefore, with

κ := (β′ ∨′ γ′) ∧′
(
α′ ∨′

(
δ′ ∧′ (β′ ∨′ γ′)

))
,

|u′/κ| = |v′/κ| = 1. Using the fact that ε ⊆ ε′ for all ε ∈ X, the join
condition β ∨ at(u, v) ∨ γ = 1A for β and γ, and (u, v) ∈ β′ ∨′ γ′, we obtain
that A2 ⊆ β′ ∨′ γ′. By the previous two ‘‘⊆’’ inclusions, δ ⊆ δ′ ∧′ (β′ ∨′ γ′).
Using this fact, α ⊆ α′, and the join condition for the complementary pair
(α, δ), we obtain that A2 ⊆ κ. Combining this with |u′/κ| = |v′/κ| = 1,
we have that f(1A) = κ ∈ S. Thus, for all ε ∈ Φ, f(ε) = f(1A) ∧ ε′ ∈ S,
whereby f(Φ) ⊆ S. Since Φ generates Equ(A) and f : Equ(A) → E is an
isomorphism, we obtain that E ⊆ S. In particular, at′(u, v) = f(at(u, v)) ∈
S. As the following equalities are clear by the figure, we obtain further
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elements of S as follows:

at′(v, v′) = (at′(u, v) ∨′ β′) ∧′ γ′ ∈ S, (2.1)

at′(v′, u) = (at′(u, v) ∨ at′(v, v′)) ∧′ β′ ∈ S,
at′(v′, u′) = (at′(v′, u) ∨′ α′) ∧′ δ′ ∈ S, and (2.2)

at′(u′, u) = α′ ∧′ (at′(u′, v′) ∨′ at′(v′, u)) ∈ S. (2.3)

Finally, since E ⊆ S and we have (2.1), (2.2), and (2.3), Lemma 1.3 implies
that S = Equ(A′). This completes the proof of Lemma 2.4.

Lemma 2.5. With A = {1, 2, . . . , 6},

α := eq(12; 3; 45; 6), (2.4)

β := eq(1; 2; 34; 5; 6), (2.5)

γ := eq(13; 24; 56), and (2.6)

δ := eq(146; 235), (2.7)

A = (A;α, β, γ, δ; 4, 6) is an eligible system with consecutive block counts.

Proof. Let Φ := {α, β, γ, δ}, and let S stand for the sublattice generated by
S. The labels above the equality signs will indicate which members of S
imply that the equivalences on the left of these equality signs belong to S.

eq(12; 345; 6)
(2.4,2.5)

= eq(12; 3; 45; 6) ∨ eq(1; 2; 34; 5; 6), (2.8)

eq(1234; 56)
(2.5,2.6)

= eq(1; 2; 34; 5; 6) ∨ eq(13; 24; 56), (2.9)

eq(12; 3; 4; 5; 6)
(2.4,2.9)

= eq(12; 3; 45; 6) ∧ eq(1234; 56), (2.10)

eq(1; 2; 35; 4; 6)
(2.7,2.8)

= eq(146; 235) ∧ eq(12; 345; 6), (2.11)

eq(14; 23; 5; 6)
(2.7,2.9)

= eq(146; 235) ∧ eq(1234; 56), (2.12)

eq(1; 2; 345; 6)
(2.5,2.11)

= eq(1; 2; 34; 5; 6) ∨ eq(1; 2; 35; 4; 6), (2.13)

eq(1356; 24)
(2.6,2.11)

= eq(13; 24; 56) ∨ eq(1; 2; 35; 4; 6), (2.14)

eq(14; 235; 6)
(2.11,2.12)

= eq(1; 2; 35; 4; 6) ∨ eq(14; 23; 5; 6), (2.15)

eq(1; 2; 3; 45; 6)
(2.4,2.13)

= eq(12; 3; 45; 6) ∧ eq(1; 2; 345; 6), (2.16)

eq(16; 2; 35; 4)
(2.7,2.14)

= eq(146; 235) ∧ eq(1356; 24), (2.17)

eq(13; 2456)
(2.6,2.16)

= eq(13; 24; 56) ∨ eq(1; 2; 3; 45; 6), (2.18)

eq(126; 35; 4)
(2.10,2.17)

= eq(12; 3; 4; 5; 6) ∨ eq(16; 2; 35; 4), (2.19)
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eq(145; 23; 6)
(2.12,2.16)

= eq(14; 23; 5; 6) ∨ eq(1; 2; 3; 45; 6), (2.20)

eq(15; 2; 3; 4; 6)
(2.14,2.20)

= eq(1356; 24) ∧ eq(145; 23; 6), (2.21)

eq(1; 26; 3; 4; 5)
(2.18,2.19)

= eq(13; 2456) ∧ eq(126; 35; 4), (2.22)

eq(135; 2; 4; 6)
(2.11,2.21)

= eq(1; 2; 35; 4; 6) ∨ eq(15; 2; 3; 4; 6), (2.23)

eq(14; 2356)
(2.15,2.22)

= eq(14; 235; 6) ∨ eq(1; 26; 3; 4; 5), (2.24)

eq(13; 2; 4; 5; 6)
(2.6,2.23)

= eq(13; 24; 56) ∧ eq(135; 2; 4; 6), (2.25)

eq(1; 2; 3; 4; 56)
(2.6,2.24)

= eq(13; 24; 56) ∧ eq(14; 2356). (2.26)

In particular, at(1, 2) ∈ S by (2.10), at(2, 6) ∈ S by (2.22), at(6, 5) ∈ S
by (2.26), at(5, 4) ∈ S by (2.16), at(4, 3) ∈ S by (2.5), and at(3, 1) ∈ S
by (2.25). Hence, Φ is a generating set by Lemma 1.3. Clearly, Φ is of
consecutive block counts. It is easy to check that the pairs in Definition 2.3
are complementary. Thus, A is an eligible system, proving Lemma 2.5.

The author has created a program package called ‘‘equ2024p’’, available
from his website http://tinyurl.com/g-czedli/. This program package can
also ‘‘prove’’ that Φ generates Equ(A), but verifying the programs is much
more difficult than verifying the proofs of Lemmas 2.5 and (the next) 2.6.

Lemma 2.6. With A = {1, 2, . . . , 9},

α := eq(158; 2; 3; 47; 69), (2.27)

β := eq(1; 23; 4; 56; 78; 9), (2.28)

γ := eq(135; 268; 4; 79), and (2.29)

δ := eq(16; 257; 3489), (2.30)

A = (A;α, β, γ, δ; 1, 4) is an eligible system with consecutive block counts.

The proof of this lemma is similar to but more than three times longer
than the previous proof. As the reader would hardly enjoy such an amount
of technicalities, the proof goes into the Appendix of the extended ver-
sion of the paper; it is available at https://arxiv.org/abs/2410.15328 or
https://doi.org/10.48550/arXiv.2410.15328.

Now, we are in the position to prove our theorem.

Proof of Theorem 2.1. Combine Lemmas 2.4, 2.5, and 2.6.

http://tinyurl.com/g-czedli/
https://arxiv.org/abs/2410.15328
https://doi.org/10.48550/arXiv.2410.15328
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