A CONCISE APPROACH TO SMALL GENERATING SETS OF
LATTICES OF QUASIORDERS AND TRANSITIVE RELATIONS

GABOR CZEDLI AND JULIA KULIN

ABSTRACT. By H. Strietz, 1975, and G. Czédli, 1996, the complete lattice
Equ(A) of all equivalences is four-generated, provided the size |A| is an acces-
sible cardinal. Results of I. Chajda and G. Czédli, 1996, G. Takach, 1996, T.
Dolgos, 2015, and J. Kulin, 2016, show that both the lattice Quo(A) of all qua-
siorders on A and, for |A| < Ng, the lattice Tran(A) of all transitive relations
on A have small generating sets. Based on complicated earlier constructions,
we derive some new results in a concise but not self-contained way.

1. INTRODUCTION

Basic concepts. Quasiorders, also known as preorders, on a set A form a complete
lattice Quo(A). So do the transitive relations on A; their complete lattice is denoted
by Tran(A). Similarly, Equ(A) will stand for the lattice of all equivalences on A.
The natural involution, which maps a relation p to its inverse, p* := p~! = {(x,y) :
(y,x) € p}, is an automorhpism of each of the three lattices mentioned above. If,
besides arbitrary joins and meets, the involution is an operation of the structure,
then we speak of the complete involution lattices Quo(A) and Tran(A). However, it
would not be worth considering the involution on Equ(A), because it is the identity
map. Unless otherwise stated, generation is understood in complete sense. That is,
for a subset X of Equ(A4), Quo(A), or Equ(A), we say that X generates the complete
(involution) lattice in question if the only complete sub lattice (closed with respect
to involution) including X is the whole lattice itself. For k € N:={1,2,3,...}, we
say that a complete lattice L is k-generated if it can be generated by a k-element
subset X; k-generated complete involution lattices are understood similarly. Since
the involution commutes with infinitary lattice terms, we obtain easily that

if a complete involution lattice L is k-generated, then
(1.1) the complete lattice we obtain from L by disregard-
ing the involution is 2k-generated.

Note that when dealing with finite sets A or finite lattices, then the adjective
“complete” is superfluous; this trivial fact will not be repeated all the time later.

If a complete lattice is generated by a four-element subset X = {x1, x2, x3, x4}
such that x1 < x2 but both {x1, 23,24} and {x2, x5, 24} are antichains, the we say
that this lattice is (1 + 1 + 2)-generated.
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We need also the concept of accessible cardinals. A cardinal k is accessible if it
is finite, or it is infinite and for every A < k,

e cither A < 2# for some cardinal p < A,
e or there is a set I of cardinals such that A <37 ., p, [I| < A, and p < A
for all p € I.

Since all sets in this paper will be assumed to be of accessible cardinalities, two
remarks are appropriate here. First, ZFC has a model in which all cardinals are
accessible; see Kuratowski [9]. Second, we do not have any idea how approach the
problem if |A| is an inaccessible cardinal.

Earlier results. Since a detailed historical survey has just been given in Czédli [6],
here we mention only few known facts. By Strietz [10] and [11], Zddori [13], and
Czédli [4], the complete lattice Equ(A) of all equivalences is four-generated, pro-
vided the size |A| of A is an accessible cardinal and |A| > 2. Also, we know
from these papers that Equ(A) cannot be generated by less than four elements if
|A] > 4. We know from Chajda and Czédli [1] and Takach [12] that the complete
involution lattice Quo(A) is three-generated for |A| > 2 accessible, whereby we
conclude from (1.1) that Quo(A) is six-generated as a complete lattice. Actually,
we know from Dolgos [7] for 2 < |A| < Ny and from Kulin [8] for the rest of ac-
cessible cardinals that the complete lattice Quo(A) is five-generated. Furthermore,
it was proved in Czédli [6] that the complete lattice Quo(A) is four-generated for
Al = {Ro} U (N\ {1,4,6,8,10}). It is also shown in [6] that the complete lattice
Quo(A) cannot be generated by less than four elements, provided |A| > 3. Special
variants of the above results, without considering the lattices Equ(A) and Quo(A)
complete, were given in Czédli [3] and [6]. Dolgos [7] has recently shown that the
complete lattice Tran(A) is eight-generated for 2 < |A| < Rg. Finally, we know from
Zadori [13], which improves Strietz [10, 11] by reducing 10 to 7, and from Czédli [5]
that the complete lattice Equ(A) is (1 + 1 + 2)-generated provided |A| > 7 and |A|
is an accessible cardinal.

Concise versus self-contained. Although the proofs given here are short, some-
times very short, these proofs rely on nontrivial earlier constructions. If someone
wanted to replace the proofs of the theorems that are included in the rest of the
present paper, then he would need to add several additional pages to each of these
proofs; typically, about 15-20 pages to the proofs dealing with all accessible cardi-
nals.

2. PREPARATORY LEMMAS AND NOTATION

As it is usual in lattice theory, we use “C” to denote proper inclusion, which
excludes equality.

Lemma 2.1 (Kulin [8, page 61]). If 3 < |A| and S is a complete sublattice of
Quo(A) such that Equ(A) C S, then S = Quo(A).

Notation 2.2. Fora #b € A, let

[CL, b]L = {(CL, CL), (CL, b)a (ba b)a (ba CL)}
{(a, b)Y := {(a,a), (a,b), (b,b)}, and
{(CL, b)}tr = {(CL, b)}a
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they are the least equivalence, the least quasiorder, and the least transitive relation,
respectively, containing the pair (a,b). While {a, b}* is always an atom of Tran(A)
and all atoms of Tran(A) are of this form, [a, b]° is an atom of Equ(A) iff (a,b)* is
an atom of Quo(A) iff a # b, and all atoms of Equ(A4) and Quo(A) are of this form.

Definition 2.3. By a Zddori configuration of rank n € N, we mean an edge-colored
graph F,, = {ag, a1, ...,an,bo,...,by—1} with a-colored horizontal edges (a;—1,a;)
and (bj_1,b;) for i € {1,...,n} and j € {1,...,n — 1}, B-colored vertical edges
(@i, b;) for i € {0,...,n—1}, and ~-colored slanted edges (of slope 45°) (a;—1,b;) for
1€ {1,...,n}; these edges are solid edges in our figures. For example, Fj is given in
Figure 1 but we have to disregard the dotted edges. We do not make a notational
distinction between the graph and its vertex set, F,,. The colors «, 3, and ~ are
also members of Equ(F),); we let (a,b) € « if there is an a-colored path from a to
b in the graph, and we define the equivalences 3,y € Equ(F,,) analogously.

The following lemma is due to Zadori [13]. Note that it is implicit in [13], and it
was used, implicitly, in Czédli [3], [4], [5], and [6]. The lattice operations join and
meet are also denoted by + and - (or concatenation), respectively.

Lemma 2.4 (Zadori [13]). Ifn € N and A is the base set of the Zddori configuration
Fy, then Bqu(A) is generated by {0, 6,7, [ao, bl [am; b _1]'}-

The following straightforward lemma was also used, explicitly or implicitly, in
several earlier papers; see Chajda and Czédli [1, second display in page 423],
Czédli [3, circle principle in page 12], [4, last display in page 55|, [5, first dis-
play in page 451], and [6, Lemma 2.1], Kulin [8, Lemma 2.2], Takdch [12, page 90],
and Zadori [13, second display in page 583].

Lemma 2.5. For an arbitrary set A and j, k € N, if {u,v}, {z1,...,2;21} and
{y1,...,yk—1} are pairwise disjoint subsets of A, u = xo = yo, and v = =; = Y,
then

-

T

[ 1

Il
-
-
Il

(u, ) = (Z<x”,xi>q) |

J k
[u, v]" = (Z[xiflaxi]c) : (Z[yi—l,yi]c)-
i=1 i=1
Lemma 2.6. Assume that oy, ..., a € Quo(A) are antisymmetric (in other words,
they are orderings) and {1, ..., ax} generates the complete involution lattice

Quo(A). Then {a1\Aa,...,ar\Aa} is a generating set of the complete involution
lattice Tran(A). The same holds if we consider Quo(A) and Tran(A) complete
lattices (without involution).

Proof. Let Rel(A) stand for the complete involution lattice of all binary relations
over A. The meet in this lattice is the usual intersection, the involution is the map
p+— p* := p~ ! but the join is defined in the following way: for p; € Rel(A4) and
(z,y) € A2, we have (z,y) € \/{pi : i € I} iff there is an n € N, there exists a
finite sequence = = 2y, 21, . - -, 2, = y of elements of A, and there are iy,...,i, € [
such that (z;_1,2;) € p;; for all j € {1,...,n}. Note that Tran(A) and Quo(A)
are complete involution sublattices of Rel(A). For a relation p, denote p \ Ay
by p~. Instead of (B1,...,5) € Rel(A)* and (85,...,5;), we write § and -,
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respectively. We need k-ary | A|-complete involution lattice terms, which are defined
in the usual way by transfinite induction, see, for example, [2]; these terms are built
from at most |Al|-ary joins and meets and the involution operation *. For such a
term ¢, t~(8) and ¢t~ (57) will stand for (¢(3))~ and (¢(67))~. Then, for every
k-ary | A|-complete involution lattice term ¢, we have that
(2.1) for every § € Rel(A)*, ¢~ (8) =t~ (67).

If the rank of ¢ is 0, then ¢ is a variable and (2.1) holds obviously. If (2.1) holds
for a term t, then it also holds for ¢*, because * is a lattice automorphism. Next,
assume that ¢ = A{¢; : ¢ € I'} and (2.1) holds for all the ¢;. Then

t(F) =t(B)\ Aa = ([{t:(B) i € I}) \ Dda = [ [{t:i(F) \ Au i€ I}
=t B iely =Wt (B):iel}
=(Wt(B )\ Aaziel} = (({t(F ) icI})\ Ay
=B )\ Aa=t"(F"),

whereby (2.1) holds for ¢.

Next, assume that ¢t = \/{t; : 4 € I'}. In order to show the validity of (2.1) for ¢,
assume first that (z,y) € ¢~ (). Then z # y and (z,y) € t(3). So there is shortest
a finite sequence = = 2g, 21, - . ., 2, = y of elements of A and there are iy,...,4, € T
such that (z;_1,2;) €t (B) forall j € {1,...,n}. Since z # y and we use a shortest
sequence, n € N is at least 1 and z;_1 # z; for j € {1,...,n}. Thus, (z;_1, 2;) €

— —

t; (3), whereby the induction hypothesis gives that (zj-1,72) €t (B7) S, (B7).

Therefore, (z,y) € t;,(67)V -V, (67) CV{t:(F7):ieI} =t(F). But z £y,
whence (z,y) € t=(3~). This proves that ¢t~ (3) C t~(F~). Conversely, since the
lattice operations and the involution are monotone, t(ﬁt) C t(ﬁ) Subtracting Ay,
we obtain that ¢~ (37) C ¢~ (3). This proves (2.1).

Armed with (2.1), let @ # b € A. Since {a1,...,ax} generates the complete
involution lattice Quo(A), there is a k-ary |A|-complete involution lattice term ¢
such that (a,b)* = ¢(&). Subtracting Ay from both sides, we obtain that {a, b}™ =
(a, by \ Ay = t(a@)\ Aa =t~ (&). Thus, by (2.1), {a, b} = ¢t~ (& ). This means
that for all @ # b € A, the complete involution sublattice L generated by &~ in
Rel(A) contains {a, b}. But L is also what &~ generates in Tran(A). Thus, what
we need to prove is that L = Tran(A). For a # b, {a,b}" € L. Based on this
containment, for each ¢ € A, we can pick z,y € A such that |{z,y, c}| = 3; then

(2.2) {e.e} = ({e, 2}V {m, ) A ({ew}™ vy, e}) € L.

Finally, for an arbitrary p € Tran(A), we obtain from p = \/{{a, b} : (a,b) € p}
that p € L. Consequently, L = Tran(A) is generated by &~ as required. O

3. THE LATTICE ON QUASIORDERS

The following lemmas will lead a theorem.

Lemma 3.1. For a set A such that 13 < |A| < Ro and |A] is odd, Quo(A) is
(14 1+ 2)-generated.
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FIGURE 1. Fg with dotted d-edges, twice

Proof. Take F,, for 6 <n € N from Lemma 2.4, see Figure 1. Define

(3.1) § = [ag, an]® + [bo, bn—1]° + (a2, as)* € Quo(A);

the join above is denoted by plus and it is taken in Quo(A). Note that (3.1) makes
sense since, say, [ao, an)° € Equ(A) C Quo(A). In the figure, ¢ is visualized by
the dotted lines. Let L := [a,...,d] < Quo(A). The (6 + 5~ + v)-block of ay is
{b1, az, b3, as}, see the black-filled elements on the left, whereby it follows easily
that [ag, bo]° = B(y + §). Similarly, the (§ + 6—% + 3)-block of az consists of the
black-filled elements on the right, and we conclude that [ay, b,—1]° = (8 + §). By
Lemma 2.4, Equ(A) C L. Actually, Equ(A) C L, since § € L\ Equ(A). Thus, the
statement follows from Lemma 2.1. g

Let us agree that every infinite cardinal is even.

Lemma 3.2. For 58 < |A| < Ny, if |A| is even, then the complete lattice Quo(A)
is (1 + 14 2)-generated.

Notation:

FIGURE 2. I3 ® Fi3

Proof. For 13 < t € N, define the graph Fi3 @ F; in the same way (but with a
new notation) as in Czédli [3]; see Figure 2 for ¢ = 16. Note that, for example,
(b9,ai;) is a y-colored edge, no matter how large ¢ is. Let A := Fi3® F;. The
dotted lines stand for § again; note that because of (a3,a}) € § but (a3, ad) ¢ 6,
d ¢ Equ(A). Let L := [, ...,d] < Quo(A). Clearly, |A| =2 13+ 1+ 2t + 1 ranges
in {58,60,62,...} C N. For Ry, we let A := Fi3¢ F14® Fi5& ... as in [3]. Since
the §-edge (a3, a) does not disturb anything in the proof given in [3], Equ(A) C L.
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This inclusion, § € L\ Equ(A), and Lemma 2.1 yields the lemma. Also, by the
argument of [3],

the sublattice (not a complete one!) generated by

{a, 8,7, 0} contains all atoms of Quo(A). B

(3.2)

Next, we formulate the “large accessible” counterpart of Lemma 3.2.
Lemma 3.3. If Xy < |A] is accessible, then Quo(A) is (1 + 1 + 2)-generated.

Proof. Instead of Fag in Czédli [5, Figure 1], start with Fs4. Instead of the four
switches of Fag, designate five switches in F34 but use only four of them exactly in
the same way as in [5]. Follow the construction of [5] with F3y instead of Fag and,
of course, not using the fifth switch. This change does not disturb the argument,
and we obtain a (1 + 1 + 2)-generating set of the complete lattice Equ(A); the only
difference is that very many unused switches remains by the end of the construction.

Now, we pick one of the unused switches and turn it to the, say, upper half of
[5, Figure 4] but in a slightly modified form: instead of the non-oriented dotted arc
(for ), now we use an oriented arc. Since this arc changes neither 5(y + ¢), nor
v(B+96), § ¢ Equ(A), we still have that Equ(A) C [, ..., d]. This fact, § ¢ Equ(4)
and Lemma 2.1 complete the proof. O

The following lemma adds 6, 8, and 10 to the scope of the main result of Czédli
[6]; unfortunately, the case |A| = 4 remains unsettled. Furthermore, it simplifies
the approach of [6] for finite sets A with |A| even.

Lemma 3.4. For 6 < |A| € N cven, the (complete) lattice Quo(A) is four-
generated.

Notation: i

FIGURE 3. F,, B{z} for n € {2,3,4}

Proof. For n € {6,8,10,12,...}, in accordance with our previous constructs and
notation, take the one-point extension A := F, B {z} of F,; see Figure 3 for
n € {6,8,10}. Let L := [a,...,d]. Also, let A’ := A\ {z}, and let Quo’(4) :=
{p € Quo(A) : the p-block of z is {z}}. For ¢ € Quo(A), let & := e(a + ) €
Quo’(A). By Czédli [6] and Quo’(A) = Quo(4’), Quo’(A) C L. Clearly, we have
that [ag, z]° = B([ao, an]° + ) and [an, x]° = Y([ao, an]® + B) belong to L. Hence,
Lemma 2.5 gives that Equ(A) C L. Thus, Lemma 2.1 applies. O

Now, the conclusion of this section is summarized in the following theorem.
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Theorem 3.5. Let A be a non-singleton set with accessible cardinality. Then the
following statements hold.

o If|A|l # 4, then the complete lattice Quo(A) is four-generated.

o If|A| > 13 and either |A] is an odd number, or |A| > 58 is even, then the
complete lattice Quo(A) is (14 1+ 2)-generated.

o [f13 < |A| < Ng and either |A| is an odd number, or |A| > 58 is even, then
lattice Quo(A) (not a complete one now) contains a (1 + 1+ 2)-generated
sublattice that includes all atoms of Quo(A).

4. THE COMPLETE LATTICE OF TRANSITIVE RELATIONS

Lemma 4.1. If 3 < |A| and |A| is an accessible cardinal, then the complete lattice
Tran(A) is siz-generated.

Proof. By Czédli [4], there are ai,...,as € Equ(A4) such that {ai,...,as}. Let
p be a strict linear order on A; for example, it can be a well-ordering. In order
to see that the complete sublattice L := [, ..., aq, p, p~1] is actually Tran(A); it
suffices to show that L contains all the atoms of Tran(A). Take an atom; it is of
the form {a, b}**. First, assume that a # b. Then either p, or p~! contains the
pair (a,b). Hence, {a,b}* is either [a,b]* A p, or [a,b]* A p~L. In both cases, since
[a,b]° € Equ(A) = [a1,...,a4] C L, we obtain that {a,b}™ € L. Second, assume
that a = b; that is, we need to deal with {a, a)}*". The assumption 3 < |A]| allows
us to pick =,y € A such that |{a,z,y}| = 3. Using (2.2) with a in place of ¢, we
obtain that {a,a}™ € L, as required. O

Lemma 4.2. If 3 < |A| and |A| is and accessible cardinal, then the complete
involution lattice Tran(A) is three-generated.

Proof. Observe that the three generators constructed in Takdch [12] are orderings.
Thus, Lemma 2.6 applies. O

Note that this proof is more complicated than the proof of Lemma 4.1, because
this proof uses Lemma 2.6. Note also that (1.1) and Lemma 4.2 imply Lemma 4.1.
Now, based on Lemmas 4.1 and 4.2, we are in the position to conclude this section
and the paper with the following theorem.

Theorem 4.3. If A is a set such that 3 < |A| and |A| is an accessible cardinal,
then Tran(A) is siz-generated as a complete lattice, and it is three-generated as a
complete involution lattice.
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