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Abstract. Rectangular lattices are special planar semimodular lattices intro-
duced by G. Grätzer and E. Knapp in 2009. A patch lattice is a rectangular

lattice whose weak corners are coatoms. As a variant of gluing, we introduce
the concept of a patchwork system. We prove that every glued sum indecom-

posable, planar, semimodular lattice is a patchwork of its maximal patch lattice
intervals. For a planar modular lattice, our patchwork system is the same as

the S-glued system introduced by C. Herrmann in 1973. Among planar semi-
modular lattices, patch lattices are characterized as the patchwork-irreducible

ones. They are also characterized as the indecomposable ones with respect to
gluing over chains; this gives another structure theorem.

1. Introduction

Rectangular lattices were introduced by G. Grätzer and E. Knapp [14]. Intu-
itively, a rectangular lattice is a semimodular lattice that allows an esthetic planar
diagram with rectangular contour. The smallest rectangular lattice is the four-
element Boolean lattice 22. If L is a non-chain lattice such that each x ∈ L − {0, 1}
is incomparable with some element of L, then L is glued sum indecomposable.

Let L be a glued sum indecomposable, planar, distributive lattice. Then L can
be decomposed into 22-intervals (that is, intervals isomorphic to 22), and for any
two distinct 22-intervals I and J ,

(1.1) I ∩ J is a chain, or I ∩ J = ∅.

The collection of these intervals is the simplest example of a patchwork system.
S-glued systems were introduced by C. Herrmann [16]. Let M be a glued sum in-

decomposable, planar, modular lattice. Then the maximal atomistic (equivalently,
complemented) intervals of M are rectangular lattices of length two, and they form
an S-glued system.

Motivated by these two examples, our goal is the develop a theory of patchwork
systems for all planar semimodular lattices; see Figures 2 and 3 for a first impres-
sion. Rectangular lattices whose weak corners are coatoms will be called patch
lattices. Patch lattices will also be characterized as semimodular lattices indecom-
posable with respect to gluing (also called the Hall-Dilworth gluing) over chains.
Hence patch lattices give rise to two structure theorems for planar semimodular
lattices: one of them, Theorem 3.6, is based on patchwork systems, while the other
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one, Corollary 3.5, is based on gluing over chains. Based on [6], we will give a
constructive visual structure theorem, Theorem 3.4(vii), for patch lattices.

Outline. Section 2 surveys those known concepts and facts on planar semimodular
lattices that we need in the paper. Section 3 gives the most important new concepts
and the main results. Many of the concepts we deal with depend on the planar dia-
gram chosen. This motivates the study of these diagrams and some related questions
in Section 4. Section 5 is devoted to some properties of elements and rectangular
intervals of L that do not depend on the diagram of L. Section 6 presents some
properties of a planar semimodular lattice L that depend only on the slim semimod-
ular lattice “canonically” derived from L. Section 7 proves that all properties of L
that are really important from our perspective are independent from the diagram of
L. Section 8 formulates and proves several properties of patchwork-indecomposable
lattices; these properties are consequences of the main results stated in Section 3.
Section 9 proves some properties of patchwork-indecomposable intervals of planar
semimodular lattices. Section 10 completes the paper by proving the main results
formulated in Section 3.

2. Preliminaries

We aim at planar semimodular lattices. Most questions of the planar case are
easily deductible from the slim one; for example, see Proposition 2.1 and Lemma 6.1
later. This fact and the number “I” in [6] explains that the adjective “slim” rather
than “planar” occurs in the title of the present paper. The importance of slim (and
planar) semimodular lattices is surveyed in [6].

Basic concepts. Although the reader is assumed to be familiar with the concepts
given in G. Grätzer [12] and [6], we recall many of them for emphasis, notation, or
later reference. A lattice M is slim if it is finite and the order JiM of (non-zero)
join-irreducible elements of M contains no three-element antichain. (Orders are
also called partially ordered sets or posets.) Equivalently, see R.P. Dilworth [10],
G. Grätzer and E. Knapp [13] or [6], a finite lattice M is slim iff JiM is the union of
two chains. The systematic study of slim semimodular lattices started in G. Grätzer
and E. Knapp [13]. By [5, Lemma 6], slim lattices are planar. All lattices occurring
in this paper are assumed to be finite, even if this is not mentioned all the time.
In particular, if a lattice is slim or planar, then it is finite by definition. In most of
the cases, our lattices are assumed to have at least four elements.

A straightforward but extremely useful property of slim lattices, see [6, Lemma
2], is that

(2.1) each element of a slim lattice has at most two covers.

Another pleasant property is that

(2.2) every interval of a slim lattice is slim;

this follows from the fact that {a ∨ x : x ∈ JiL, x ≤ b} join-generates [a, b].
Let Dgr(L) stand for the set of all planar diagrams of L. The general convention

throughout the paper is that a planar diagramD ∈ Dgr(L) is fixed, unless otherwise
stated. Many concepts we are going to define depends on the choice of D, at least
seemingly. However, in several cases we will prove that this dependence is only
apparent without being real. The diagram D divides the plane into cells. In
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presence of semimodularity, they are 4-cells and covering squares. By [6, Prop. 1],
for any planar semimodular lattice L and for an arbitrary D ∈ Dgr(L),

(2.3) L is slim iff all of its covering squares of are 4-cells.

This is the original definition of slimness in G. Grätzer and E. Knapp [13] for the
semimodular case. Notice that the expression “4-cells” in (2.3) is a short form of
the more precise “4-cells of the fixed diagram D” or “its 4-cells with respect to D”;
similar terminology will frequently occur. A lattice L (in particular, a chain) is
called nontrivial if it contains at least two elements. If L is a non-chain lattice and
for each x ∈ L − {0, 1}, there is a y ∈ L such that x and y are incomparable, then
L is called glued sum indecomposable.

Given a fixed planar diagram D of a lattice L, it has a left boundary chain
Cl(D), a right boundary chain Cr(D), and a boundary Bnd(D) = Cl(D) ∪ Cr(D).
We often write Cl(L,D) and, if there is no danger of confusion, Cl(L) instead of
Cl(D), and we often do similarly for other subsets of D. The interior L − Bnd(L)
of L is denoted by int(L) = int(L,D). For a rigorous treatment of these concepts
see D. Kelly and I. Rival [17]. Notice that, by [17, Prop. 2.2],

(2.4) JiL ∩ MiL ∩ Cl(L) 6= ∅ and JiL ∩ MiL ∩Cr(L) 6= ∅,

provided |L| ≥ 3. We have to recall some further concepts and properties of planar
lattices from [17]. Let L be a planar lattice with a fixed planar diagram D. If C is
a maximal chain of L, then it has a left side, denoted by LS(C,D), and a right side
RS(C,D). Notice that LS(C,D) ∪ RS(C,D) = L and C = LS(C,D) ∩ RS(C,D).
The strict sides of C (with respect to D) are LS(C,D) − C and RS(C,D) − C.
If a ≤ b in L, |[a, b]| ≥ 3 and C1 and C2 are maximal chains of [a, b] such that
C1∩C2 = {a, b}, then C1 and C2 determine a so-called region R of L. It is a convex
sublattice with {Cl(R),Cr(R)} = {C1, C2}. Its interior, int(R), is R − Bnd(R).
Assume that u ∈ R and v ∈ L − R, or conversely. Let a, b, c ∈ L. Further, let C be
a maximal chain of L, and let x, y ∈ L such that x and y are on different sides of
C. Then, by [17, Lemmas 1.2 and 1.5], by the definition of a region, and by (2.7),

If x ≤ y, then there is a z ∈ C with x ≤ z ≤ y;(2.5)

every interval is a region;(2.6)

if u ≤ v, then there is a w ∈ Bnd(R) with u ≤ w ≤ v;(2.7)

if b ∈ int(R) and a ≺ b ≺ c, then a, c ∈ R.(2.8)

When referring to properties of regions, we often use (2.6) implicitly. By the exact
definition of a region, given in [17], we also have that

(2.9) if R is a region, then int(R) ⊆ int(L).

For slim lattices, we can assert even more. By [6, Lemma 6],

(2.10) JiL ⊆ Bnd(L,D), provided L is slim.

Also, if L is slim, then Bnd(L) is uniquely determined by [6, Lemma 7]. That is,
Bnd(L,D) = Bnd(L,F ), for all D,F ∈ Dgr(L). By [6, Lemma 7], if L is slim and
glued sum indecomposable, then even {Cl(L),Cr(L)} is uniquely determined. That
is, the left and the right boundary chains are determined up to symmetry. (For a
stronger statement, see Lemma 4.7 later.)

Let L be a planar semimodular lattice with a fixedD ∈ Dgr(L). By a weak corner
of D we mean a doubly irreducible element d on the boundary of L such that d is
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distinct from 0 and 1. (Sometimes we speak of weak corners of L even if they depend
on D.) Following G. Grätzer and E. Knapp [14], by a rectangular lattice we mean a
planar semimodular lattice L such that L has a planar diagramD such that Cl(L,D)
has exactly one weak corner, denoted by wl(L), wl(D) or wl(L,D), Cr(L,D) has
exactly one weak corner, denoted by wr(L), wr(D) or wr(L,D), and they are
complementary, that is, wl(D)∧wr (D) = 0 and wl(D)∨wr (D) = 1. (Although the
weak corners depend on D, Lemma 5.5 will show later that all planar diagrams are
equally appropriate to check whether L is rectangular.) Clearly, rectangular lattices
have at least four elements and they cannot be chains. If L is slim, then, by the
already mentioned [6, Lemma 7], {Cl(L,D),Cr(L,D)} and {wl(L,D), wr(L,D)}
do not depend on the planar diagram chosen. (In fact, Lemma 4.7 will state even
more.) It is easy to see (and we know it from [6, before Prop. 10]) that for a slim
(not just planar) semimodular lattice L, L is rectangular iff JiL is the union of
two disjoint chains C and W such that every element of C is incomparable with all
elements of W .

For a rectangular lattice L and D ∈ Dgr(L), we define the left and right top
boundary chains

Cul(L,D) = ↑wl(D) ∩ Cl(D), Cur(L) = ↑wr(D) ∩ Cr(D),

the bottom boundary chains

Cll(L,D) = ↓wl(D) ∩ Cl(D), Clr(L,D) = ↓wr(D) ∩ Cr(D),

and the upper and lower boundaries

UBnd(L,D) = Cul(D) ∪ Cur(D), LBnd(L,D) = Cll(D) ∪ Clr(D).

We know from G. Grätzer and E. Knapp [14, Lemmas 3 and 4] and from the
definition of a rectangular lattice that, for each rectangular lattice L,

Cul(L,D), Cur(L,D), Cll(L,D), and Clr(L,D) are indeed chains,(2.11)

Cul(L,D) = ↑wl(D), Cur(L,D) = ↑wr(D),

Cll(L,D) = ↓wl(D), Clr(L,D) = ↓wr(D),
(2.12)

UBnd(L,D) − {1} ⊆ MiL, LBnd(L,D) − {0} ⊆ JiL,(2.13)

each element of Bnd(L,D) − UBnd(L,D) has at least two covers, and(2.14)

each element of Bnd(L,D) − LBnd(L,D) has at least two lower covers.(2.15)

Let d be a doubly irreducible element of a slim semimodular lattice L. Then d
belongs to (at least) one of the boundary chains Cl(I,D) and Cr(I,D) by (2.10).
Since this boundary chain is a maximal chain, it contains the unique lower cover
d∗ and the unique upper cover d∗ of d. If d∗ has exactly two upper covers and d∗

has exactly two lower covers, then d is called a corner of D. Note that corners are
weak corners but (even for rectangular lattices) not conversely. A corner can be
removed and a slim semimodular sublattice remains by [6, Prop. 10].

Some earlier structure theorems. Let S be a 4-cell of a planar diagram D
of a planar lattice L. Replace this 4-cell by a copy of M3, the five-element non-
distributive modular lattice (with a fixed diagram). This means that we insert a
new element, which is called an eye, into the interior of S, and this way we divide
S into two new 4-cells. This way we obtain a new diagram that determines a new
lattice. If D• and L• are obtained from D and L by inserting eyes one-by-one, then
D• and L• are called an anti-slimming ofD and L, respectively, and D• ∈ Dgr(L•).
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Figure 1. S7 and the downward-going procedure

A 0-1-sublattice means a sublattice with the same 0 and 1. We recall the following
statement.

Proposition 2.1 (G. Grätzer and E. Knapp [13]). Each planar semimodular lattice
L is an anti-slimming of one of its slim semimodular 0-1-sublattices, L′.

Proposition 2.1 reduces most of the questions on planar semimodular lattices
to the slim case. Let D ∈ Dgr(L) be fixed. Then the sublattice L′ (with the
corresponding diagram D′) above is called a full slimming sublattice of L. More
exactly,D′ is obtained fromD by omitting all elements from the interiors of intervals
of length two. For a fixed L′ (which depends only on D), the elements of L − L′

(or those of D − D′) are called eyes. Clearly, for each eye e ∈ L − L′, if e∗ and e∗

denote the unique lower and upper cover of e, respectively, then

(2.16) e∗ and e∗ belong to a unique 4-cell {e∗, a, b, e∗} of L′.

Let us emphasize the difference between a full slimming sublattice of L, which is a
sublattice (a concrete subset of L) and depends on D, and the full slimming of L,
which is an abstract lattice, not a concrete sublattice of L. While L can have many
full slimming sublattices, as witnessed by L = M3, the full slimming of L will turn
out to be unique, see Remark 4.2.

The first structure theorem for slim semimodular lattices is due to G. Grätzer and
E. Knapp [13], and it was soon generalized in [4]. (We have recently discovered that
even the generalized version was already present but well-hidden in M. Stern [19].
However, it is [13] that initiated a rapid development leading to the present work.)
Other structure theorems were given in [6] (two theorems), [2], and [7]; we will
need and recall only one of them. Let S be a 4-cell of a slim semimodular lattice
L, with respect to D ∈ Dgr(L). Then S is a covering square {a = b1 ∧ b2, b1, b2,
c = b1 ∨ b2}. We change L to a new lattice L∗ as follows. Firstly, we replace S
by a copy of S7; see Figure 1 for its definition. This way we get three new 4-cells
instead of S. Secondly, as long as there is a chain u ≺ v ≺ w such that v is a new
element and T = {x = u ∧ z, z, u, w = u ∨ z} is a 4-cell in the original lattice
L but x ≺ z at the present stage, see Figure 1, we insert a new element y such
that x ≺ y ≺ z and y ≺ v. (This way we get two 4-cells to replace the 4-cell T .)
When this “downward-going” procedure terminates, we obtain L∗. The collection
of all new elements, which is an order (also called poset), will be called a fork. We
say that L∗ is obtained from L by adding a fork to L (at the 4-cell S). For an
illustration, see see Figure 2, where Li is obtained from Li−1 by adding a single
fork; the new elements of Li, which form a fork, are the black-filled ones. Adding
forks to L means adding several forks to L one by one. For example, L3 in Figure 2
is obtained from L0 = 22 by adding forks, in three steps. By a grid we mean the
direct product of two finite, nontrivial chains. (The smallest grid is 22.) We are
now ready to recall
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Figure 2. Forks and slim patch lattices

Proposition 2.2 ([6, Theorem 12]). Let L be a slim semimodular lattice consisting
of at least three elements. Then L can be obtained from a grid such that

(i) first we add finitely many (possibly zero) forks one by one,
(ii) and then we remove some (possibly zero) corners, one by one.

For later reference, we formulate a trivial statement, see also [8, Figure 1].

Lemma 2.3. Each nontrivial finite lattice is uniquely decomposable as a glued sum
of nontrivial chains and glued sum indecomposable lattices.

Rectangular lattices are of separate interest, not only in the present paper but
also in G. Grätzer and E. Knapp [14], [15], [3] and [18]. In connection with parts
(iv) and (vii) of (the forthcoming) Theorem 3.4, we present the following structure
theorem for them. Remember that grids are defined right before Proposition 2.2.

Proposition 2.4 (Mainly [6, Lemma 22], as detailed in Section 10). Let L be an
arbitrary slim rectangular lattice. Then

(i) there is a grid G such that L can be obtained from G by adding forks;
(ii) For all D ∈ Dgr(L), G is (isomorphic to) ↑wl(L,D) × ↑wr(L,D). Conse-

quently, G is uniquely determined up to isomorphism.
(iii) Every lattice obtained from a grid by adding forks is a slim rectangular lattice.
(iv) Each rectangular lattice is an anti-slimming of a slim rectangular lattice, which

is unique up to isomorphism.

3. patchwork systems and the new results

An interval is called a rectangular interval, if it is a rectangular lattice. As usual,
N and N0 stand for the set of positive integers and N ∪ {0}, respectively. We will
deal only with glued sum indecomposable lattices.

Definition 3.1. Let L be a glued sum indecomposable, planar, semimodular lattice,
and let HHH be a collection of rectangular intervals of L. For I, J ∈ HHH, I and J are
adjacent if I ∩ J 6= ∅. Let E

(
HHH

)
denote the set of adjacent pairs of rectangular

intervals, that is, E
(
HHH

)
= {(I, J) ∈ HHH2 : I 6= J and I ∩ J 6= ∅}. We say that HHH is

a patchwork system for L, if the following three conditions hold:
(i) For each covering square S of L, there exists an I ∈ HHH such that S ⊆ I.
(ii) For all (I, J) ∈ E

(
HHH

)
, I ∩ J is a chain.

(iii) The lattice L has a planar diagramD such that, for all (I, J) ∈ E
(
HHH

)
, we have

that I ∩ J ⊆ UBnd(I,D) ∩ LBnd(J,D) or I ∩ J ⊆ LBnd(I,D) ∩UBnd(J,D).
If HHH is a patchwork system of L such that D ∈ Dgr(L) witnesses (iii), then we also
say that HHH is a patchwork system for the diagram D. Hence, HHH is a patchwork
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system for L iff it is a patchwork system for some D ∈ Dgr(L). A patchwork system
HHH is nontrivial if |HHH| ≥ 2.

If there is a patchwork system for L, then we also say that L allows a patchwork
system. An example of a patchwork system for L is provided by Figure 3; this
system consists of eleven rectangular intervals: four light grey ones, five dark gray
ones, and two striped ones. The following statement sheds more light on this
concept, and offers several equivalent definitions.

Proposition 3.2. Assume that HHH is a set of rectangular intervals of a glued sum
indecomposable, planar, semimodular lattice L such that HHH satisfies 3.1(i) and
3.1(ii). Then the following four conditions are equivalent.

(i) HHH satisfies 3.1(iii), that is, HHH is a patchwork system for L.
(ii) For all planar diagrams D of L and for all (I, J) ∈ E

(
HHH

)
, we have that

I ∩J ⊆ UBnd(I,D)∩LBnd(J,D) or I ∩J ⊆ LBnd(I,D)∩UBnd(J,D). That
is, HHH is a patchwork system for all D ∈ Dgr(L).

(iii) There exists a planar diagram D of L such that for each (I, J) ∈ E
(
HHH

)
,

(a) I ∩ J ⊆ UBnd(I,D) ∩ LBnd(J,D) or I ∩ J ⊆ LBnd(I,D) ∩ UBnd(J,D),
and

(b) I ∩ J ⊆ Cl(I,D) ∩ Cr(J,D) or I ∩ J ⊆ Cr(I,D) ∩ Cl(J,D).
(iv) The previous two sub-conditions, 3.2(iiia) and 3.2(iiib), hold for all planar

diagrams D of L and for each (I, J) ∈ E
(
HHH

)
.

Remark 3.3. Let L and HHH be as in Proposition (3.2).
(i) If I and J are distinct members of a patchwork system HHH, then I and J are

incomparable (in notation, I ‖ J), that is, I 6⊆ J and J 6⊆ I. (This follows
from 3.1(ii) since a rectangular interval is never a chain.)

(ii) Since Cl(I) and Cr(I) are always chains, 3.2(iiib) implies 3.1(ii).
(iii) It will follow from 3.1(i) and Lemma 4.3 that HHH covers L in the sense that

L =
⋃
{I : I ∈ HHH}.

(iv) Let GGG be a set of rectangular intervals of L. Then 3.1(i) holds for GGG iff L has
a planar diagram D such that each 4-cell of D is a subset of some member
of GGG iff for every planar diagram D of L, each 4-cell of D is a subset of some
member of GGG.

(v) The purpose of 3.1(i) is to ensure something like “HHH is simply connected” (in
other words, 1-connected) in the topological sense. For example, if L = 32

and GGG is the collection of all covering squares, then GGG is a patchwork system
for L. However, if the middle square S is removed, then GGG − {S} is not a
patchwork system since 3.1(i) fails (while 3.1(ii) and 3.1(iii) hold).

We call a slim semimodular lattice L patchwork-irreducible, if it allows a patch-
work system and, in addition, for every patchwork system HHH for L, |HHH| = 1. In
other words, if L is rectangular and it allows only the trivial patchwork system. For
example, the lattice S7 in Figure 1 is patchwork-irreducible. To define two related
but more classical concepts, let L be a nontrivial lattice. If there are a proper ideal
I and a proper filter F such that I ∩ F is nonempty and L = I ∪ F , then L is
decomposable with respect to gluing (in the general sense), gluing decomposable for
short. If L is not a chain (equivalently, |L| ≥ 3 or, still equivalently, |L| ≥ 4) and
L is not gluing decomposable, then we say that L is indecomposable with respect
to gluing, gluing indecomposable for short. Notice that the two-element lattice is
neither gluing decomposable, nor gluing indecomposable.
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Figure 3. A patchwork system

Similarly, assume that L is not a chain (equivalently, |L| ≥ 3 or, still equivalently,
|L| ≥ 4), and whenever I is an ideal and F is a filter of L such that I ∩F is a chain
and L = I ∪F , then L ∈ {I, F}. Then we say that L is indecomposable with respect
to gluing over chains, GC-indecomposable for short.

Assume that the lattice L is patchwork-irreducible, or gluing indecomposable,
or GC-indecomposable. Then, as a consequence of our definitions, L is not a chain,
L is glued sum indecomposable, and L consists of at least four elements.

Theorem 3.4. Let L be a planar semimodular lattice. Assume that |L| ≥ 4. Then
the following seven conditions are equivalent.

(i) L is a patchwork-irreducible lattice;
(ii) L is indecomposable with respect to gluing;
(iii) L is indecomposable with respect to gluing over chains;
(iv) L is a rectangular lattice whose weak corners wl(D) and wr(D), with respect

to some planar diagram D of L, are coatoms;
(v) L has a planar diagram such that the intersection of the leftmost coatom and

the rightmost coatom is 0;
(vi) for each planar diagram of L, the intersection of the leftmost coatom and the

rightmost coatom is 0;
(vii) L is an anti-slimming of a lattice obtained from the four-element Boolean

lattice by adding finitely many forks one by one.

By a patch lattice we mean a rectangular lattice L whose weak corners, with
respect to some D ∈ Dgr(L), are coatoms; that is, a lattice satisfying 3.4(iv) above.
Theorem 3.4 offers six equivalent definitions. Some slim patch lattices are given in
Figure 2. Some non-slim patch lattices occur among the members of MaxPatch(L)
in Figure 3. Theorem 3.4 trivially leads to the following structure theorem.

Corollary 3.5 (A structure theorem). Each planar semimodular lattice can be
constructed as the last member of a list L1, L2, . . . , Ln such that each Li (i =
1, . . . , n) is either a patch lattice (constructed according to Theorem 3.4(vii)), or
there are j, k < i such that Li is a Hall-Dilworth gluing of Lj and Lk over a chain.
Conversely, every lattice constructed this way is a planar semimodular lattice.
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A patch of a lattice is an interval that is a patch lattice. Let Patch(L) denote
the set of all patches of L, and let MaxPatch(L) be the set of maximal patches of
L (with respect to set inclusion). Now we state our third structure theorem.

Theorem 3.6. Let L be a glued sum indecomposable planar semimodular lattice.
Then MaxPatch(L) is a patchwork system for L.

For an example, take the lattice L of Figure 3, which is shown with its patchwork
system. This L is not slim. After deleting all the black-filled elements, we would
obtain a slim lattice L′ and MaxPatch(L′).

Since S7 is not a modular lattice, in the modular case we cannot add forks.
Similarly, in the distributive case we cannot add eyes. Hence, Theorems 3.4 and
3.6 together with Proposition 2.1 clearly imply the following two corollaries (except
for the last sentence of the second one). The first of them is a folklore result (with
another terminology), see also G. Grätzer and E. Knapp [13, Introduction].

Corollary 3.7. If L is a glued sum indecomposable, planar, distributive lattice,
then MaxPatch(L) is the set of all 4-cells, and it is a patchwork system for L.

The definition of Herrmann’s S-glued systems will not be needed here; the reader
can see [16] for details. The main result of C. Herrmann [16] asserts that the
maximal complemented (equivalently, maximal atomistic) intervals of a modular
lattice M of finite length form an S-glued system, which we denote by Herrm(M ).

Corollary 3.8. If L is a glued sum indecomposable, planar, modular lattice, then
MaxPatch(L) is the set of all non-chain intervals of length 2. Moreover, the patch-
work system MaxPatch(L) coincides with the S-glued system Herrm(L).

Hence, Theorem 3.6 extends the main result of C. Herrmann [16] to planar
semimodular lattices. However, there is an essential difference. If M is a modular
lattice, then % :=

⋃
{A2 : A ∈ Herrm(M )} is a lattice tolerance, see A. Day and

C. Herrmann [9], and the quotient lattice L/% in the sense of [1] is what Herrmann
calls the “skeleton” of his construction. However, if L is (the planar semimodular)
lattice given in Figure 3, then % :=

⋃
{A2 : A ∈ MaxPatch(L)} is not a lattice

tolerance. Hence, we do not associate “skeleton lattices” with patchwork systems.

4. More about planar diagrams

Lemma 4.1. Let L′
i be a full slimming sublattice of a planar semimodular lattice

Li, for i ∈ {1, 2}. If L1 is isomorphic to L2, then L′
1 is isomorphic to L′

2.

Remark 4.2. This lemma allows us to speak of the full slimming of a slim semi-
modular lattice L: it is any of the full slimming sublattices of L, and it is considered
an abstract lattice. Lemma 4.1 implies that the full slimming L′ of L is uniquely
determined up to isomorphism. In other words, the isomorphism type of L′ does
not depend on the planar diagram of L.

Proof of Lemma 4.1. We apply induction by |L1|. LetDi be a planar diagram of Li,
for i ∈ {1, 2}. Let ϕ : L1 → L2 be an isomorphism. If L1 is slim, then the statement
is trivial. Assume that L1 is not slim. Then there are u < v ∈ L1 such that [u, v] is
an interval of length two, and [u, v] contains a doubly irreducible element s1 that
belongs to int([u, v], D1) (the interior of [u, v] with respect to the diagram D1).
Let s2 be a doubly irreducible element of L2 that belongs to int([ϕ(u), ϕ(v)], D2).
Then t := ϕ−1(s2) is a doubly irreducible element in L1, and it belongs to [u, v].
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Obviously, there is an automorphism of L1 that sends s1 to t and t to s1, and keeps
any other element fixed. Let ψ denote the composite of this automorphism and ϕ.
Then ψ : L1 → L2 is an isomorphism and ψ(s1) = s2.

Let L−
i := Li − {si}, for i ∈ {1, 2}, and letD−

i denote the diagram obtained from
Di by removing si. The restriction ψ− of ψ to L−

1 is an isomorphism ψ− : L−
1 → L−

2 .
Clearly, L′

i is the full slimming sublattice of L−
i with respect to D−

i , for i = 1, 2.
Since |L−

1 | < |L1|, the induction hypothesis implies that L′
1
∼= L′

2. �

Two-element intervals are called prime intervals. That is, [a, b] is a prime interval
iff a ≺ b. A covering square B is formed by four edges, which are the prime intervals
of B. Covering squares need not be 4-cells.

Lemma 4.3. Let [a, b] be a prime interval of a glued sum indecomposable, planar,
semimodular lattice. Then a is meet-reducible or b is join-reducible. Furthermore,
[a, b] is an edge of a covering square. Moreover, for any fixed planar diagram of L,
[a, b] is an edge of a 4-cell of D.

Proof. By way of contradiction, assume that a ≺ b such that a ∈ MiL and b ∈ JiL.
Since L is glued sum indecomposable, we can select a minimal y ∈ L such that
y ‖ b. Then y 6= 0, so it has a lower cover x. By the minimality of y, we have that
x < b , which gives that x ≤ a. Semimodularity yields that a = a∨x � a∨ y. This
means that a∨ y is a or b since b is the only cover of a. However, both possibilities
lead to y ≤ b, a contradiction. Thus a /∈ MiL or b /∈ JiL, proving the first part of
the lemma.

If a is meet-reducible, then it has a cover c distinct from b, and S = {a, b, c, b∨c}
is a covering square by semimodularity. The prime interval [a, b] is an edge of S. If
we chose c such that b and c are neighboring covers of a (in the fixed diagram D),
then S is a 4-cell. Next, assume that b is join-reducible. Then, with respect to D,
there is a c ∈ L such that a and c are neighboring lower covers of b. Then [a∧ c, b]
is a 4-cell by [6, Lemma 13], and [a, b] is one of its edges. �

On the set PrInt(L) of all prime intervals of L, we define a relation µ as follows:
for p, q ∈ PrInt(L), let p µ q mean that there is a covering square B such that
both p and q are edges of B. We will also need a similar relation defined on
PrInt(D) = PrInt(L), where D ∈ Dgr(L). For p, q ∈ PrInt(L), let p %D q mean
that there is a 4-cell B in the diagram D such that both p and q are edges of B.
Both µ and %D are reflexive and symmetric relations, provided L belongs to the
scope of Lemma 4.3. Their transitive closures will be denoted by µ∗ and %∗D .

Lemma 4.4. Let L be a glued sum indecomposable, planar, semimodular lattice,
and let D ∈ Dgr(L). Then µ∗ and %∗D are the “full relation” PrInt(L) × PrInt(L)
on the set of prime intervals of L.

Proof. Clearly, µ ⊆%∗D . Therefore, it suffices to deal with µ. Let [u, v] ∈ PrInt(L).
By induction on the height h(v) of v, we are going to show that

(4.1) there is an atom r ∈ L such that [0, r] µ∗ [u, v].

By reflexivity, this is trivial if h(v) = 1. So let h(v) ≥ 2. Let a and b be the leftmost
lower cover and the rightmost lower cover of u, respectively. (They are not distinct
in general, and they are never distinct if h(v) = 2.) Let H be a maximal chain in
↑v. Then W := Cl(↓u,D) ∪H and E := Cr(↓u,D) ∪H are maximal chains of L,
and a ∈ W and b ∈ E. These two maximal chains divide L into the strict left side
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LW := LS(W,D) − W of W , the strict right side RE := RS(E,D) − E of E, and
H ∪ ↓u = RS(W,D) ∩ LS(E,D). Since L is glued sum indecomposable, there is an
x ∈ L such that x ‖ u. We assume that x is minimal with respect to this property.
By left-right symmetry, we can also assume that x ∈ RE . There are two cases.

Assume first that b ≤ x. Then b < x since x ‖ u and b < u. Take an atom x′ in
the interval [b, x]. Then u 6≤ x gives that x′ 6= u. Hence, as two covers of b, x′ and
u are incomparable. Since x was minimal with respect to this property, we obtain
that x′ = x. That is, we have the situation

(4.2) there is an x ∈ RE such that x 6= u and b ≺ x.

Let t = u ∨ x. Then {b, u, x, t} is a covering square by semimodularity. If t 6= v,
then {u, v, t, v ∨ t} is another covering square. Since h(u) < h(v), the induction
hypothesis yields an atom r ∈ L such that [0, r] µ∗ [b, u]. The covering square
{b, u, x, t} gives that [b, u] µ∗ [u, t]. Hence, [u, t] µ∗ [u, v] follows either from v = t
and reflexivity, see Lemma 4.3, or from the covering square {u, v, t, v ∨ t}. By
transitivity, [0, r] µ∗ [u, v], as desired.

Secondly, we assume that b 6≤ x, that is, b < b ∨ x. Since x ‖ u, x has a lower
cover x0. The minimality of x gives that x0 < u. Hence, x0 is on the left side of E
while x ∈ RE is on the strict right side of E. We conclude from (2.5) and x0 ≺ x
that x0 ∈ E. Hence, x0 ∈ Cr(↓u). Since Cr(↓u) is a chain and x 6= u, we obtain
that x0 ≤ b. Hence, b = b ∨ x0 ≺ b ∨ x by semimodularity. Clearly, b ∨ x 6= u
since u ‖ x. Moreover, b ∨ x ‖ u since h(b ∨ x) = h(b) + 1 = h(u). Furthermore,
E ∪ RE is a region (surrounded by E and Cr(L)) that contains b and x. Hence,
b ∨ x ∈ E ∪ RE since regions are (convex) sublattices. Since b ∨ x ‖ u ∈ E, we
obtain that b ∨ x ∈ RE. Therefore b ∨ x (instead of x) witnesses that (4.2) holds,
which does the job. We have seen that (4.1) holds for each prime interval [u, v].

Finally, for any two atoms, r1 and r2, {0, r1, r2, r1 ∨ r2} is a covering square and
[0, r1] µ∗ [0, r2]. Hence, the lemma follows from (4.1) by transitivity. �

The following lemma it not surprising.

Lemma 4.5. Assume that L is a planar lattice, that D ∈ Dgr(L), and that S
and T are 4-cells of D. Assume also that S and T have a common edge on the
same side, that is, PrInt(Cl(S,D)) ∩ PrInt(Cl(T,D)) 6= ∅ or PrInt(Cr(S,D)) ∩
PrInt(Cr(T,D)) 6= ∅. Then S = T .

Proof. Suppose, for a contradiction, that S 6= T and a, b ∈ L such that a ≺ b and
a, b ∈ Cl(S,D) ∩ Cl(T,D).

Firstly, assume that a, b ∈ Cll(S,D) ∩ Cll(T,D). Let c = wr(S) = wr(S,D) and
d = wr(T ). Since S 6= T , we have that c 6= d. Let, say, d be strictly on the right of
c, and extend {a, c, b ∨ c} = Cr(S) to a maximal chain C of L. If b ∨ d = 1T was
strictly on the right of C, then b ≺ b∨dwould contradict (2.5). If 1T was strictly on
the left of C, then d ≺ b ∨ d would induce the same contradiction. Hence, 1T ∈ C
together with h(1T ) = h(1S) gives that 1T = 1S . However, then c ∈ int(T ) is a
contradiction since T is a 4-cell. By duality, a, b ∈ Cul(S) ∩ Cul(T ) also leads to a
contradiction.

Secondly, assume that a, b ∈ Cll(S) ∩Cul(T ). Let c = wr(S) again. Since wr(T )
is strictly on the right of the previous C and b is strictly on the left of C, wr(T ) ≺ b
contradicts (2.5). �
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Definition 4.6. For i = 1, 2, let Di ∈ Dgr(Li), and let ϕ : L1 → L2 be a lattice
isomorphism. Then ϕ is a directed diagram isomorphism (L1, D1) → (L2, D2), if

(i) ϕ(Cl([a, b], D1)) = Cl([ϕ(a), ϕ(b)], D2) and, similarly,ϕ(Cr([a, b], D1)) = Cr([ϕ(a), ϕ(b)], D2)
hold, for all a < b ∈ L1, and

(ii) for each maximal chain C of L1, we have that ϕ(LS(C,D1)) = LS(ϕ(C), D2)
and ϕ(RS(C,D1)) = RS(ϕ(C), D2).

By reflecting the diagramD trough a vertical axis we obtain its mirror image Dmir.
Let idL : L → L denote the identical x 7→ x map. We say that L is uniquely
oriented if for any two planar diagrams D and F of L, idL : (L,D) → (L,F ) or
idL : (L,D) → (L,Fmir) is a directed diagram isomorphism.

For example, S7 in Figure 2 is uniquely oriented but M3 is not. We are interested
in planar diagrams only up to directed diagram isomorphisms.

Lemma 4.7.

(i) Let L1 and L2 be glued sum indecomposable, slim, semimodular lattices, and
let ϕ : L1 → L2 be a lattice isomorphism. Assume that D1 ∈ Dgr(L1) and
D2 ∈ Dgr(L2). Then ϕ : (L1, D1) → (L2, D2) or ϕ : (L1, D1) → (L2, D

mir
2 ) is

a directed diagram isomorphism.
(ii) Each glued sum indecomposable, slim, semimodular lattice is uniquely ori-

ented.

Proof. Observe that part (i), applied to the identical mapping, implies part (ii).
Hence, it suffices to prove part (i). It follows from [6, Lemma 7] that the set
{ϕ(Cl(L1, D1)), ϕ(Cr(L1, D1))} is equal to {Cl(L2, D2),Cr(L2, D2)}. Hence, after
replacing D2 by Dmir

2 if necessary, we can assume that ϕ(Cl(L1, D1)) = Cl(L2, D2)
and ϕ(Cr(L1, D1)) = Cr(L2, D2). For a prime interval p of L1, the distance of p
from Cl(L1, D1) will be measured by

(4.3) d(p) := min{n ∈ N0 : there is a q ∈ PrInt(Cl(L1, D1)) such that q µn p},

where µ is defined right before Lemma 4.4. Notice that, in virtue of (2.3), the
covering squares of L1 and the 4-cells of D1 are the same. Hence, µ in (4.3) can
be, and sometimes will be, replaced by %D1 . For a 4-cell S of L1 (with respect to
D1), we let d(S) := min{d(p) : p ∈ PrInt(S)}. By Lemma 4.4, d(p) and d(S) are
well-defined. We will show by induction on d(S) that, for each 4-cell S of L1,

(4.4) ϕ(Cl(S,D1)) = Cl(ϕ(S), D2) and ϕ(Cr(S,D1)) = Cr(ϕ(S), D2).

If d(S) = 0, which means that S has an edge on the left boundary chain, then (4.4)
is evident. Assume that n := d(S) > 0, and p ∈ PrInt(S) such that d(p) = n.
Then there are a q ∈ PrInt(Cl(L1, D1)) and an r ∈ PrInt(L1) such that q %n−1

D1
r

and r %D1 p. Clearly, d(r) ≤ n− 1. (Actually, we have equality but we do not need
it.) By the definition of %D1 , there is a 4-cell T of L1 such that r, p ∈ PrInt(T ).
Since d(T ) ≤ d(r) ≤ n − 1, we have that T 6= S. The induction hypothesis
says that ϕ(Cl(T,D1)) = Cl(ϕ(T ), D2) and ϕ(Cr(T,D1)) = Cr(ϕ(T ), D2). By
Lemma 4.5, the common edge r of S and T determines how the left-right orientation
of S depends on that of T , and this “determination” is preserved by ϕ. This fact
together with the induction hypothesis implies that ϕ(Cl(S,D1)) = Cl(ϕ(S), D2)
and ϕ(Cr(S,D1)) = Cr(ϕ(S), D2). This completes the proof of (4.4).
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In the rest of the proof, we will focus mainly on the left sides; if the cor-
responding right sides are not mentioned then their treatment would be analo-
gous. Let a < b ∈ L1. By Lemma 2.3, we can assume that [a, b] is a glued
sum indecomposable lattice since otherwise we could deal with its glued sum-
mands. Hence, a is meet-reducible in [a, b]. Moreover, [a, b] is a slim lattice
by (2.2). Therefore, we conclude from (2.1) that a has exactly two covers, c
and d, in [a, b]. By semimodularity and (2.3), S := {a, c, d, c ∨ d} is a 4-cell.
The idea is that [a, b] is slim, its boundary is determined, its bottom 4-cell S
intersects the boundary of [a, b] in {a, c, d} = Bnd(S,D1) − {1S}, so S deter-
mines which one of the boundary chains is the left one and which one is the right
one. More exactly, [6, Lemma 7] yields that {ϕ(Cl([a, b], D1)), ϕ(Cr([a, b], D1))} =
{Cl([ϕ(a), ϕ(b)], D2),Cr([ϕ(a), ϕ(b)], D2)}. Hence, knowing that (4.4) holds for S
and keeping {c, d} ⊆ Bnd([a, b], D1) in mind, we conclude that ϕ satisfies 4.6(i).

Next, we prove the validity of 4.6(ii) for L1 by induction on lengthL1. The case:
lengthL1 = 2, where L1 necessarily equals 22, is trivial. Let lengthL1 ≥ 3, and
let C be a maximal chain of L1. Since L1 is glued sum indecomposable, it has
exactly two atoms, u and v, by (2.1). Let, say, u ∈ C. We have previously assumed
that ϕ(Cl(L1, D1)) = Cl(L2, D2). By the left-right symmetry, we can assume that
u ∈ Cl(L1, D1); notice that we will not be allowed to use the left-right symmetry for
the right side of C later. By the induction hypotheses, ϕ(LS(C − {0}, D1 ∩ ↑u)) is
equal to LS(ϕ(C) − {0}, D2 ∩ ↑ϕ(u)). Hence

ϕ
(
LS(C,D1)

)
= ϕ

(
{0} ∪ LS(C − {0}, D1 ∩ ↑u)

)

= {0} ∪ LS(ϕ(C) − {0}, D2 ∩ ↑ϕ(u)) = LS(ϕ(C), D2).

Since ϕ is a bijection, the equation just obtained implies that ϕ
(
RS(C,D1)

)
=

ϕ
(
C ∪ (L1 − LS(C,D1))

)
= ϕ(C) ∪

(
L2 − LS(ϕ(C), D2)

)
= RS(ϕ(C), D2). This

shows that ϕ satisfies 4.6(ii), completing the induction. �

Let L be a planar semimodular lattice, and x ∈ L. We say that x is a possible
weak corner of L, if x is a weak corner of L with respect to some planar diagram
of L. The set of possible weak corners of L will be denoted by Cornpw(L). Clearly,
Cornpw(L) ⊆ JiL ∩ MiL but the converse inclusion does not hold in general. (For
example, if L is obtained from a grid by inserting an eye e into a “middle 4-cell”,
then e /∈ Cornpw(L).) The set of non-chain intervals of length 2 will be denoted
by Ivl2(L). By the trunk of an I ∈ Ivl2(L), denoted by Trnk(I), we mean the
nontrivial antichain I − {0I , 1I}. As usual, the unique lower cover and upper cover
of a doubly irreducible element x is denoted by x∗ and x∗, respectively.

Lemma 4.8. Let L be a glued sum indecomposable planar semimodular lattice with
a fixed planar diagram D. Then Cornpw(L) = {x ∈ L : x is a double irreducible
element, [x∗, x∗] ∈ Ivl2(L), and Trnk([x∗, x∗]) contains a weak corner of L with
respect to D}.

Proof. Let U denote the set on the left of the equality sign in the lemma. Firstly, to
prove the “⊇” inclusion, assume that x ∈ U . Let w be a weak corner ofD witnessing
that x ∈ U . Clearly, [w∗, w

∗] = [x∗, x∗]. Since both x and w are doubly irreducible
elements of [w∗, w

∗] ∈ Ivl2(L), there is an automorphism of L that interchanges w
and x but keeps the rest of elements fixed. Therefore, if we interchange the labels
w and x in the diagram D, we obtain a new diagram in which x is a weak corner.
Hence, x ∈ Cornpw(L), which proves that Cornpw(L) ⊇ U .
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To prove the converse inclusion, assume that v ∈ Cornpw(L). Then there is
an F ∈ Dgr(L) such that v is a weak corner with respect to F . This implies
that v ∈ JiL ∩ MiL. We obtain from Lemma 4.3 that v∗ has a cover y that
is distinct from v. Since v = v ∨ v∗ � v ∨ y 6= v by semimodularity and v∗

is the only cover of v, we obtain that v ∨ y = v∗ and I := [v∗, v∗] ∈ Ivl2(L).
This yields that if v happens to be a weak corner of D, then v ∈ U . So we can
assume that v is not a weak corner of D. Let L′

D be the full slimming sublattice
of L with respect to D. To get a contradiction, suppose that v ∈ L′

D. Then v
does not belong to int(L′

D , D) since otherwise it would be join-reducible by (2.10).
Hence, v ∈ Bnd(L′

D , D) = Bnd(L,D), implying that v is a weak corner of D, a
contradiction again.

Therefore, v ∈ L − L′
D. Let a resp. b denote the left weak corner resp. the right

weak corner of I with respect to D. In other words, a is the leftmost element of
Trnk(I), and b is the rightmost one. Clearly, a, b ∈ L′

D. Hence, |{v, a, b}| = 3.
It follows from v ∈ Bnd(L,F ), (2.6) and (2.9) that v belongs to Bnd(I, F ). This
together with |Bnd(I, F )| ≤ 2 and |{v, a, b}| = 3 yields that {a, b} 6⊆ Bnd(I, F ).
Let, say, b /∈ Bnd(I, F ). We conclude from (2.7) that v∗ is the only lower cover of b
and v∗ is the only upper cover of b. Hence, b ∈ JiL∩MiL. In particular, b ∈ JiL′

D .
Hence, (2.10) implies that b ∈ Bnd(L′

D , D) = Bnd(L,D). Therefore, b is a weak
corner of D. Thus v ∈ U . �

Lemma 4.9. Let L be a rectangular lattice, and let F be a planar diagram of L.
(Not necessarily the same that witnesses the rectangularity of L.) Then

(i) F has exactly one left weak corner wl(F ) and exactly one right weak corner
wr(F ), and they are complementary.

(ii) Consequently, all planar diagrams are “equally appropriate” when we want to
verify the rectangularity of a planar semimodular lattice.

(iii) Bnd(L,F ) − LBnd(L,F ) and Bnd(L,F ) − UBnd(L,F ) do not depend on
F ∈ Dgr(L).

Notice that 4.9(ii) will often be used implicitly.

Proof. We can assume that lengthL ≥ 3 since otherwise the statement is evi-
dent. Let D be a fixed planar diagram that witnesses the rectangularity of L.
In particular, we know that wl(D) and wr(D) are complementary elements. Let
ID
` := [wl(D)∗, wl(D)∗] and ID

r := [wr(D)∗, wr(D)∗] be the intervals of length 2
whose trunk contains wl(D) and wr(D), respectively.

Next, let F ∈ Dgr(L) be arbitrary. We know from (2.4) that there is a double
irreducible element x in Cl(L,F ) − {0, 1}. Lemma 4.8 implies that x ∈ Trnk(ID

` ) or
x ∈ Trnk(ID

r ). Let, say x ∈ Trnk(ID
` ); the other case would be left-right symmetric

and needs no separate treatment.
To get a contradiction, suppose that x′ is another weak corner of F such that

x′ is comparable with x. Let, say, x′ < x. Since x′∗ 6= x by Lemma 4.3, we have
that x′∗ ≤ x∗. We obtain x′ ∈ Trnk(ID

r ) from Lemma 4.8, and wr(D)∗ = x′∗ ≤
x∗ = wl(D)∗. Hence, wr(D) < wl(D) contradicts the fact that wl(D) and wr(D)
are complementary elements and they are distinct from 0 and 1. Consequently,

(4.5) no two distinct weak corners of F are comparable.
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In particular, since Cl(L,F ) is a chain, x is the only weak left corner of F ; so we
denote it by x = wl(F ). Clearly,

(4.6) wl(F )∗ = wl(D)∗ and wl(F )∗ = wl(D)∗.

Similarly, Cr(L,F ) has a unique doubly irreducible element y, and y ∈ Trnk(ID
` )

or y ∈ Trnk(ID
r ). Suppose, for a contradiction, that y ∈ Trnk(ID

` ). Then y∗ =
(wl(D))∗ = x∗ and y∗ = (wl(D))∗ = x∗. Since x∗ ∈ Cl(L,F ), x∗ = y∗ ∈ Cr(L,F ),
and L is glued sum indecomposable, it follows that x∗ = 0L. Dually, x∗ = y∗ ∈
Cl(L,F ) ∩ Cr(L,F ) yields that x∗ = 1L. This contradicts lengthL ≥ 3. Therefore
y = wr(F ) ∈ Trnk(ID

r ) is the unique right weak corner of F and we have that

(4.7) wr(F )∗ = wr(D)∗ and wr(F )∗ = wr(D)∗.

We know from (4.5) that wl(F ) ‖ wr(F ). Hence, (4.6) and (4.7) yield that wl(F )∧
wr(F ) = wl(F )∗ ∧wr(F )∗ = wl(D)∗ ∧wr(D)∗ = 0 and wl(F ) ∨wr(F ) = wl(F )∗ ∨
wr(F )∗ = wl(D)∗ ∨ wr(D)∗ = 1. That is, wl(F ) and wr(F ) are complementary
elements. This proves 4.9(i).

Next, (2.12) yields that

(4.8)
Bnd(L,F ) − LBnd(L,F ) = ↑wl(F )∗ ∪ ↑wr(F )∗ and

Bnd(L,F ) − UBnd(L,F ) = ↓wl(F )∗ ∪ ↓wr(F )∗,

proving 4.9(iii). Finally, (4.8), (4.6) and (4.7) imply 4.9(ii). �

5. Some properties that do not depend on the diagram chosen

Lemma 5.1. Let I be a rectangular interval of a slim semimodular lattice L. As-
sume that a ∈ I and b ∈ L − I such that a < b. Then [a, b]∩UBnd(L,D) 6= ∅, for
all D ∈ Dgr(L).

Proof. Let D ∈ Dgr(L). We know from Lemma 4.9(ii) that the rectangularity
of I is witnessed by D. It follows from (2.6) and (2.7) that there is a maximal
x ∈ Bnd(I) = Bnd(I,D) such that a ≤ x < b. Let x∗ be an atom in [x, b]; it is
not in I by the choice of x. If x /∈ UBnd(I), then x has at least two additional
covers in I by (2.14), which contradicts (2.1). Hence, x ∈ [a, b]∩ UBnd(I) proves
the statement. �

Lemma 5.2. Assume that I is a rectangular interval of a slim semimodular lat-
tice L and D ∈ Dgr(L). Then the intervals [0I, wl(I,D)]L and [0I, wr(I,D)]L are
chains.

Proof. To get a contradiction, suppose that, say, [0I , wl(I)]L is not a chain. Then
there is an x ∈ [0I , wl(I)]L − {wl(I)} with (at least) two distinct covers, y1 and y2,
in [0I, wl(I)]L. Let, say, y1 ∈ [0I, wl(I)]I (the interval within I). Then y2 /∈ I, since
[0I, wl(I)]I is a chain by (2.11) and (2.12). By (2.14), there is a y3 ∈ I − {y1} such
that x ≺ y3. Now we have three distinct covers of x, which contradicts (2.1). �

Lemma 5.3. If L is a planar semimodular lattice and u ∈ L − MiL, then any two
covers of u have the same join.

Proof. Fix a D ∈ Dgr(L), and let L′ be the full slimming sublattice of L with
respect to D. Then u ∈ L′. We obtain from (2.1) that u has exactly two covers, a
and b, within L′. Let v = a∨ b ∈ L′. All further covers of u in L are eyes belonging
to [u, v]. Hence, the join of arbitrary two distinct covers of u equals v. �
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For x ∈ L, the height of x is denoted by h(x). Let D ∈ Dgr(L) be fixed. Let
x, y ∈ L with h(x) = h(y). We say that x is on the left of y, with respect to D,
if for every (equivalently, some) maximal chain C of L that contains y, x is on the
left of C. (Equivalently, if y ∈ RS(C,D) for all maximal chains C that contain x.)
Let us emphasize that “x is on the left of y” implies that h(x) = h(y). If x is on the
left of y, x 6= y, and there is no z ∈ L − {x, y} such that x is on the left of z and z
is on the left of y, then y is the right neighbor of x (with respect to D). Clearly,

if x belongs a maximal chain C, h(x) = h(y), and y is (strictly)
on the left of x, then y is (strictly) on the left of C;

(5.1)

if x is on the left of y, y is on the left of x, and h(x) = h(y), then x = y;(5.2)

if x ∈ Cl(L) and h(x) = h(y), then x is on the left of y;(5.3)

each x ∈ L − Cr(L,D) has a unique right neighbor (with respect to D).(5.4)

Notice that these assertions imply, for a planar semimodular L, that

(5.5)
if a ∈ Cl(L,D), then Cl(↓a,D) = Cl(L,D) ∩ ↓a and

Cl(↑a,D) = Cl(L,D) ∩ ↑a.

Indeed, for x ∈ Cl(L,D) ∩ ↓a, let y denote the unique element of Cl(↓a,D) such
that h(x) = h(y). Applying (5.3) to L and also to ↓a, we obtain that x and y are
mutually on the left of each other. Hence, they are equal by (5.2), and the first
equality of (5.5) follows. The second one holds by duality.

The following lemma, which does not assume semimodularity, is the counterpart
of Lemma 5.3. Although it looks evident by our geometric intuition, its rigorous
proof needs a result borrowed from D. Kelly and I. Rival [17].

Lemma 5.4. Assume that a and b are the leftmost lower cover and the rightmost
lower cover of an element v in some planar diagram of a planar lattice L, respec-
tively. Then a ∧ b is the meet of all lower covers of v.

Proof. We can clearly assume that a 6= b. Let u = a ∧ b. By (2.6), I := [u, v] is
a region. Let C0 and C1 be maximal chains in ↓u and in ↑v, respectively. Then
W := C0∪Cl(I)∪C1 and E := C0 ∪Cr(I)∪C1 are maximal chains in L. It follows
from D. Kelly and I. Rival [17] that

(5.6)
I = {x ∈ L : x is on the right of W , x is and on the left of E,

x 6≤ u and x 6≥ v}.
Let x be a lower cover of v. Then x cannot be strictly on the left of W since then x
would be strictly on the left of the leftmost lower cover, a. Hence, x is on the right
of W and, similarly, on the left of E. This together with (5.6) shows that x ∈ I.
Hence, u = 0I ≤ x for all lower covers x of v, proving the lemma. �

Although the boundary of a planar semimodular lattice L is not unique in gen-
eral, see M3, the following assertion holds.

Lemma 5.5. Let L be a glued sum indecomposable, planar, semimodular lattice,
and let D be a planar diagram of L. Let I and J be rectangular intervals such that
I ∩ J is a chain. Then I ∩ J ⊆ Bnd(I,D) ∩ Bnd(J,D).

Proof. Let x be the least element of the chain I∩J . Assume first that x ∈ int(I,D)∩
int(J,D). Then x 6= 0L, so x has a lower cover y. By (2.6) and (2.8), y ∈ I ∩ J ,
contradicting the choice of x. This excludes that x ∈ int(I,D) ∩ int(J,D).
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Secondly, we assume that x ∈ Bnd(I,D)∩ int(J,D). By (2.6) and (2.8), all lower
covers of x belong to J . Hence, by the choice of x, no lower cover of x belongs to
I. This means that x = 0I . However, then x has at least two covers in I, and
these covers belong to J (and therefore to I ∩ J) by (2.6) and (2.8). This is a
contradiction since I ∩ J is a chain. Thus, taking the I-J symmetry into account,
we conclude that x /∈ Bnd(I,D) ∩ int(J,D) and x /∈ int(I,D) ∩ Bnd(J,D).

Therefore, x ∈ Bnd(I,D) ∩ Bnd(J,D). To get a contradiction, suppose that x
has more than one covers both in I and J . Let a1, a2 ∈ I and b1, b2 ∈ J be covers
of x such that a1 6= a2 and b1 6= b2. Let v := a1 ∨ a2 ∈ I. Since a1 ∨ a2 = b1 ∨ b2 by
Lemma 5.3, v ∈ J . By the convexity of I∩J , we have that {a1, a2} ⊆ [u, v] ⊆ I∩J ,
which is a contradiction since I ∩J is a chain. This proves that, say, x has at most
one cover in I. This fact together with (2.14) implies that x ∈ UBnd(I,D).

We are now in the position to show that each y ∈ I ∩ J belongs to Bnd(I,D) ∩
Bnd(J,D). We already know this if y = x. Hence, we can assume that y > x.
We obtain from x ∈ UBnd(I,D) and (2.12) that y ∈ UBnd(I,D) − LBnd(I,D).
Hence, (2.15) yields that y has at least two lower covers, z1 and z2, in I. If we
had y ∈ int(J,D), then (2.6) and (2.8) would imply {z1, z2} ⊆ J , and the antichain
{z1, z2} ⊆ I ∩ J would be a contradiction. Consequently, y ∈ Bnd(J,D), whence
y ∈ Bnd(I,D) ∩ Bnd(J,D) proves the statement. �

6. Some properties that depend only on the full slimming of L

Given a rectangular interval or, in particular, a patch (interval) I = [u, v] of
L, its bottom and top will sometimes be denoted by 0I = u and 1I = v, while
wl(I) = wl(I,D) and wr(I) = wr(I,D) stand for its weak corners, with respect to
D ∈ Dgr(L).

Lemma 6.1. Let L be a planar semimodular lattice, and let L′ be the full slimming
of L. Then L′ is a slim semimodular lattice, and the following five assertions hold.

(i) L is a patchwork-irreducible lattice iff so is L′;
(ii) L is a rectangular lattice iff so is L′;
(iii) L is a patch lattice (that is, a rectangular lattice whose weak corners are

coatoms, see also Lemma 4.9(ii)) iff so is L′;
(iv) L is glued sum indecomposable iff so is L′.
(v) L is indecomposable with respect to the Hall-Dilworth gluing over chains iff so

is L′.

Moreover, if D is a fixed planar diagram of L, L′ denotes the full slimming sublat-
tice of L with respect to D, and D′ is the restriction of D to L′, then the following
three assertions also hold.

(vi) Bnd(L,D) = Bnd(L′, D′).
(vii) Let a < b ∈ L. Then [a, b]L is a rectangular interval of L iff a, b ∈ L′ and

[a, b]L′ is a rectangular interval of L′. In particular, [a, b]L ∈ Patch(L) iff
a, b ∈ L′ and [a, b]L′ ∈ Patch(L′). Hence, [a, b]L ∈ MaxPatch(L) iff a, b ∈ L′

and [a, b]L′ ∈ MaxPatch(L′).
(viii) Let HHH = {[ai, bi]L : 1 ≤ i ≤ n} be a system of rectangular intervals of L, and

let HHH′ = {[ai, bi]L′ : 1 ≤ i ≤ n} be the corresponding system of rectangular
intervals of L′, see part (vii). Then HHH is a patchwork system for D iff HHH′ is
a patchwork system for D′.
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In connection with parts (vi)–(viii), notice that we often write D for D′ when
an interval or a sublattice of L is considered.

Proof. By Lemma 4.1 (see also Remark 4.2), we can assume that L′ is the full
slimming sublattice of L with respect to a fixed planar diagram D even in parts
(ii)–(v) of the lemma. We will have to be more careful with statement (i) since
the full slimming sublattice and the patchwork system may depend on different
diagrams. Similarly, L could have intervals I whose rectangularity comes from
diagrams distinct from the restriction of D to I, and this phenomenon would cause
a lot of difficulty while proving (vii).

We know from Proposition 2.1 that L′ is a slim semimodular lattice. We can
assume that L 6= L′. Let e ∈ L − L′ denote an arbitrary eye. The 4-cell {e∗, a, b, e∗}
of L′, see (2.16), will be denoted by S. The notation a = ae and b = be are also
used in the proof.

Since e ∈ int(S,D′) ⊆ int(L′, D′) by (2.9), we insert the eyes into the interior of
L′. Hence, Bnd(L,D) = Bnd(L′, D′). This gives (vi), which implies (ii) and (iii).
We also obtain (iv) since glued sum indecomposability in the planar case means
that the lattice in question has at least four elements and {0, 1} is the intersection
of the left and the right boundary chains.

Assume that an eye e belongs to a rectangular interval I. Since e ∈ MiL∩ JiL,
we obtain that e /∈ {0I, 1I}. Hence, [e∗, e∗] ⊆ I. Using (2.9), we conclude that
e ∈ int([e∗, e∗], D) ⊆ int(I,D). That is,

(6.1) e cannot be on the boundary of a rectangular interval of L.

In particular, (6.1) implies that an eye cannot be the bottom or the top of a
rectangular interval. Therefore, if we consider an interval I as the pair (0I , 1I),
then we can say that L′ and L has “exactly the same” rectangular intervals. This
implies the first half (vii). The rest of (vii) is then evident since L′ is a cover-
preserving sublattice of L.

While proving (viii), we use the following notation: for I ∈ HHH, we let I′ :=
I ∩ L′ = [0I, 1I]L′ ; and for J ′ ∈ HHH ′, we let J := [0J ′, 1J ′ ]L. By the definition of
HHH′, we have that

(6.2) K ∈ HHH iff K ′ ∈ HHH ′, and (I, J) ∈ E
(
HHH

)
iff (I′, J ′) ∈ E(HHH′).

Since the tops and the bottoms of covering squares are the same in L as in L′, (6.2)
yields that HHH satisfies 3.1(i) iff so does HHH′.

If HHH satisfies 3.1(ii), then so does HHH′, evidently. Before proving the converse
implication, we claim that, for all I, J ∈ HHH,

(6.3) if I′ ∩ J ′ is a chain, then I ∩ J = I′ ∩ J ′, whence I ∩ J is also a chain.

By way of contradiction, let us assume that (6.3) fails for some I, J ∈ HHH. Then
I∩J = [0I∨0J , 1I∧1J ]L contains an eye e. If 0I∨0J /∈ {0I , 0J}, then 0I∨0J is join-
reducible. If 0I∨0J ∈ {0I, 0J}, then 0I∨0J is meet-reducible. Hence, in both cases,
0I ∨0J /∈ JiL∩MiL. Dually, 1I ∧1J /∈ JiL∩MiL. Therefore, e /∈ {0I∨0J , 1I∧1J}.
Hence, 0I ∨0J < e < 1I ∧1J , and we conclude that 0I ∨0J ≤ e∗ < a < e∗ ≤ 1I ∧1J .
This yields that a ∈ I′∩J ′. We obtain b ∈ I′∩J ′ similarly, which is a contradiction
since I′ ∩ J ′ is a chain. This proves (6.3).

Next, assume that HHH′ satisfies 3.1(ii), and let (I, J) ∈ E
(
HHH

)
. Then (I′, J ′) ∈

E(HHH′) by (6.2), whence I′ ∩ J ′ is a chain. So is I ∩ J by (6.3). Hence, HHH also
satisfies 3.1(ii).
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As a preparation for 3.1(iii), assume that K ′ is an arbitrary rectangular interval
of L′. Equivalently, see 6.1(vii), we assume that K is a rectangular interval of L.
We claim that

(6.4)
K ′ is the full slimming sublattice of K
with respect to (the restriction of) D.

It suffices to show that if K contains an eye e ∈ L − L′, then {e∗, e∗} ⊆ K ′. But
this is easy: if 0K ≤ e ≤ 1K , then 0K < e < 1K since e ∈ JiL ∩ MiL, 0K /∈ MiL,
and 1K /∈ JiL. Hence, 0K ≤ e∗ < e < e∗ ≤ 1K , indeed.

Since D′ is a restriction of D, either of (6.1) and (6.4) yields that

(6.5) Cl(K ′, D′) = Cl(K,D) and Cr(K ′, D′) = Cr(K,D).

It follows from (2.13), (2.14) and (2.15) that, for every rectangular lattice R and
F ∈ Dgr(R),

(6.6)
UBnd(R,F ) = Bnd(R,F ) −

(
R − MiR

)
and

LBnd(R,F ) = Bnd(R,F ) −
(
R − JiR

)
.

Furthermore, it follows from (6.4) that K ′ − MiK ′ = K − MiK and K ′ − JiK ′ =
K − JiK. This together with (6.5) and (6.6) yields that

(6.7) UBnd(K ′, D′) = UBnd(K,D) and LBnd(K ′, D′) = LBnd(K,D).

Next, assume that HHH is a patchwork system for D. We have already seen that
HHH′ satisfies 3.1(i) and 3.1(ii). Let (I′, J ′) ∈ E(HHH′). Since (I, J) ∈ E

(
HHH

)
by (6.2),

we have that, say, I ∩J ⊆ UBnd(I,D)∩LBnd(J,D). Hence, using (6.7), we obtain
that I′ ∩ J ′ ⊆ I ∩ J ⊆ UBnd(I,D) ∩ LBnd(J,D) = UBnd(I′, D′) ∩ LBnd(J ′, D′).
This shows that HHH′ also satisfies 3.1(iii) for D′, so it is a patchwork system for D′.

Conversely, assume that HHH ′ is a patchwork system for D′. We have already seen
that HHH satisfies 3.1(i) and 3.1(ii). Let (I, J) ∈ E

(
HHH

)
. Since (I′, J ′) ∈ E(HHH′) by

(6.2), we have that I′∩J ′ is a chain and, say, I′∩J ′ ⊆ UBnd(I′, D′)∩LBnd(J ′, D′).
Consequently, using (6.3) and (6.7), we obtain that I∩J = I′∩J ′ ⊆ UBnd(I′, D′)∩
LBnd(J ′, D′) = UBnd(I,D) ∩ LBnd(J,D). Hence, HHH satisfies 3.1(iii) for D. Thus
it is a patchwork system for D. This completes the proof of (viii).

Next, armed with (viii), we derive (i). Assume that L is patchwork-reducible.
Then there is a D ∈ Dgr(L) and there is a nontrivial patchwork system HHH for D.
Let L′

D be the full slimming sublattice of L with respect to D. We conclude from
(viii) that HHH ′ = HHH′

D is a nontrivial patchwork system for (the diagram restricted to)
L′

D. Hence, L′
D is patchwork-reducible, and so is L′ since L′ ∼= L′

D by Lemma 4.1.
Conversely, assume that L′ is patchwork-reducible. Hence, there is a D′ in

Dgr(L′) such that there is a nontrivial patchwork system HHH ′ for D′. Let F ∈
Dgr(L), and take the full slimming sublattice L0 of L determined by F . Clearly,
Fmir would determine the same full slimming sublattice L0. The restriction of F to
L0 is denoted by F0. We know from Lemma 4.1 (and Remark 4.2) that there exists
a lattice isomorphism ϕ : L′ → L0. After replacing F by Fmir if necessary, we obtain
from Lemma 4.7 that ϕ : (L′, D′) → (L0, F0) is a directed diagram isomorphism.
Since 3.1(iii) is based on concepts preserved by this sort of isomorphisms, ϕ(HHH ′) =
{ϕ(I) : I ∈ HHH ′} is a nontrivial patchwork system for F0. Hence, 6.1(viii) yields
a nontrivial patchwork system for F , proving that L is patchwork-reducible. This
proves (i).
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To prove the “if” part of (v), we assume that L is GC-decomposable; we have to
show that so is L′. By the assumption, there are a proper ideal I and a proper filter
F of L such that L = I∪F and C := I∩F is a chain. Let I′ := I∩L′, F ′ := F ∩L′,
and C′ := C ∩ L′ = I′ ∩ F ′. Clearly, L′ = I′ ∪ F ′. Suppose, for a contradiction,
that C′ = ∅. Then C contains an eye e since C 6= ∅. Using that C′ is empty
and {e∗, e∗} ⊆ L′, we infer that {e∗, e∗} ∩ C = ∅. It follows from e∗ < e ∈ I and
e∗ /∈ C that e∗ ∈ I − F . Dually, we obtain that e∗ ∈ F − I. Using L = I ∪ F ,
we have that a = ae ∈ I or a ∈ F . However, a ∈ I gives that e∗ = e ∨ a ∈ I,
contradicting e∗ ∈ F − I, while a ∈ F gives that e∗ = e ∧ a ∈ F , contradicting
e∗ ∈ I − F . This contradiction yields that C′ is nonempty, indeed. So C′ is a
chain since C′ ⊆ C. Since 0L and 1L are not eyes, they belong to L′, and 1L′ = 1L

and 0L′ = 0L. Hence, if 1L′ belonged to I′, then 1L ∈ I would contradict I 6= L.
Therefore, 1L′ /∈ I′ shows that I′ is a proper ideal of L′. Working with 0L′ = 0L

dually, we obtain that F ′ is a proper filter of L′. Thus L′ is GC-decomposable.
This proves the “if” part of (v).

To prove the “only if” part of (v), we next assume that L′ is GC-decomposable,
and we have to show that so is L. By the assumption, there are u, v ∈ L′ such that
L′ = [0, v]L′ ∪ [u, 1]L′, 0 < u ≤ v < 1, and C′ := [u, v]L′ = [0, v]L′ ∩ [u, 1]L′ is a
chain. Define I := [0, v]L and F := [u, 1]L. Then I and F are proper subsets of L
since u 6= 0 and v 6= 1. To get a contradiction, suppose that C := [u, v]L = I ∩ F
contains an eye. Then e ∈ [u, v]L − {u, v} since e ∈ L − L′. Hence, e∗, e∗ ∈ [u, v]L
implies that the 4-cell S is included in the chain C′ = [u, v]L′, a contradiction. Thus
we conclude that C = C′, whence C is a chain in L. To get another contradiction,
suppose that L 6= I ∪ F . Then there is an eye e such that e /∈ I = [0, v]L and
e /∈ F = [u, 1]L. Hence, e∗ /∈ [0, v]L and e∗ /∈ [u, 1]L. Using e∗ = a ∧ b and
e∗ = a ∨ b, we conclude that {a, b} 6⊆ [0, v]L and {a, b} 6⊆ [u, 1]L. In fact, it is
more reasonable to write {a, b} 6⊆ [0, v]L′ and {a, b} 6⊆ [u, 1]L′ since a, b ∈ L′. On
the other hand, {a, b} ⊆ L′ = [0, v]L′ ∪ [u, 1]L′. Therefore, we have that, say,
a ∈ [0, v]L′ − [u, 1]L′ and b ∈ [u, 1]L′ − [0, v]L′. It follows from e∗ /∈ [u, 1]L, e∗ < b
and b ∈ [u, 1]L′ that e∗ < e∗ ∨ u ≤ b. This together with e∗ ≺ b implies that
e∗∨u = b. We know that u belongs to [0, v]L′. Since e∗ ≤ a ∈ [0, v]L′, we have that
e∗ also belongs to [0, v]L′. Therefore, b = e∗ ∨u ∈ [0, v]L′, which is a contradiction.
Thus L = I ∪ F , and L is GC-decomposable. This proves (v). �

7. Getting rid of diagrams

The fact that many of our concepts depends (at least formally) on the diagram
chosen causes a lot of inconvenience. The aim of this section is to get rid of this
difficulty by proving Proposition 3.2. The following lemma is not surprising.

Lemma 7.1. Let I be a rectangular interval of a planar semimodular lattice L,
and let D ∈ Dgr(L). Assume that x ∈ I − Cr(I,D). Then the right neighbor of x
(in L, with respect to D) exists, and it belongs to I.

Proof. Let C0 and C1 be maximal chains in ↓0I and ↑1I , respectively. Clearly, there
are a unique s ∈ Cl(I,D) and a unique t ∈ Cr(I,D) such that h(s) = h(t) = h(x).
If we had that x ∈ Cr(L,D), then the left-right dual of (5.3), applied to I and also
to L, would imply that x and t are mutually on the right of each other, whence (5.2)
would yield that x = t ∈ Cr(I,D), a contradiction. Hence, x /∈ Cr(L,D). Therefore,
in virtue of (5.4), the (unique) right neighbor y of x makes sense. Moreover, the
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left-right dual of (5.3) together with x /∈ Cr(I,D) implies that t is strictly on the
right of x. Consequently, y is on the left of t, whence y is on the left of the maximal
chain C0 ∪ Cr(I,D) ∪C1. On the other hand, s is on the left of x by (5.3), which
yields that s is on the left of y. This gives that y is on the right of C0∪Cl(I,D)∪C1.
Finally, y ∈ I follows by (5.6). �

Proof of Proposition 3.2. In order to show that (i) ⇒ (ii), we assume (i). Let D ∈
Dgr(L) be a diagram witnessing that 3.1(iii) holds. Consider a pair (I, J) ∈ E

(
HHH

)
.

By the assumptions, I∩J is a chain and, say, I∩J ⊆ UBnd(I,D)∩LBnd(J,D). Let
F ∈ Dgr(L) be another diagram. We already know from Lemma 5.5 that I ∩ J ⊆
Bnd(I, F )∩Bnd(J, F ). If we have an element x ∈ I ∩J such that x ∈ Bnd(I, F ) −
UBnd(I, F ), then x has at least two covers within I by (2.14), applied to F , but
this contradicts (2.13), applied to D. Hence, I ∩ J ⊆ UBnd(I, F ). Similarly, if we
have an element x ∈ I ∩ J such that x ∈ Bnd(J, F ) − LBnd(J, F ), then x has at
least two lower covers within J by (2.15), applied to F , but this contradicts (2.13),
applied to D. Hence, I ∩ J ⊆ LBnd(J, F ). Thus I ∩ J ⊆ UBnd(I, F )∩LBnd(J, F ),
which means that (ii) holds.

Next, to show that (ii) ⇒ (iv), we assume (ii). Let D ∈ Dgr(L). By the I-J
symmetry, we can assume that I ∩ J ⊆ UBnd(I,D) ∩ LBnd(J,D). Suppose, for
a contradiction, that I ∩ J 6⊆ Cur(I,D) and I ∩ J 6⊆ Cul(I,D). Then there are
x, y ∈ I ∩ J such that x ∈ Cul(I,D) − Cur(I,D) and y ∈ Cur(I,D) − Cul(I,D).
Since I ∩ J is a chain, we can assume by left-right symmetry that x ≤ y. Using
(2.12) and Lemma 4.9(ii), we obtain that 1I = wl(I,D)∨wr(I,D) ≤ x∨y = y ≤ 1I ,
which gives that y = 1I ∈ Cul(I,D), a contradiction. This shows that

(7.1) I ∩ J ⊆ Cul(I,D) or I ∩ J ⊆ Cur(I,D).

The dual argument yields that

(7.2) I ∩ J ⊆ Cll(J,D) or I ∩ J ⊆ Clr(J,D).

We can assume that the disjunction “or” is an exclusive disjunction both in (7.1)
and (7.2) since otherwise the desired 3.2(iiib) for D would trivially hold. Hence, by
the left-right symmetry and keeping the targeted 3.2(iiib) in mind, we can suppose
for a contradiction that

(7.3)
I ∩ J ⊆ Cul(I,D), I ∩ J 6⊆ Cur(I,D),

I ∩ J ⊆ Cll(J,D), and I ∩ J 6⊆ Clr(J,D).

Firstly, we assume that there is a u ∈ (I ∩ J) − {1I, 0J}. Then u /∈ Cr(I,D) since
Cul(I,D) ∩ Cr(I,D) = {1I}. Similarly, u /∈ Cr(J,D) since Cll(J,D) ∩ Cr(J,D) =
{0J}. Hence, by Lemma 7.1, the right neighbor v of u with respect to D exists, and
it belongs to I∩J . However, then u ‖ v together with u, v ∈ I∩J is a contradiction
since I ∩ J is a chain.

Secondly, we assume that there is no such u. By (7.3), we can select x, y ∈ I ∩ J
such that x ∈ Cul(I,D) − Cur(I,D) and y ∈ Cll(J,D) − Clr(J,D). Notice that
x /∈ Cr(I,D) since I∩J ⊆ UBnd(I,D), and y /∈ Cr(J,D) since I∩J ⊆ LBnd(J,D).
If we had x ≥ y, then u := x (or u := y) would lead to the previous case. Hence,
we assume that x < y. If we had x 6= 0J or y 6= 1I , then u := x or u := y would
again lead to the previous case. Hence, x = 0J and y = 1I . We can also assume
that 0J = x ≺ y = 1I since otherwise, using the convexity of I ∩J , we could choose
a u ∈ I ∩ J ∩ [x, y] − {x, y}, which would lead to the previous case again. Let z
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be the unique atom of J that belongs to Cr(J,D). Similarly, let t be the unique
coatom of I that belongs to Cr(I,D).

Extend Cr(I,D)∪{s ∈ Cl(J,D) : s ≥ y = 1I} to a maximal chain C of L. Since
h(0J ) = h(1I) − 1 = h(t) ∈ Cr(I,D) ⊆ C and 0J = x /∈ Cr(I,D), we obtain from
the left-right dual of (5.3) that 0J is strictly on the left of t. Hence, (5.1) yields
that 0J is strictly on the left of C. Similarly, 1I = y /∈ Cr(J,D) together with the
left-right dual of (5.3) gives that z is strictly on the right of 1I = y ∈ C, whence
(5.1) yields that z is strictly on the right of C. However, then 0J ≺ z contradicts
(2.5). Thus (7.3) leads to a contradiction, proving (ii) ⇒ (iv).

The implication (iii) ⇒ (i) is evident. So is (iv) ⇒ (iii) since L is planar. �

8. Patch lattices

We are not in the position of proving Theorem 3.4 yet. However, some of its
parts will be needed in the next sections. Now we prove these parts.

Lemma 8.1. (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔ (vi) of Theorem 3.4 hold.

Proof. (ii) ⇒ (iii) is obvious.
By Lemma 6.1, it suffices to prove the implication (iii) ⇒ (iv) only for slim

semimodular lattices. Hence, assume that L is a slim semimodular lattice and (iii)
holds. Let D ∈ Dgr(L). We know from (2.4) that there is a double irreducible
element in Cl(L,D) − {0, 1}. In fact, there is a smallest one since Cl(L,D) is a
chain; we denote it by a. Let b0 denote the smallest element of Cr(L,D) − ↓a, and
let (b0)∗ be the unique lower cover of b0 that belongs to Cr(L,D). Let c := a ∨ b0.
From semimodularity and a = a ∨ (b0)∗, we obtain that a ≺ c. Since Cl(L,D) is a
chain and a ∈ Cl(L,D) has exactly one cover in L, we conclude that c ∈ Cl(L,D).
Let b be the largest element of Cr(L,D) ∩ ↓c. Then c = a ∨ b since b0 ≤ b ≤ c and
c = a ∨ b0.

Assume that z1, z2 ∈ ↓c ∩ ↑b = [b, c]. By (2.10), there are xi ∈ Cl(L,D) and
yi ∈ Cr(L,D) such that zi = xi ∨ yi, for i ∈ {1, 2}. By the definition of b and
zi ≤ c, we know that yi ≤ b. Hence, zi = zi ∨ b = xi ∨ b, for i ∈ {1, 2}. Since
x1, x2 ∈ Cl(L,D) are comparable, so are z1 and z2. This together with b ≤ c
shows that ↓c ∩ ↑b is a chain. Next, consider an arbitrary z ∈ L; we want to show
that z ∈ ↓c ∪ ↑b. By (2.10), z = x ∨ y for some x ∈ Cl(L,D) and y ∈ Cr(L,D).
We can assume that y < b since otherwise z ∈ ↑b. Then we can assume that
c < x since otherwise z = x ∨ y ≤ c ∨ b = c would mean that z ∈ ↓c. Therefore,
b ≤ c < x ≤ x ∨ y = z, that is, z ∈ ↑b. This shows that L = ↓c ∪ ↑b.

Thus, by (iii), either ↓c = L or ↑b = L. But (b0)∗ < b0 ≤ b excludes the
latter, so ↓c = L, which means that c = 1. This shows that the smallest (and
therefore every) doubly irreducible element on the left boundary is a coatom. In
particular, there is exactly one left weak corner with respect to D; it is a coatom
and it will be denoted by wl(D). Similarly, there is exactly one right weak corner
wr(D). Since L is glued sum indecomposable, Cl(L,D) ∩ Cr(L,D) = {0, 1}. This
yields that wl(D) 6= wr(D). Hence, wl(D) ∨wr(D) = 1 since they are coatoms. If
wl(D) ∧wr(D) = 0, then (iv) is clear.

To get a contradiction, suppose that ↓wl(D) is not a chain. By Lemma 2.3,
↓wl(D) has a glued some indecomposable component A. Obviously, Cl(A,D) ∩
Cr(A,D) = {0A, 1A}. Hence, (2.4) yields an element s ∈ Cl(A,D) − Cr(A,D) such
that s is doubly irreducible within A. It is obvious by Lemma 2.3 that Cr(A,D) ⊆
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Cr(↓wl(D), D) and, taking (5.5) into account,

Cl(A,D) ⊆ Cl(↓wl(D), D) ⊆ Cl(L,D).

Hence, we conclude that s ∈ Cl(L,D) − Cr(↓wl(D), D). Moreover, s is doubly
irreducible also within ↓wl(D). Let s∗ denote the unique cover of s in

Cl(↓wl(D), D) ⊆ Cl(L,D).

Evidently, s is join-irreducible not only in ↓wl(D) but also in L. Since wl(D) is the
only doubly irreducibly element (that is, a weak left corner) on the left boundary
of L and s < 1A ≤ wl(D), we conclude that s is meet-reducible in L. Therefore,
s has a cover s′ ∈ L − ↓wl(D). Notice that s′ 6= s∗. Hence, (5.3) yields that s′ is
strictly on the right of s∗, and we obtain from (5.1) that s′ is strictly on the right
of the maximal chain Cl(L,D) = Cl(↓wl(D), D) ∪ {1}. If s′ was on the left of the
maximal chain C := Cr(↓wl(D)) ∪ {1}, then (5.6) (with 0 and wl(D) acting as u
and v, respectively) would imply that s′ ∈ ↓wl(D). Therefore

(8.1) s′ is strictly on the right of C.

Let t ∈ Cr(A,D) ⊆ Cr(↓wl(D), D) ⊆ C be the unique element with h(t) = h(s).
Then s 6= t since s /∈ Cr(A,D). It follows from (5.3) that s is strictly on the left of
t. Hence, (5.1) gives that s is strictly on the left of C. However, this fact together
with (8.1) and s ≺ s′ contradicts (2.5), proving that ↓wl(D) is a chain.

Therefore, ↓wl(D) ⊆ Cl(L,D) and, similarly, ↓wr(D) ⊆ Cr(L,D). Combining
this with the glued sum indecomposability of L, we conclude that wl(D)∧wr(D) ∈
Cl(L,D)∩Cr(L,D) = {0, 1}. This gives the desired wl(D)∧wr(D) = 0. Thus (iv)
holds, proving the implication (iii) ⇒ (iv).

The implication (iv) ⇒ (v) is evident.
Assume (v). Then L has two coatoms whose meet is 0, whence (vi) follows easily

from Lemma 5.4. This proves that (v) ⇒ (vi).
To show (vi) ⇒ (ii), take a fixed planar diagram of L. Let a and b be the leftmost

and the rightmost coatoms of L, respectively. Assume that I is an ideal and F is a
filter of L such that L = I ∪F and I ∩F 6= ∅. We have to show that L ∈ {I, F}. If
a, b ∈ F , then F = L since 0 = a∧b ∈ F . If a, b ∈ I, then I = L since 1 = a∨b ∈ I.
Therefore, since {a, b} ⊆ L = I ∪ F , we can assume that, say, a ∈ I and b ∈ F .
Consider the smallest element of I ∩ F . Clearly, it is 0F . If 0F = 0, then F = L.
Hence, we can assume that 0 < 0F . Since 0F ≤ a would lead to the contradiction
0 < 0F ≤ a ∧ b = 0, we conclude that 0F 6≤ a. Hence, 1 = a ∨ 0F ∈ I, implying
that I = L. Thus (vi) ⇒ (ii). �

9. Some properties of patch intervals

The lemmas of this section formulate some properties of patch intervals, also
called patches, of L. Eventually, these properties will be easy consequences of
Theorem 3.6. However, we have to prove them now since they will be used in the
proof of Theorem 3.6.

Lemma 9.1. Let I and J be patches of a slim semimodular lattice L such that 0J ∈
I − UBnd(I) = I − {1I , wl(I), wr(I)}. Then I ⊆ J or J ⊆ I. (By Lemma 4.9, the
choice of D ∈ Dgr(L) is irrelevant.)

Proof. Assume that J 6⊆ I. Then {wl(J), wr(J)} 6⊆ I since otherwise 1J = wl(J) ∨
wr(J) ∈ I and the convexity of I would imply that J ⊆ I. Let, say, wl(J) /∈
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I. Applying Lemma 5.1 to 0J < wl(J), we obtain an element x ∈ UBnd(I) =
UBnd(I,D) such that 0J ≤ x ≤ wl(J). In fact, we have that 0J < x < wl(J) by
the assumptions. There are four cases to consider.

Case 1. Assume that x = wr(I). Since 0J < x = wr(I) and [0I, wr(I)] = Clr(I)
is a chain by (2.11) and (2.12), 0J has a unique cover y1 in Clr(I) ⊆ Cr(I). By
(2.14), 0J has another cover y0 ∈ I, which is strictly on the left of y1. Since
y1 ∈ [0J , wr(I)] ⊂ [0J , wl(J)] ⊆ Cl(J), (2.14) yields that 0J has a cover y2 ∈ Cr(J),
which is strictly on the right of y1. Their position shows that y0, y1 and y2 are
three distinct covers of 0J . Thus the present case is excluded by (2.1).

Case 2. Assume that x = wl(I) and wr(J) ∈ I. Then wl(I) < wl(J). This together
with wl(J) 6≥ wr(J) give that wl(I) 6≥ wr(J). So wl(I) < wl(I) ∨wr(J) ∈ I yields
that wl(I) ∨ wr(J) = 1I . Since J 6⊆ I, we know that 1J 6= 1I . But 1I = wl(I) ∨
wr(J) ≤ wl(J)∨wr(J) = 1J , so wr(J) ≤ 1I < 1J . Combining this with wr(J) ≺ 1J ,
we obtain that wr(J) = 1I . Hence, wl(I) ≤ wl(J) ∧ 1I = wl(J) ∧ wr(J) = 0J and
0J ≤ x = wl(I) give that 0J = wl(I), contradicting the assumptions of the lemma.
Thus this case is excluded again.

Case 3. Assume that x = wl(I) and wr(J) /∈ I. Again, we know that wl(I) < wl(J).
Applying Lemma 5.1 to 0J < wr(J), we obtain a y ∈ UBnd(I) = {wl(I), wr(I), 1I}
such that 0J ≤ y ≤ wr(J). If we had that y ∈ {wl(I), 1I}, then wl(I) ≤ y < wr(J)
together with wl(I) < wl(J) would give that wl(I) ≤ wl(J) ∧ wr(J) = 0J ∈ I,
implying 0J ∈ {wl(I), 1I}, a contradiction. Hence, y = wr(I), and we have that
wr(I) ≤ wr(J). By the definition of x and y, we know that wl(I) ∈ [0J , wl(J)] and
wr(I) ∈ [0J , wr(J)]. Hence, 0J ≤ wl(I) ∧ wr(I) ≤ wl(J) ∧ wr(J) = 0J , that is,
0J = wl(I)∧wr(I) = 0I. This and 1J = wl(J)∨wr(J) ≥ wl(I)∨wr(I) = 1I yields
that I ⊆ J , as desired.

Case 4. Assume that x = 1I . Applying Lemma 5.1 to 0J < wr(J) again, we obtain
a y ∈ UBnd(I) = {wl(I), wr(I), 1I} such that 0J ≤ y ≤ wr(J). The possibility
y ∈ {wl(I), wr(I)} belongs, apart from notation and left-right symmetry, to the
scope of the previous three cases. Hence, we can assume that y = 1I . However,
then 0J ≤ x ∧ y ≤ wl(J) ∧ wr(J) = 0J implies that 0J = x ∧ y = 1I ∧ 1I = 1I ,
contradicting the assumptions of the lemma. So this case is excluded. �
Lemma 9.2. Let I and J be maximal patches of a planar semimodular lattice L.
If they have the same top, then they coincide. Moreover, 0I is the intersection of
all lower covers of 1I.

Proof. Let us fix a planar diagram D of L, and keep Lemma 4.9(ii) in mind. Alter-
natively, no matter how D is fixed since the concept of a (maximal) patch interval
does not depend on D; this fact is due to (ii) or (iii) of Lemma 8.1, which clearly do
not depend on D. With respect to D, let a and b be the leftmost and the rightmost
lower covers of 1I = 1J , respectively, and let u := a ∧ b. Then a and b are the left-
most coatom and the rightmost coatom of K := [u, 1I]. By the (iv) ⇔ (v) part of
Lemma 8.1, we conclude that K ∈ Patch(L). Since wl(I), wr(I), wl(J), wr(J) ∈ K
by Lemma 5.4, 0I = wl(I) ∧ wr(I) and 0J also belong to K. Hence, I, J ⊆ K.
Therefore, I, J ∈ MaxPatch(L) yields that I = K = J . We have also obtained that
0I = 0K = a ∧ b. In virtue of Lemma 5.4, this proves the second part. �

Lemma 9.3. Let I and J be maximal patches of a slim semimodular lattice L.
Then either I = J , or I and J are disjoint, or I ∩ J is a chain.
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Proof. Let D ∈ Dgr(L) be fixed. Let a, b ∈ I ∩ J such that a ‖ b; we have to
show that I = J . By Lemma 9.2, this is clear if 1I = 1J . Suppose, by way of
contradiction, that 1I 6= 1J . Then, say, 1I 6≥ 1J . Lemma 5.1, applied to I and
a, b ≤ 1J , yields elements a′, b′ ∈ {wl(I), wr(I), 1I} such that a ≤ a′ < 1J and
b ≤ b′ < 1J .

If 1I ∈ {a′, b′}, then 1I ≤ 1J . Otherwise, if we had a′ = b′ ∈ {wl(I), wr(I)},
then a and b would belong to the same chain (in I) by (2.11) and (2.12), which
would contradict a ‖ b. Hence, {a′, b′} = {wl(I), wr(I)}, which gives that 1I =
wl(I) ∨ wr(I) = a′ ∨ b′ ≤ 1J . Hence, in all cases, 1I ≤ 1J . So 1I < 1J since they
are distinct. Therefore, the convexity of J , a ∈ J , and a ≤ 1I < 1J yield that
1I ∈ J − {1J}.

Assume first that 1I ∈ Bnd(J); then 1I ∈ Bnd(J) − {1J} = LBnd(J). Let, say,
1I ∈ Cll(J). Then a ‖ b belong to the same chain Cll(J) of J by (2.11) and (2.12),
a contradiction. Hence, 1I is in the interior of J , whence its lower covers, wl(I) and
wr(I), belong to J by (2.6) and (2.8). Consequently, 0I = wl(I)∧wr(I) ∈ J . Hence,
0J ≤ 0I < 1I < 1J ∈ J yields that I ⊂ J , contradicting I, J ∈ MaxPatch(L). �

Lemma 9.4. Let L be a slim semimodular lattice with a fixed D ∈ Dgr(L), and
let I, J ∈ MaxPatch(L) such that |I ∩ J | = 1. Then, up to I-J and left-right
symmetries, either I ∩ J = {wr(I,D)} = {wl(J,D)}, or I ∩ J = {1I} = {0J}.

The direct square 32 of the three-element chain shows that both cases can occur.

Proof of Lemma 9.4. Let x denote the unique element of I ∩ J . There are several
cases to consider.

Case 1. Assume that x ∈ {0I , 1I, 0J , 1J}. Firstly, let x ∈ {1I, 1J}, say, x = 1I .
Since I contains all lower covers of x by Lemma 9.2 but none of these lower covers
are in J since |I ∩ J | = 1, we conclude that x = 0J , as desired. Secondly, let
x ∈ {0I , 0J}, say, x = 0I . By (2.1) and the definition of a patch lattice, x has
exactly two covers in L, and both covers of x belong to I. Since none of these
covers can belong to J by |I ∩ J | = 1, we obtain that x = 1J , as desired.

Case 2. To get a contradiction, suppose that x ∈ int(I) ∪ int(J). Say, x ∈ int(J).
Then, by (2.6) and (2.8), all upper covers of x belong to J . But none of them can
belong to the singleton set I ∩ J , whence we obtain x = 1I . By the previous case,
this implies that 0J = x ∈ int(J), which is a contradiction.

Case 3. Suppose, for a contradiction, that x ∈ LBnd(J) − {0J , wl(J,D), wr(J,D)},
or the same holds for I. Then x has exactly two covers , x1 and x2, in J by (2.1)
and (2.14). Since {x1, x2}∩I = ∅ by |I∩J | = 1, (2.1) and the convexity of I imply
that x = 1I. Hence, the first case we considered gives that x = 0J , a contradiction.

Case 4. Assume that x ∈ {wl(I), wr(I), wl(J), wr(J)}, where wl(I) stands for
wl(I,D), etc. We can also assume that x ∈ {wl(I), wr(I)} ∩ {wl(J), wr(J)} since
otherwise the situations belongs to the scope of one of the previous cases. To com-
plete the proof, we have to exclude that x = wl(I) = wl(J) or x = wr(I) = wr(J).
To get a contradiction, suppose that, say, x = wl(I) = wl(J). We know from
Lemma 9.2 that 1I is distinct from 1J . Clearly, both of them cover x, whence they
are the only covers of x by (2.1). Let, say, 1I be on the left of 1J . It follows from
semimodularity that S = {x, 1I, 1J , 1I ∨1J} is a 4-cell with Cl(S) = {x, 1I, 1I ∨1J}
and Cr(S) = {x, 1J , 1I∨1J}. Let C0 and C1 be maximal chains of ↓x and ↑(1I∨1J ),
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respectively. Let W = C0 ∪ Cl(S) ∪ C1 and E = C0 ∪ Cr(S) ∪ C1. Since wr(I)
is strictly on the right of wl(I) = x ∈ E and h(wr(I)) = h(wl(I)), we conclude
from the left-right dual of (5.1) that wr(I) is strictly on the right of E. Using
1J ∈ E and h(1J ) = h(x) + 1 = h(1I) similarly, we obtain from (5.1) that 1I is
strictly on the left of E. Thus (2.5) applies to T and wr(I) ≺ 1I , and we obtain a
contradiction. �

Lemma 9.5. For a slim semimodular lattice L with a fixed D ∈ Dgr(L), let I, J ∈
MaxPatch(L) such that at least one of the following two conditions holds:

(i) |I ∩ J | ≥ 3;
(ii) J ∩ int(I,D) is nonempty, or I ∩ int(J,D) is nonempty.

Then I = J .

Proof. To prove part (i) by way of contradiction, we suppose that I 6= J but
|I ∩ J | ≥ 3. We have that I ‖ J since they are maximal patches. Let x be the
least element of I ∩ J . Since I ∩ J is a chain by Lemma 9.3 and |I ∩ J | ≥ 3,
x /∈ UBnd(I) = UBnd(I,D) and x /∈ UBnd(J). It follows from Lemma 9.1 that
x /∈ {0I , 0J}. First we consider the case when x is meet-reducible. Then, by
(2.1), x has exactly two covers. Both of these covers belongs to I, either since
x ∈ Bnd(I) − UBnd(I) and (2.14) applies, or since x ∈ int(I) and (2.8) together
with (2.6) says so. By the same reason, both covers of x belongs to J . But this is
impossible since I∩J is a chain. Therefore, x is in MiL, whence also in Mi I∩Mi J .
This, x /∈ UBnd(I), x /∈ UBnd(J), and (2.14) yield that x ∈ int(I) ∩ int(J). By
(2.6) and (2.8), all lower covers of x are in I ∩ J . This contradicts the choice of x.

To prove part (ii) by way of contradiction, we suppose that x ∈ int(I) ∩ J and
I 6= J . By Lemma 9.4, |I ∩ J | 6= 1. Hence, |I ∩ J | = 2 by part (i). Since I ∩ J is a
convex sublattice, it is of the form {x, y}, where either x ≺ y, or y ≺ x.

Assume first that x ≺ y. If y belonged to Ji I, which equals LBnd(I) − {0I} by
(2.10) and (2.13), then x would belong to LBnd(I) by (2.12), which would contradict
x ∈ int(I). Hence, y is join-reducible in I and y ∈ int(I)∪{1I}. Consequently, y has
at least two lower covers in I. All lower covers (taken in L) of y belong to I either
since y = 1I and Lemma 9.2 applies, or since y ∈ int(I) and (2.8) together with
(2.6) applies. Since |I∩J | = 2, y has only one lower cover (namely, x) in J . That is,
y ∈ JiJ = LBnd(J) − {0J} by (2.10) and (2.13). Hence, x ∈ Bnd(J) − UBnd(J)
by (2.12), and x has exactly two upper covers in J by (2.14) and (2.1). Both of
these upper covers belong also to I by (2.6) and (2.8) since x is in the interior of I.
Therefore, I ∩ J has at least three distinct elements, x and its upper covers, which
contradicts part (i) of the present lemma.

Secondly, we assume that y ≺ x. All lower covers of x belong to I by (2.6) and
(2.8). Hence, y is the only lower cover of x in J since otherwise |I ∩ J | ≥ 3 would
contradict part (i) of the present lemma. Consequently, x ∈ Ji J = LBnd(J) − {0J}
by (2.10) and (2.13). Hence, y ∈ Bnd(J) − UBnd(J) by (2.12). Moreover, y
has exactly two upper covers in J (and also in L) by (2.14) combined with (2.1).
These upper covers of y are x and, say, x′. Since x ∈ int(I), either y ∈ int(I),
or y ∈ Bnd(I) − UBnd(I). In both cases, either by (2.6) and (2.8), or by (2.14)
combined with (2.1), x, x′ ∈ I. Hence, x, x′ and y are three distinct elements of
I ∩ J , which contradicts part (i) again. �
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10. Proving the main results and their corollaries

Proof of Proposition 2.4. Part (i) is [6, Lemma 22]. To prove part (ii), observe
that if we add forks to a fixed diagram, then the left and the right weak corners,
and also the principal filters they determine, do not change. Hence, there is a
D ∈ Dgr(L) such that G ∼= ↑wl(L,D) × ↑wr(L,D). Therefore, part (ii) follows
from Lemma 4.9. Part (iii) is included in (the last sentence of) [6, Theorem 11].
Finally, the existence in part (iv) follows from Proposition 2.1 and Lemma 6.1(ii),
while Lemma 4.1 yields the uniqueness. �

Proof of Theorem 3.6. First we deal with the particular case when L is a glued
sum indecomposable slim semimodular lattice. Fix a planar diagram D of L. Since
S ⊆ [0S , 1S] ∈ Patch(L) holds for all covering squares S of L, we conclude that
3.1(i) holds in MaxPatch(L). So does 3.1(ii) by Lemma 9.3. To show 3.1(iii),
assume that (I, J) ∈ E

(
MaxPatch(L)

)
. Then 1 ≤ |I ∩ J | ≤ 2 by Lemma 9.5. Since

3.1(iii) clearly holds by Lemma 9.4 if |I ∩ J | = 1, we assume that |I ∩ J | = 2.
Then I ∩ J is of the form {x ≺ y} since it is a convex sublattice. Lemma (5.5) or
Lemma 9.5 yields that x, y ∈ Bnd(I,D) ∩ Bnd(J,D).

Suppose, for a contradiction, that y /∈ {1I, 1J}. Then y ∈ LBnd(I,D) ∩
LBnd(J,D) and x belongs to both Bnd(I,D) − UBnd(I,D) and Bnd(J,D) −
UBnd(J,D). Hence, by (2.14), x has a cover y1 ∈ I − {y}, and it also has a cover
y2 ∈ J − {y}. We have that y1 ∈ I − J and y2 ∈ J − I since y is the largest ele-
ment of I ∩ J . Hence, y, y1 and y2 are three distinct covers of x, which contradicts
(2.1).

Therefore, up to the I-J symmetry, we can assume that y = 1J . This, x ≺ y,
and {x, y} ⊆ Bnd(I,D) ∩ Bnd(J,D) imply that I ∩ J = {x, y} ⊆ UBnd(J,D). If
we had y = 1I , then Lemma 9.2 would yield that I = J , contradicting (I, J) ∈
E
(
MaxPatch(L)

)
. Hence, taking {x, y} ⊆ Bnd(I,D) ∩ Bnd(J,D) into account, y

belongs to Bnd(I,D) − {1I} = LBnd(I,D), which gives that I ∩ J = {x, y} ⊆
LBnd(I,D). This proves that MaxPatch(L) satisfies 3.1(iii). Thus Theorem 3.6
holds for the slim case.

Next, we drop the assumption that L is slim. Let L′ be the full slimming
sublattice of L with respect to a fixed planar diagram D. By Lemma 6.1(iv), L′ is
a glued sum indecomposable slim semimodular lattice. If we consider the intervals
I as pairs of elements (0I , 1I), then MaxPatch(L) and MaxPatch(L′) become the
same by Lemma 6.1(vii). Hence, the already proven slim case of the theorem
together with Lemma 6.1(viii) completes the proof. �

Proof of Theorem 3.4. We already know from Lemma 8.1 that (ii) ⇔ (iii) ⇔ (iv)
⇔ (v) ⇔ (vi). Moreover, (iv) ⇒ (vii) follows from Theorem 2.4. Hence, it suffices
to show that (vii) ⇒ (v), (v) ⇒ (i) and (i) ⇒ (iii).

Assume that (vii) holds. Let F be a diagram of the four-element rectangular
lattice S from which a diagram D of L is obtained first by adding forks, and
then by adding eyes. Then wl(S, F ) is the leftmost coatom of F , wr(S, F ) is its
rightmost coatom, and their intersection is 0. They remain the leftmost and the
rightmost coatoms of the actual diagram, respectively, if we add forks and eyes.
Furthermore, the least element of the lattice does not change. Hence, wl(S, F ) and
wr(S, F ) will become the leftmost coatom and the rightmost coatom of D, and
wl(S, F ) ∧wr(S, F ) = 0S = 0L. This shows that (vii) ⇒ (v) holds.
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Assume that (v) holds. Then there exists a diagram D ∈ Dgr(L) such that for
the (unique) coatoms a ∈ Cl(L,D) and b ∈ Cr(L,D), we have that a ∧ b = 0.
Notice that a and b are the leftmost coatom and the rightmost coatom with respect
to D, respectively. Let HHH be a patchwork system for L. By Proposition 3.2, it is a
patchwork system for the diagram D. Let c be the right neighbor of a in D; it is
a coatom. Let S = [a ∧ c, a ∨ c = 1]; it is a 4-cell of D by [6, Lemma 13]. Hence,
it is a covering square, and it is a subset of some I ∈ HHH by 3.1(i). Therefore,
there is an I ∈ HHH such that a ∈ I and 1I = 1L. Similarly, there is a J ∈ HHH
such that b ∈ J and 1J = 1L. To get a contradiction, suppose that I 6= J . Then
(I, J) ∈ E

(
MaxPatch(L)

)
since 1L ∈ I ∩ J shows that I ∩ J is nonempty. Hence,

3.1(iii) yields that 1 ∈ I ∩ J ⊆ LBnd(I,D) ∪ LBnd(J,D), which is a contradiction
since 1K is never on the lower boundary of a rectangular interval K. Hence, I = J .
Since 0L = a ∧ b ∈ I and 1L ∈ I, we obtain that HHH = {I} by Remark 3.3(i). This
proves the implication (v) ⇒ (i).

Next, to show that (i) implies (iii), assume that (iii) fails. We have to show that
(i) also fails. We can assume that L is glued sum indecomposable since otherwise
(i) fails by definition. Fix a diagram D ∈ Dgr(L). By the assumption, there are a
proper ideal I and a proper filter F such that L = I ∪F , and C := I ∩F is a chain.
We assume that I and F are chosen so that |C| is minimal. By (2.6), I and F are
planar lattices, and they are clearly semimodular. Let C = [a, b] = [0F , 1I ]. We
conclude that a < b since otherwise a = b would be comparable with all elements of
L, contradicting the glued sum indecomposability of L. Since I and F are proper
subsets, I 6= C 6= F and |I|, |F | ≥ 3. To get a contradiction, suppose that there is an
x ∈ I − {0, b} such that I = ↓x∪↑x. Then a ∈ ↑x would imply that F ⊆ ↑x, whence
L = ↑x ∪ ↓x would contradict the glued sum indecomposability of L. Therefore
a ∈ ↓x − ↑x, that is, a < x < b. Since I = ↓x∪↑x = ↓x∪[x, b] and [x, b] ⊆ F , we can
replace I by ↓x in the original decomposition. Then C = [a, b] is replaced by [a, x],
which contradicts the minimality of |C|. Hence, there is no x with I = ↓x ∪ ↑x.
This together with |I| ≥ 3 implies that I is glued sum indecomposable. We have
not used semimodularity, so F is also glued sum indecomposable by duality.

Let a1 and b1 be the unique elements of C = [a, b] such that a ≺ a1 and b1 ≺ b.
Since F is glued sum indecomposable, a = 0F has a cover a2 distinct from a1. The
glued sum indecomposability of I yields that b = 1F has a lower cover b2 distinct
from b1. Since C = I ∩ F is a chain containing a1, we obtain that a2 /∈ C. But
a2 ∈ F , whence a2 ∈ F − I. The dual consideration shows that b2 ∈ I − F . If
a belonged to int(I,D), then (2.8) together with (2.6) would imply that a2 ∈ I,
a contradiction. Hence, a ∈ Bnd(I,D). Dually, we obtain that b ∈ Bnd(F,D).
Without loss of generality, we can assume that a ∈ Cl(I,D). Since Cl(I,D) is a
maximal chain in I, we have that {x ∈ Cl(I,D) : a ≤ x} is a maximal chain in
[a, 1I] = [a, b] = C. But C is itself a chain, whence

(10.1) C = {x ∈ Cl(I,D) : a ≤ x} ⊆ Cl(I,D).

Since now we cannot assume that b ∈ Cr(F,D), lattice duality yields only that
C ⊆ Cl(F,D) or C ⊆ Cr(F,D). However, we claim that

(10.2) C ⊆ Cl(I,D) ∩ Cr(F,D).

In view of the previous observation, it suffices to exclude that C ⊆ Cl(F,D).
Suppose, for a contradiction, that C ⊆ Cl(F,D), and keep (10.1) in mind. Let
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x ∈ Cl(L,D) be the unique element with h(x) = h(b). We obtain from (5.3)
that x is on the left of b. On the other hand, x ∈ I or x ∈ F , and b ∈ C ⊆
Cl(I,D) ∩ Cl(F,D). Hence, (5.3) (applied to I or F ) yields that b is on the left of
x. Using (5.2), we conclude that b = x ∈ Cl(L,D). Hence, we obtain from (5.5)
that Cl(I,D) ⊆ Cl(L,D). Let E1 := E∩↑b. It is a maximal chain in ↑b. Therefore,
since Cl(I,D) is a maximal chain in ↓b = I, we obtain that E := Cl(I,D) ∪ E1

equals Cl(L,D). Notice that E is a maximal chain in L. Let W := Cr(I) ∪ E1; it
is also a maximal chain of L.

Let y ∈ Cr(I,D) denote the unique element with h(y) = h(a). Since a ∈ Cl(I) −
{0I, 1I} and I is glued sum indecomposable, a /∈ Cr(I,D). Hence, (5.3) yields that
a is strictly on the left of y. So we obtain from (5.1) that

(10.3) a is strictly on the left of W .

Trivially (or it follows from (5.1) and (5.3)), we have that a2 is on the right of
E = Cl(L,D). If a2 was on the left of W , then (5.6), applied for (0, b) instead of
(u, v), would imply that a2 ∈ I, which contradicts a2 ∈ F − I. Therefore, a2 is
strictly on the right of W . This together with (10.3) and a ≺ a2 contradicts (2.5).
Thus (10.2) is proved.

The restriction of D to I and F will be denoted by DI and DF , respectively. By
Theorem 3.6 and Proposition 3.2, MaxPatch(I) and MaxPatch(F ) are patchwork
systems for DI and DF , respectively. Let HHH := MaxPatch(I) ∪ MaxPatch(F ); we
claim that it is a patchwork system for D.

To get a contradiction, suppose that there is a covering square S = {u∧v, u, v, u∨
v} such that S 6⊆ I and S 6⊆ F . Then, say, u ∈ F − I and v ∈ I − F . Extend
C to a maximal chain C• of L. Clearly, u ∨ v ∈ F − I. Since h(a) = h(0F ) ≤
h(u) = h(v) ≤ h(1I) = h(b), the chain C = [a, b] has a unique element x such that
h(x) = h(u) = h(v). Furthermore, v /∈ F gives that v < b, whence h(v) + 1 ≤ h(b).
Consequently, h(u ∨ v) = h(v) + 1 ≤ h(b), and there is an element y ∈ C with
h(y) = h(u ∨ v).

Using that v ∈ I and x ∈ C ⊆ Cl(I), (5.3) yields that v is on the right of
x ∈ C•. This fact, v 6= x, and (5.1) yield that v is strictly on the right of C•. Since
u ∨ v 6= y ∈ C ⊆ Cr(F,D), the left-right dual of (5.3) yields that u ∨ v is strictly
on the left of y. Hence, (5.1) yields that u ∨ v is strictly on the left of C•. Thus
v ≺ u∨v contradicts (2.5). This proves that each covering square is either a subset
of I or a subset of F . This implies that 3.1(i) holds for HHH.

Next, assume that (J,K) ∈ E
(
HHH

)
. If

J,K ∈ MaxPatch(I) or J,K ∈ MaxPatch(F ),

then 3.1(ii) and 3.1(iii) clearly hold for (J,K). Hence, we can also assume that
J ∈ MaxPatch(I) and K ∈ MaxPatch(F ). Since J ∩K ⊆ I ∩ F = C and C is a
chain, 3.1(ii) holds for (J,K).

Using that int(J,D) ⊆ int(I,D) by (2.9) and C ⊆ Bnd(I,D) by (10.2), we
obtain that int(J,D)∩C = ∅. Hence, J ∩C =

(
int(J,D)∩C

)
∪

(
Bnd(J,D)∩C

)
=

Bnd(J,D) ∩C ⊆ Bnd(J,D). Assume for a contradiction that J ∩C 6⊆ Mi J . Then
there is an x ∈ J ∩ C with at least two covers in J . All these covers belong
to C since F is a filter. This is a contradiction since C is chain. Consequently,
J ∩C ⊆ MiJ . Combining this with J ∩C ⊆ Bnd(J,D) and (2.14), we obtain that
J∩C ⊆ UBnd(J,D). This together with J∩K ⊆ C yields that J∩K ⊆ J∩K∩C ⊆
J ∩C ⊆ UBnd(J,D). Dualizing the above argument (in particular, replacing (2.14)
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by (2.15)) we obtain that J ∩ K ⊆ J ∩ K ∩ C ⊆ K ∩ C ⊆ LBnd(K,D). Hence,
3.1(iii) (with D) holds. Therefore, HHH is a patchwork system for D. Since |HHH| =
|MaxPatch(I) ∪ MaxPatch(F )| = |MaxPatch(I)| + |MaxPatch(F )| ≥ 1 + 1 = 2, we
conclude that (i) fails. This completes the proof of the implication (i) ⇒ (iii). �

Proof of Corollary 3.5. Since gluing preserves semimodularity (see, for instance,
C. Herrmann [16] or [3, Lemma 6.1]), the statement follows from (iii) ⇔ (iv) of
Theorem 3.4. �

Proof of Corollary 3.8. As mentioned before Corollary 3.7, only the second part
needs a proof. Since non-chain intervals of length 2 are atomistic, all we have to
show is that if I is an interval of length greater than 2, then I is not atomistic.
Otherwise, let {a1, . . . , an} be a maximal independent system of atoms of I. Then
n is the length of I and these atoms generate a Boolean sublattice B of length n,
see G. Grätzer [11, Theorem IV.2.5] or [12, Theorem 381]. This is a contradiction
since B is not planar for n ≥ 3. �
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