
GENERATING SUBSPACE LATTICES, THEIR DIRECT

PRODUCTS, AND THEIR DIRECT POWERS
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Abstract. In 2008, László Zádori proved that the lattice Sub(V )

of all subspaces of a vector space V of finite dimension at least 3
over a finite field F has a 5-element generating set; in other words,

Sub(V ) is 5-generated. We prove that the same holds over every 1-

or 2-generated field; in particular, over every field that is a finite
degree extension of its prime field. Furthermore, let F , t, V , d ≥ 3,

bd/2c, and m denote an arbitrary field, the minimum cardinality of

a generating set of F , a finite dimensional vector space over F , the
dimension (assumed to be at least 3) of V , the integer part of d/2, and

the least cardinal such that mbd2/4c is at least t, respectively. We

prove that Sub(V ) is (4+m)-generated but none of its generating sets
is of size less than m. Moreover, the k-th direct power of Sub(V ) is

(5+m)-generated for many positive integers k; for all positive integers

k if F is infinite. Finally, let n be a positive integer. For i = 1, . . . , n,
let pi be a prime number or 0, and let Vi be the 3-dimensional vector

space over the prime field of characteristic pi. We prove that the
direct product of the lattices Sub(V1), . . . , Sub(Vn) is 4-generated if

and only if each of the numbers p1, . . . , pn occurs at most four times

in the sequence p1, . . . , pn. Neither this direct product nor any of
the subspace lattices Sub(V ) above is 3-generated.

1. Note on the dedication

At the beginning of my university studies, Dr. József Németh taught me
in the first semester. He was excellent. All the students in the classroom
regretted that he was assigned different sections and courses for the next
semester. As I reminisce about his unsurpassable tutorials, I wish him a
happy birthday.

2. Introduction

For a lattice or a field A, we define the following cardinal number:

fmng(A) := min{|X| : X is a generating set of A}. (2.1)

For later reference, note that for a field F ,

F is a prime field if and only if fmng(F ) = 0. (2.2)
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2 G. CZÉDLI

By a field we mean a commutative field. Let L be the subspace lattice of a
vector space V of finite dimension d ≥ 3 over a field F ; in notation,

L := Sub(FV ), where V = FF
d is 3 ≤ d-dimensional. (2.3)

We often write Sub(V ) instead of Sub(FV ). Zádori [22] proved that when-
ever F is a finite field, then L in (2.3) is 5-generated. Earlier, Gelfand and
Ponomarev [7] proved that L is 4-generated but not 3-generated if F is a
prime field; see Zádori [22] for historical details.

Our aim is to generalize these two results and prove some related results.
In Zádori’s result, F is a finite field with fmng(F ) = 1; we remove finiteness
from his assumptions on F and, instead of fmng(F ) = 1, we assume only
that fmng(F ) ∈ {1, 2}. Related to Gelfand and Ponomarev’ result, we
prove that if d = 3 and F is a prime field, then fmng(Lk) = 4 holds for L
from (2.3) even for k ∈ {2, 3, 4} (in addition to k = 1); the number 4 is
optimal here at both of its occurrences. Furthermore, we extend this result
to direct products; so the just-mentioned result (for k-th direct powers,
k ∈ {1, 2, 3, 4}) becomes a particular case. If no peculiarity of the (finite or
infinite) cardinal number fmng(F ) is assumed and L is still from (2.3), then
denote by m the smallest cardinal number such that mbd2/4c ≥ fmng(F ).
We prove that m ≤ fmng(L) ≤ 4 + m and fmng(Lk) ≤ 5 + m for many
integers k ∈ N+ := {1, 2, 3, . . . }; for all k ∈ N+ if F is infinite.

By a nontrivial lattice we mean an at least 2-element lattice. In Section
5, to shed more light on fmng(Lk), we prove the following observation, in
which L need not be a subspace lattice.

Observation 2.1. Let L be a nontrivial lattice and let n ∈ N+ := {1, 2,
3, . . . }. If k ∈ N+ is large enough to exclude the existence of a k-element
antichain in Ln, then Lk is not n-generated. In particular, Lk is not n-
generated if k > |L|n.

Finally, note that in addition to earlier results on the generation of
subspace lattices, a possible connection with cryptology also motivates the
study of small generating sets of lattices; see Czédli [3].

Outline. Section 3 formulates exactly the results mentioned so far in three
theorems, and presents some related statements. Section 4 recalls some
well-known basic facts from coordinatization theory. Each of Sections 5, 6,
and 7 proves one of the three theorems together with some auxiliary state-
ments. Section 8 points out how one can extract Gelfand and Ponomarev’s
result, quoted right after (2.3), from Zádori’s proof given in [22].

3. The main results and some of their corollaries

Recall that for 0 ≤ r ≤ m ∈ N+ and a prime power q, the Gaussian
binomial coefficient is defined as(

m

r

)
q

:=
(1− qm)(1− qm−1) · · · (1− qm−r+1)

(1− q)(1− q2) · · · (1− qr)
; (3.1)
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see, e.g., O’Hara [16]1. For convenience, let us agree that for a cardinal λ,

if 1 ≤ r ≤ m− 1 ∈ N+ and λ ≥ ℵ0, then we let

(
m

r

)
λ

:= λ. (3.2)

This convention is motivated by the fact that (3.1) is known to be the
number of the r-dimensional subspaces of the2 m-dimensional vector space
over the q-element field; now the same holds for every λ-element field in
virtue of (3.2). The upper integer part and the lower integer part of a
real number x will be denoted by dxe and bxc, respectively; for example,

d
√

80e = d9e = 9 and b
√

80c = b8c = 8. More generally, let us agree that
for a cardinal number t and a positive integer n,

dt/ne := min{m : mn ≥ t}; it is a cardinal number. (3.3)

Theorem 3.1. As in (2.3), assume that L = Sub(FV ), where F is an
arbitrary field, 3 ≤ d ∈ N+, and V is the d-dimensional vector space over
F . Let t := fmng(F ), the minimum of the cardinalities of the generating
sets of F ; see (2.1). Then

4 ≤ fmng(L) ≤ 4 +
⌈ t

bd2/4c
⌉
. (3.4)

For t = 0 or t ∈ {1, 2}, (3.4) implies that fmng(L) = 4 or fmng(L) ≤ 5,
respectively. Thus, the results quoted from Zádori [22] and Gelfand and
Ponomarev [7] after (2.3) are particular cases of Theorem 3.1. Note that

bd2/4c = bd/2c · dd/2e and so
⌈ t

bd2/4c
⌉

=
⌈ t

bd/2c · dd/2e
⌉

(3.5)

hold for 3 ≤ d ∈ N+. If t is large compared to d, then (3.6) below gives a
better lower bound for fmng(L) than the first inequality in (3.4).

Theorem 3.2. Let F be a field, let 3 ≤ d ∈ N+, and denote by V and
L the d-dimensional vector space over F and its subspace lattice Sub(FV ),
respectively. Let k ∈ N+ and, with reference to (3.1) and (3.2), let

µ :=

(
d

bd/2c

)
|F |
. (3.6)

Then, using the notations of (2.1), (2.2), (3.3), and (3.4) and letting t :=
fmng(F ), the following inequalities and equalities hold for fmng(L) and
fmng(Lk): ⌈ t

bd2/4c
⌉
≤ fmng(L) ≤ fmng(Lk), (3.7)

if k ≤ µ, then fmng(Lk) ≤ 5 +
⌈ t

bd2/4c
⌉
, (3.8)

fmng(Lk) = 4 provided that t = 0, d = 3, and k ∈ {1, 2, 3, 4}, and (3.9)

fmng(Lk) = 5 provided that t = 0, d = 3, k ∈ N+, and 5 ≤ k ≤ µ. (3.10)

1https://en.wikipedia.org/wiki/Gaussian binomial coefficient would also do.
2As the definite article indicates, the m-dimensional vector space over a given field

in the paper is understood up to isomorphism but its subspaces are not.

https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient
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As µ can be an infinite cardinal number, (3.10) repeats that k ∈ N+. We
have given two lower bounds on fmng(L), since it depends on t = fmng(F )
and d which of the two is better.

Theorem 3.3. Let λ be a nonzero ordinal number, and assume that for
each ι < λ, Vι is the 3-dimensional vector space over a prime field Fι. Let
L be the direct product of the corresponding subspace lattices, that is,

L :=
∏
ι<λ

Sub(Vι). (3.11)

Then fmng(L) = 4 if and only if λ is finite, λ 6= 0, and, up to isomorphism,
each prime field occurs at most four times in the sequence (Fι : ι < λ).

It does not seem to be easy to generalize (3.9) and (3.10) to 3 < d ∈
N+. Tables 1–3, obtained by computer algebra3, show that the Gaussian
binomial coefficient µ occurring in (3.6) is large in general.

q = 2 3 4 5
µ ≈ 1.540 · 10482 4.423 · 10763 2.871 · 10963 2.958 · 101118

Table 1. For d = 80, the approximate values of some
Gaussian binomial coefficients occurring in (3.6)

q = 7 8 9 11
µ ≈ 1.715 · 101352 1.023 · 101445 7.002 · 101526 1.878 · 101666

Table 2. Continuing Table 1

q = 13 16 17 19
µ ≈ 2.223 · 101782 4.186 · 101926 5.574 · 101968 1.073 · 102046

Table 3. Continuing Table 2

The following remark is trivial since Lh and
∏
i∈S Li in it are homomor-

phic images of Lk and
∏
i∈[k] Li (where [k] = {1, . . . , k}), respectively.

Remark 3.4. For a lattice L and h, k, n ∈ N+ such that h < k, if Lk is n-
generated, then fmng(Lh) ≤ n. More generally, if

∏
i∈[k] Li is n-generated

and S ⊆ [k], then
∏
i∈S Li has an at most n-element generating set.

The following easy lemma could be of separate interest. For a subset X
of a vector space V over a field K, let SpanK(X) denote the subspace of V
generated by X; we can also write Span(X) if K is clear from the context.

Lemma 3.5. Let F be a field with a subfield P (that is, let F |P be a field
extension) and let 3 ≤ d ∈ N+. Furthermore, let V ′ = PP

d and V = FF
d

be the d-dimensional vector spaces (consisting of d-tuples) over P and F ,
respectively. Then

ϕ : Sub(PV
′)→ Sub(FV ), defined by X 7→ SpanF (X), (3.12)

3Maple V, see Footnote 11 for more details, but many others would also do.
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is a lattice embedding. Furthermore, ϕ preserves the length, the covering
relation, the smallest element 0, and the largest element 1. We also have
that for any subset H of V ′, ϕ(SpanP (H)) = SpanF (H).

In the forthcoming Example 3.6, to be proved in Section 7, the number
80 makes one and a half dozen appearances. Although most instances could
be replaced by any positive integer greater than 1, we have opted for 80 in
keeping with the paper’s dedication.

Example 3.6. Let F be a field and let 3 ≤ d ∈ N+. Let L stand for the
subspace lattice Sub(V ) = Sub(FF

d) of the d-dimensional vector space V
over F . Then the following six assertions hold.

(a) If α1, . . . , α80 are (not necessarily distinct) algebraic irrational num-
bers over the field Q of rational numbers and F = Q(α1, . . . , α80) is the
field that these numbers generate, then L has a 5-element generating set.
Furthermore, for every 2 ≤ k ∈ N+, Lk has a 6-element generating set. In
particular, if

F = Q
(√

2023,
√

2,
3√

3,
4√

4,
5√

5,
6√

6, . . . ,
80√

80
)
,

then L80 has a 6-element generating set.
(b) Let β1, . . . , β80 be algebraically independent transcendental numbers

over Q and let F := Q(β1, . . . , β80). If d = 3, then L has a 44-element
generating set and each of its generating sets consists of at least 40 elements.
If d = 8, then L has a 9 element generating set but not a 4-element one.

(c) If γ1, . . . , γ80 are algebraically independent transcendental numbers
over Q, F = Q(γ1, . . . , γ80), d = 8080, and k = 8080d, then L has a 5-
element generating set and Lk has a 6-element one.

(d) If |F | = 19 or F = Q, d = 80, and k = 102046, then Lk can be
generated by five elements.

(e) If F = A, the field of algebraic numbers, then L is not finitely
generated.

(f) If F = Q(π80, 80
√

80), where π ≈ 3.141 592 653 589 793 is the well-
known transcendental constant, then L has a 5-element generating set while
L80 has a 6-element one.

Remark 3.7. For F = Q(π80, 80
√

80) in Example 3.6(f), fmng(F ) = 2.

4. Some basic facts from the coordinatization theory of
lattices

The proof of Theorem 3.1 grew out from the coordinatization theory of
Arguesian lattices. This theory was introduced by J. von Neumann; see,
for example, Artmann [1], Day and Pickering [5], Freese [6], Herrmann [9]
and [10], and von Neumann [14, 15]. As these papers but Herrmann [9] and
[14] are referenced in Czédli and Skublics [4], where the treatment and the
notations are unified, it will be convenient to reference also [4]4 even though
no result that was first proved in [4] is needed here. Actually, we need
only the easy first step from coordinatization theory, and the statements

4At the time of writing, a preprint of this paper is freely available from
http://tinyurl.com/czedli-skublics or, equivalently, it can be found in the author’s web-

site, https://www.math.u-szeged.hu/ czedli/ = http://tinyurl.com/g-czedli .

http://tinyurl.com/czedli-skublics
https://www.math.u-szeged.hu/~czedli/
http://tinyurl.com/g-czedli
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of this section are straightforward to verify with elementary computations
in Linear Algebra. In the paper, we often use the notation

[i] := {1, 2, . . . , i} for i ∈ N0; in particular, [0] := ∅.
As a general assumption for the whole section, we assume that F is a
field, 3 ≤ d ∈ N+, and V = FF

d is the d-dimensional vector space over
F . We let vi := (0, . . . , 0, 1, 0, . . . , 0) ∈ V , with 1 at the i-th position, for
i ∈ [d]. We turn V = FF

d into the (d − 1)-dimensional projective space
Pd−1 = Pd−1(F ) over F in the usual way except that we use −1 instead of
1 for “finite” points5; see, e.g., Figure 1.

Figure 1. The 3-dimensional projective space

The points and the lines of Pd−1 are the 1-dimensional subspaces and the
2-dimensional subspaces of V , respectively. A 1-dimensional subspace of V
is either of the form F (x1, . . . , xd−1,−1) and then [x1, . . . , xd−1,−1] denotes
(in other words, coordinatizes) the corresponding (projective) point of Pd−1,
or this subspace is of the form F (x1, . . . , xd−1, 0) and then [x1, . . . , xd−1, 0]
stands for the corresponding projective point. We call the points of the
form [x1, . . . , xd−1, 0] points at infinity (even if F is finite and thus so is
Pd−1); the rest of the points are said to by finite points. The finite points
form the (d − 1)-dimensional affine space over F . As usual, this affine
space visualizes Pd−1 so that the finite points are the points of the affine
space, while an infinite projective point [x1, . . . , xd−1, 0] is the direction

5The −1 is explained by the minus sign in von Neumann’s choice of ci,j = F (vi−vj),

see later, and by our intention that the unit c1,4 of R〈4, 1〉, to be defined soon, in Figure

2 should be to the right of the zero a4 of the ring.
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(x1, . . . , xd−1) in the affine space. (Of course, (λx1, . . . , λxd−1) is the same
direction and [λx1, . . . , λxd−1, 0] is the same projective point at infinity for
any λ ∈ F \ {0}.) Some sort of visualization of Pd−1 for d = 4 is given in
Figure 1; most parts of this figure will be used only later.

We often consider the projective space Pd−1 and a line h of Pd−1 as
the set of all points of Pd−1 and the set of points lying on h. For points
x 6= y in Pd−1, let `x,y denote the unique line through x and y. Following,
say, Grätzer [8, page 376], a subset X of Pd−1 is said to be a subspace of
Pd−1 if whenever x and y are distinct points in X, then X contains all
points of the line `x,y. The subspaces of Pd−1 form a lattice, which we
denote by Sub(Pd−1) =

(
Sub(Pd−1);⊆

)
. For convenience (and following

the traditions), if x and y are distinct points of Pd−1, then we often write
x ∨ y instead of `x,y, and we usually write x ∈ Sub(Pd−1) instead of the
more precise {x} ∈ Sub(Pd−1). When we think of their coordinates, we
denote the points of Pd−1 by ~x, ~u, etc.. There is a well-known isomorphism
η from L = Sub(FV ) to the subspace lattice Sub(Pd−1). Namely, η : L →
Sub(Pd−1) is defined by the rule

η(X) := {P ∈ Pd−1 : the point P corresponds to a

1-dimensional subspace of X} ∈ Sub(Pd−1) (4.1)

for X ∈ Sub(FV ). We do not make a sharp distinction between X and
η(X). We use η(X) and the projective space to explain and visualize the
proofs. The respective (and straightforward) computations can be done
with X in Sub(FV ) or with η(X) in Pd−1 = Pd−1(F ) based on the following
fact, which is well known and it can easily be derived from (4.1). As in
Neumann [15] and in Example 2.1 right after (2.3) in [4], the components
of the (canonical (extended normalized von Neumann)) d-frame

~f = (~a,~c) =
(
(a1, . . . , ad), (ci,j : i, j ∈ [d], i 6= j)

)
(4.2)

are the 1-dimensional subspaces ai = Fvi ∈ V ∈ Sub(FV ) for i ∈ [d] and
ci,j = F (vi−vj) for i 6= j ∈ [d] in Sub(FV ). Thus, by (4.1), the components

of ~f are the following points

ai = [0, . . . , 0, 1, 0 . . . , 0] for i ∈ [d− 1], ad = [0, . . . , 0,−1], (4.3)

and ci,j = [0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0] for i 6= j ∈ [d], (4.4)

where the unit 1 is at the i-th position in both cases and the −1 is at the
j-th position, in Sub(Pd−1). Note that ci,j = cj,i for i, j ∈ [d] distinct but,
according to (4.4), their canonical forms are different6.

For i, j, k ∈ [d] pairwise distinct, repeating what von Neumann and his
followers did but using the notation of [4, (2.5)], the (i, j)-th coordinate

ring of L with respect to ~f is

R〈i, j〉 = R〈ai, aj〉 := {x ∈ L : x ∨ aj = ai ∨ aj , x ∧ aj = 0}. (4.5)

To define the ring operations, we need the following projectivities from
Neumann [15]; we use the visual notation from Czédli and Skublics [4]. So

6When we consider ci,j an element of R〈j, i〉, to be defined soon, then we use the

canonical form given in (4.4).
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for pairwise distinct parameters p, q, r ∈ [d], let

F
(
p
r
q
q

)
: [0, ap ∨ aq]→ [0, ar ∨ aq], x 7→ (x ∨ cp,r) ∧ (ar ∨ aq), (4.6)

F
(
p
p
q
r

)
: [0, ap ∨ aq]→ [0, ap ∨ ar], x 7→ (x ∨ cq,r) ∧ (ap ∨ ar). (4.7)

For i, j, k ∈ [d] pairwise distinct and x, y ∈ R〈i, j〉, we let

x ⊕ijk y := (ai ∨ aj) ∧
((

(x ∨ ak) ∧ (ci,k ∨ aj)
)
∨ F

(
i
k
j
j

)
(y)
)
, (4.8)

x ⊗ijk y := (ai ∨ aj) ∧
(
F
(
i
i
j
k

)
(x) ∨ F

(
i
k
j
j

)
(y)
)
, and (4.9)

x 	ijk y := (ai ∨ aj) ∧
(
ak ∨

(
(cj,k ∨ x) ∧ (aj ∨ F

(
i
i
j
k

)
(y))

))
; (4.10)

they are in R〈i, j〉 and do not depend on k. Except that the lattice poly-
nomials defined in (4.8), (4.9), and (4.10) as well as the projections defined
in (4.6) and (4.7) are

built from ∨, ∧, and the components of ~f, (4.11)

their details are not relevant here, and there are other ways to define ap-
propriate ⊕, ⊗, and 	. In fact, as Herrmann [10, 2 lines after Theorem 2.2]
notes, Neumann used the opposite of ⊗ijk. Fortunately, what we need from
von Neumann’s voluminous [15], has already been summarized in Herrmann
[10, Theorem 2.2], in Section 2 of Czédli and Skublics, and (partially) in
Freese [6, Page 284]. Furthermore, the isomorphism given in (4.1) allows
us to pass from Sub(FF

d) to Sub(Pd−1). So, based on (4.5)–(4.10), we can
recall the following theorem.

Theorem 4.1 (von Neumann [15] for 3 ≤ d ∈ N+ and Day and Pickering
[5] for d = 3). For i, j ∈ [d] distinct, the operations defined in (4.8), (4.9),
and (4.10) in L = Sub(Pd−1) do not depend on k ∈ [d] \ {i, j}, and

R〈i, j〉 =
(
R〈i, j〉;⊕ijk,	ijk,⊗ijk

)
is a ring, called the (i, j)-th coordinate ring, for each k ∈ [d] \ {i, j}. The
map δd,1 : F → R〈d, 1〉 defined by δd,1(r) := [r, 0, . . . , 0,−1] is a ring iso-
morphism (and so it is a field isomorphism). So is the map δi,j : F →
R〈i, j〉 defined by

δi,j(r) := [0, . . . , 0, r, 0, . . . , 0,−1, 0, . . . , 0] ∈ Sub(Pd−1) (4.12)

with r at the j-th position and −1 at the i-th position. Thus, the coordinate
rings R〈i, j〉, i 6= j ∈ [d], are all isomorphic to the field F . The elements
ai and cj,i are the zero and the unit of R〈i, j〉. The ring isomorphisms
given in (4.12) commute7 with the projectivities defined in (4.6) and (4.7),
respectively. That is, for any p, q, r ∈ [d] such that |{p, q, r}| = 3,

F
(
p
r
q
q

)
◦ δp,q = δr,q and F

(
p
p
q
r

)
◦ δp,q = δp,r. (4.13)

Furthermore, using the superscript rest to denote the restrictions of the
projectivities occurring in (4.13) to R〈p, q〉,

F
(
p
r
q
q

)rest
: R〈p, q〉 → R〈r, q〉 is a ring isomorphism, (4.14)

so is F
(
p
p
q
r

)rest
: R〈p, q〉 → R〈p, r〉, (4.15)

7We compose maps from right to left; e.g., (αβ)(x) = α(β(x)).



GENERATING SUBSPACE LATTICES 9

and (4.13) remains true if we change the projections in it to their restric-
tions to R〈p, q〉.

5. Proving Theorem 3.1

A generating vector of a lattice L is a vector ~b = (b1, . . . , bs) of not
necessarily distinct elements of L such that {b1, . . . , bs} generates L.

Proof of Observation 2.1. We argue by way of contradiction. Suppose that
k is large enough in the given sense but Lk has an n-dimensional gener-

ating vector (~b(1), . . . , ~b(n)). For i ∈ [k], let πi : L
k → L denote the i-th

projection defined by ~x 7→ xi. Let ~g (i) := (πi(~b
(1)), . . . , πi(~b

(n)) ∈ Ln. As
k is large, there are i, j ∈ [k] such that i 6= j and ~g (i) ≤ ~g (j), understood
componentwise. Then for any n-ary lattice term f , we have that

πi
(
f(~b(1), . . . ,~b(n))

)
= f

(
πi(~b

(1)), . . . , πi(~b
(n))
)

= f(~g (i))

≤ f(~g (j)) = f
(
πj(~b

(1)), . . . , πj(~b
(n))
)

= πj
(
f(~b(1), . . . ,~b(n))

)
.

(5.1)

As (~b(1), . . . , ~b(n)) is a generating vector, (5.1) implies that πi(~x) ≤ πj(~x)
for every ~x ∈ Lk, which is a contradiction completing the proof. �

Proof of Lemma 3.5. Since V ′ ⊆ V , (3.12) makes sense. For a subset H ⊆
V ′, since the operation of spanning is order-preserving and idempotent,

SpanF (H) ⊆ SpanF (SpanP (H)) ⊆ SpanF (SpanF (H)) = SpanF (H)

and SpanF (SpanP (H)) = ϕ(SpanP (H)) imply the last sentence of the
lemma.

Let X be a subspace of V ′, denote its dimension by t, and take a maximal
subset U := {~a(1), . . . ,~a(t)} of linearly independent vectors in X. Then,
for i ∈ [t], ~a(i) is of the form ~a(i) = (ui,1, . . . , ui,d) with entries from P ,
and the rank of the matrix A := (ui,j)t×d is t. As U generates (in other
words, linearly spans) X in V ′, the last sentence of the lemma gives that
Y := SpanF (U) equals ϕ(X). The rank t of A is captured by determinants,
so it remains t when we pass from P to F . Hence, ϕ(X) = Y is also of
dimension t. Since both V ′ and V are of the same finite dimension d, it
follows that ϕ is cover-preserving, ϕ(0) = 0, and ϕ(1) = 1. Denote the join
in Sub(PV

′) and that in Sub(FV ) by ∨′ and ∨, respectively. For X,Y ∈ V ′,
the last sentence of the lemma allows us to compute as follows:

ϕ(X ∨′ Y ) = ϕ(SpanP (X ∪ Y )) = SpanF (X ∪ Y )

= SpanF (SpanF (X) ∪ SpanF (Y ))

= SpanF (ϕ(X) ∪ ϕ(Y )) = ϕ(X) ∨ ϕ(Y ).

Thus, ϕ is a join-homomorphism. We claim that if X,Y ∈ Sub(PV
′)

such that ϕ(X) ≤ ϕ(Y ), then X ≤ Y . Suppose the contrary, that is,
ϕ(X) ≤ ϕ(Y ) but X � Y . Then Y < X ∨′ Y and ϕ(Y ) = ϕ(X) ∨ ϕ(Y ) =
ϕ(X ∨′ Y ) together contradict the fact that ϕ is dimension-preserving.
Therefore, X ≤ Y ⇐⇒ ϕ(X) ≤ ϕ(Y ), that is, ϕ is an order-embedding.
We know from Lemma 1 of Wild [20] that every cover-preserving order
embedding between two lower semimodular lattices is a meet-embedding.
Therefore, since subspace lattices are lower semimodular (in fact, they are
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even modular), we obtain that ϕ preserves the meets. Thus, ϕ is a lattice
embedding, completing the proof of Lemma 3.5 �

The following observation is trivial by definitions.

Observation 5.1. Let F be a field, 3 ≤ d ∈ N+, and let ~u(1) = [u
(1)
1 ,

. . . , u
(1)
d ], . . . , ~u(k) = [u

(k)
1 , . . . , u

(k)
d ] be points in Pd−1(F ); according to

our convention, we assume that {u(1)
d , . . . , u

(k)
d } ⊆ {0,−1}. Then a point

~v = [v1, . . . , vd] ∈ Pd−1(F ), with vd ∈ {0,−1} again, belongs to the subspace
generated (in other words, spanned) by {~u(1), . . . , ~u(k)} if and only if there
exist λ1, . . . , λk ∈ F such that

vi =
∑
j∈[k]

λju
(j)
i for i ∈ [d]. (5.2)

If ~v is a finite point, that is, if vd = −1, then (5.2) implies that Θ := {i :

u
(i)
d = −1} 6= ∅ and

∑
i∈Θ λi = 1. If ~v and all the ~u(i), i ∈ [k], are finite

points, then (5.2) means that ~v is a so-called affine combinations of ~u(1),
. . . , ~u(k), that is,

∑
i∈[k] λi = 1.

As R〈d, 1〉 ∼= F is a field, it is natural that we need the (partial) unary
operation of forming reciprocals. By passing from Huhn diamonds, see
Huhn [12], to our setting based on (von Neumann) frames, such a unary
operation could be derived from any of the two division operations given at
the bottom of Page 510 in Day and Pickering [5]. However, while [5] deals
with a more general class of modular lattices, we need this unary operation
only in the simple situation where our lattice is of the form Sub(Pd−1)
and R〈d, 1〉 is determined by the canonical frame. Hence, and also because
some details will be useful later, we define such a unary operation directly.
Namely, for i, j, k ∈ [d] pairwise distinct and x ∈ Sub(Pd−1), we define

recijk(x) :=
((((

(x ∨ ck,i) ∧ (aj ∨ ak)
)
∨ cj,i

))
∧(ak ∨ ai) ∨ ck,j

)
∧ (ai ∨ aj) ∈ R〈i, j〉. (5.3)

Lemma 5.2. If F is a field, 3 ≤ d ∈ N+, and x ∈ R〈i, j〉 ⊆ Sub(Pd−1) such
that x 6= ai (or, equivalently, x 6= 0R〈i,j〉), then recijk(x) is the reciprocal
of x in R〈i, j〉, that is, x ⊗ijk recijk(x) = cj,i = 1R〈i,j〉. Furthermore,
recijk(ai) = aj, and (4.11) is valid for (5.3), too.

Proof. We already know from Theorem 4.1 that ai and cj,i are the zero
0R〈i,j〉 and the unit 1R〈i,j〉 in R〈i, j〉, respectively. We deal only with
(d, i, j, k) = (4, 4, 1, 2), which reflects the general case. The proof is given
by Figure 2. To exemplify how this figure determines an easy formal ar-
gument in a straightforward way, we present only the following details;
similar details from other proofs will be omitted. By Theorem 4.1, x =
δi,j(r) = δ4,1(r) = [r, 0, 0,−1] for some r ∈ F \ {0}, and it suffices to
show that rec412(x) = δ4,1(1/r), that is, rec412(x) = [1/r, 0, 0,−1]. With
z := (x ∨ c2,4) ∧ (a1 ∨ a2) and y := (z ∨ c1,4) ∧ (a2 ∨ a4), we have that
rec412(x) = (y ∨ c2,1) ∧ (a4 ∨ a1). Assuming that z = [−r, 1, 0, 0] is already
known, we proceed to the next computation step. Namely, we verify that y
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Figure 2. Computing reciprocals

is correctly given in the figure. Using c1,4 = [1, 0, 0,−1], c2,4 = [0, 1, 0,−1],
a1 = [1, 0, 0, 0], a2 = [0, 1, 0, 0], and a4 = [0, 0, 0,−1] from (4.3)–(4.4), Ob-
servation 5.1 implies that a point P is in z∨c1,4 if and only if it is of the form
[−β1r + β2, β1, 0,−β2] such that β1 ∈ F , β2 ∈ {0, 1}, and (β1, β2) 6= (0, 0).
Similarly, P is in a2 ∨ a4 if and only if it is of the form [0, λ1, 0,−λ2] such
that λ1 ∈ F , λ2 ∈ {0, 1}, and (λ1, λ2) 6= (0, 0). Comparing the two forms,
we have that β1 = λ1, β2 = λ2, and −β1r + β2 = 0. By the last equal-
ity and r 6= 0, we have that β1 6= 0 ⇐⇒ β2 6= 0. So (β1, β2) 6= (0, 0)
and β2 ∈ {0, 1} give that β2 = 1. Hence, −β1r + β2 = 0 implies that
β1 = 1/r, and so P = [0, 1/r, 0,−1]. This computation verifies the equality
y = [0, 1/r, 0,−1], confirming the figure. �

Proof of Theorem 3.1. In virtue of the isomorphism given in (4.1), we can
assume that L = Sub(Pd−1(F )) = Sub(Pd−1). Denoting the prime field

of F by P , let L′ = Sub(Pd−1(P )). Let ~f ′ and ~f be the canonical frames
in L′ and L according to (4.3)–(4.4), respectively. The isomorphism given
in (4.1) depends on the underlying field, this is why the next sentence
indicates the corresponding fields in the subscripts. It follows from Lemma
3.5 and (4.1) that for the composite map ϕ′ := ηF ◦ ϕ ◦ η−1

P , we have that

ϕ′ : L′ → L is a 0-, 1-, and cover-preserving lattice embedding (5.4)

and ϕ′(~f ′) = ~f, understood componentwise. (5.5)
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First, we deal with the second inequality in (3.4). As P is a prime field, we
know from Gelfand and Ponomarev’s result (see also lines 2–3 of page 494 in
Zádori [22] or Section 8 here) that L′ is 4-generated. Pick a 4-dimensional
generating vector ~g ′ = (g′1, g

′
2, g
′
3, g
′
4) of L′ and, with ϕ′ from (5.4), let

gi := ϕ′(g′i) for i ∈ [4]; so ϕ′(~g ′) = (g1, . . . , g4). (5.6)

Denote by M and m the denominator and the second summand occurring
in (3.4), respectively. So M = bd2/4c and m = dt/Me. Since mM ≥ t =
fmng(F ), there exist not necessarily distinct elements ri,j ∈ F \{0}, i ∈ [m]
and j ∈ [M ], such that {ri,j : i ∈ [m] and j ∈ [M ]} generates F as a field.
Consider the following bd/2c-by-d “pattern matrix”

A :=



∀ 0 0 . . . 0 0 ∀ . . . ∀ −1
0 ∀ 0 . . . 0 0 ∀ . . . ∀ −1
0 0 ∀ . . . 0 0 ∀ . . . ∀ −1
...

...
...

. . .
...

...
... . . .

... −1
0 0 0 . . . ∀ 0 ∀ . . . ∀ −1
0 0 0 . . . 0 ∀ ∀ . . . ∀ −1


. (5.7)

Using (3.5), we obtain that A contains exactly M universal quantifiers. For
i ∈ [m], we obtain a “real matrix” A(i) from A by changing the universals
quantifiers to ri,1, . . . , ri,M . So each of the ri,1, . . . , ri,M occurs in A(i)
exactly once and it occurs at a place where A contains a universal quantifier.
Each row of A(i) consists of the coordinates of a finite point of Pd−1 =
Pd−1(F ); let ~u(i,1), . . . , ~u(i,bd/2c) be the finite points corresponding to the
rows of A(i) in this way. For example, ri,1, . . . , rdd/2e are substituted into
the first row of the pattern matrix to obtain the first row of A(i) and so

~u(i,1) = [ri,1, 0, 0, . . . , 0, 0, ri,2, . . . , rdd/2e,−1]. (5.8)

We often refer to the rows of A(i) as points of Pd−1. For i ∈ [m], let

g4+i be the subspace of Pd−1 spanned by {~u(i,1), . . . , ~u(i,bd/2c)}. (5.9)

In other words, g4+i is the subspace of Pd−1 spanned by the rows of A(i).
For a subset X of L, let [X]lat denote the sublattice of L that X generates;
we shorten [{x1, . . . , xn}]lat to [x1, . . . , xn]lat. Having (5.6) and (5.9), we
claim that ~g := (g1, g2, . . . , g4+m) is a generating vector of L, that is,

letting S0 := [g1, g2, . . . , g4+m]lat, we claim that S0 = L. (5.10)

Since {g1, . . . , g4} generates ϕ′(L′), we have that ϕ′(L′) ⊆ S0. Thus, with
reference to (4.2), (4.3), (4.4), and (5.5), we have that

the components of ~f are in [g1, . . . , g4]lat ⊆ S0. (5.11)

Let8

S1 := [{g5, . . . , g4+m} ∪ {the components of ~f }]lat. (5.12)

As it is clear from (5.11), to prove (5.10), it suffices to show that S1 equals
L. As a first but a long step, we show that

R〈d, 1〉 ⊆ S1. (5.13)

8For this proof, working with S0 would be sufficient. We introduce S1 and later S,
because S will be referenced in Section 6.
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First we show that for all i ∈ [m],

every row of A(i), as a point of Pd−1 and an atom of L, is in S1. (5.14)

By symmetry, it suffices to show that ~u(i,1) from (5.8) is in S1. By (5.12),

a1 ∨ abd/2c+1 ∨ abd/2c+2 ∨ · · · ∨ ∨ad−1 ∨ ad ∈ S1. (5.15)

Observation 5.1, (4.3), and (4.4) imply that the subspace in (5.15) consists
of the points of the form [x1, 0 . . . , 0, xbd/2c+1, . . . , xd] where the compo-
nents are in F , not all of them is 0, and xd ∈ {0,−1}. So when we form
the meet of g4+i and the subspace (5.15), then the fact that none of the
ri,j ’s in (the “diagonal part” of) A(i) is 0 and Observation 5.1 imply that

this meet is ~u(i,1). So ~u(i,1) ∈ S1, proving (5.14).
Next, we show that for all (i, j) ∈ [m]× [M ],

δd,1(ri,j) = [ri,j , 0, . . . , 0,−1] ∈ S1, (5.16)

where δd,1 is taken from Theorem 4.1. To ease the notation, we show this
only for ri,2; we can obtain the set membership δ(ri,j) ∈ S1 for all j ∈ [M ]
analogously or we can conclude it by symmetry. Letting ι := 1 + bd/2c, we
know from (5.8) that ri,2 is the ι-th coordinate of ~u(i,1). So it follows from
Observation 5.1, (4.12), and (4.3)–(4.4) that

δd,ι(ri,2) = [0, . . . , 0, ri,2, 0, . . . , 0,−1]

= (aι ∨ ad) ∧
(
~u(i) ∨

∨
j∈[d−1]\{ι}

aj

)
; (5.17)

the validity of (5.17) is also explained by Figure 1. Indeed, the figure
shows how to extract the homogeneous coordinate uι of a finite point ~u
in the particular case when d = 4 and ι = 3; this technique is applicable
to ~u := ~u(i,1), too. The first meetand in (5.17) is the vertical magenta
coordinate axis a3 ∨ a4 in the figure. The second meetand in (5.17) is the
the horizontal magenta hyperplane ~u ∨ a1 ∨ a2 through ~u. The meet of
these two meetands is ~v (3) = δ4,3(u3), a copy of uι in the coordinate ring

R〈d, ι〉. Since ~u(i,1) is in S1 by (5.14) and so are the aj ’s occurring in (5.17)
by (5.12), we obtain that δd,ι(ri,2) ∈ S1. By (4.12), δd,ι(ri,2) ∈ R〈d, ι〉.
As (4.11) mentions, the ring isomorphisms given in (4.14) and (4.15) are
composed from lattice operations and constants that are components of the

frame ~f and so they are in S1 by (5.12). Hence, S1 is closed with respect
to these isomorphisms, and we obtain the set membership part “∈” of

δd,1(ri,2) = F
(
d
d
ι
1

)
(δd,ι(ri,2)) ∈ S1. (5.18)

As the equality part follows from (4.13), so (5.18) holds. Clearly, the argu-
ment above is applicable for any j ∈ [M ], not just for j = 2, since we can
replace ~u(i,1) with the row of A(i) that contains ri,j . (Note that for j = 1
we have that ι = 1 and so (4.13) is not needed.) Therefore, (5.18) holds for
any j ∈ [M ], not only for j = 2. That is, we have proved (5.16). Applying
(4.11) to the field operations (4.8), (4.9), (4.10), and (5.3), we obtain that
S1 is closed with respect to the field operations of R〈d, 1〉. As the field iso-
morphism δd,1 sends generating sets to generating sets, (5.16) yields that
S1 contains a generating set of the field R〈d, 1〉. The two just-mentioned
facts imply (5.13).
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Next, with reference to (4.2)–(4.4), let

S := [{the components of the canonical frame} ∪R〈d, 1〉]lat. (5.19)

We obtain from (5.12) and (5.13) that S ⊆ S1. Therefore, to prove that
S1 = L and so (5.10) holds, it suffices to show that

S, defined in (5.19), equals L = Sub(Pd−1). (5.20)

For later reference, we note that our argument

proving (5.20) does not use Gelfand and Ponomarev’s theorem, (5.21)

which has already been mentioned; see also Theorem 8.1 in Section 8.
Next, we aim to prove (5.20). From (4.11), we know that S is closed

with respect to the ring isomorphisms in (4.14) and (4.15). Thus, for any
i, j ∈ [d] such that i 6= j and for any r ∈ F ,

R〈i, j〉 ⊆ S and so [0, . . . , 0, r, 0, . . . , 0,−1, 0, . . . , 0] ∈ S, (5.22)

where r and −1 are at the j-th position and the i-th positions, respectively.
Since each element of L is the join of finitely many atoms, it suffices to
show that any projective point ~u = [u1, . . . , ud] belongs to S. Since at
least one of the homogeneous coordinates u1, . . . , ud is nonzero, symmetry
allows us to assume that ud 6= 0. That is, by homogeneity, we assume that
ud = −1. Letting ~v (i) = [0, . . . , 0, ui, 0, . . . , 0,−1] (where ui is sitting in
the i-th component) for i ∈ [d − 1], we have that ~v (i) ∈ R〈d, i〉 ⊆ S by
(5.22). Figure 1 visualizes the situation for d = 4. In the figure, the black-
filled elements are in S by (5.19) and (5.22), and therefore so are the three
depicted hyperplanes containing the empty-filled ~u. Among these three
hyperplanes, one is adorned in green, another in magenta, and the third is
filled with a floral pattern. (When translated to grayscale, the green plane
appears lighter than its magenta counterpart.) As ~u is the meet of the
three hyperplanes, ~u ∈ S is clear when d = 4. The same idea works for any
3 ≤ d ∈ N+; indeed,

~u :=

d−1∧
i=1

(
~v (i) ∨

∨
j∈[d−1]\{i}

aj

)
∈ S

follows in a straightforward way by using Observation 5.1. Thus, (5.20)
holds, implying (5.10) and the second inequality in (3.4).

Our argument to show the first inequality in (3.4) is practically the same
as that of Strietz [17] for partition lattices9. The key is Wille’s D2 Lemma:

Lemma 5.3 (D2-Lemma in Wille [21]). If a subdirectly irreducible modular
lattice with more than two elements is generated by e0, e1, . . . , et, then e0 ∨
· · · ∨ ei−1 ≥ ei ∧ · · · ∧ et for every i ∈ [t].

By (4.1), L ∼= Sub(FV ), where V = FF
d. We know from the folk-

lore that Sub(FV ) is subdirectly irreducible. Having no reference to this
fact at hand, we present an easy in-line proof here; some details of this
proof will also be used later. Let a and b be distinct atoms of Sub(FV ),

9As partition lattices with more than five elements are not modular, we note that
Lemma 5.3, quoted from Wille [21], is valid even without assuming modularity. Lemma

4.1 from Czédli [2], a variant of the D2-Lemma, would also suffice here.



GENERATING SUBSPACE LATTICES 15

then a = F ~w (1) and b = F ~w (2) with the uniquely determined and linearly

independent vectors ~w (1) = (w
(1)
1 , . . . , w

(1)
d ) and ~w (2) = (w

(2)
1 , . . . , w

(2)
d )

in V such that w
(1)
1 + · · · + w

(1)
d = 1 and w

(2)
1 + · · · + w

(2)
d = 1. Letting

c := F (~w (1)+ ~w (2)), a trivial computation shows that {0 = a∧b, a, b, c, a∨b}
is a sublattice isomorphic to M3, the 5-element modular lattice of length 2.
Therefore, the (clearly) atomistic and modular lattice Sub(FV ) is subdi-
rectly irreducible by lines 4–5 in page 349 of Grätzer [8]. For later reference,
let us summarize what we have also obtained:

Observation 5.4. For any two distinct atoms a and b of Sub(FV ), c
defined above by c := F (~w (1) + ~w (2)) is a third atom, {0, a, b, c, a ∨ b} is a
sublattice of Sub(FV ), and this sublattice is isomorphic to M3.

Returning to the proof of Theorem 3.1, let us assume, to reach a contra-
diction, that L = Sub(FV ) is generated by a subset {e0, e1, e2}. Applying
Lemma 5.3, we have that e0 ≥ e1 ∧ e2 and e0 ∨ e1 ≥ e2. These two in-
equalities and those that we obtain from them by permuting the generators
imply that {e0, e1, e2} generates an M3 sublattice. As M3 is of length 2
but the length of L is d ≥ 3, M3 6= L. This is a contradiction showing that
fmng(L) ≥ 4. We have verified both inequalities in (3.4), and the proof of
Theorem 3.1 is complete. �

6. Proving Theorem 3.2

As a preparation for the proof of the second theorem, we prove the
following easy lemma.

Lemma 6.1. Assume that L1, . . . , Lk are finitely generated lattices, L =

L1 × · · · × Lk is their direct product, and ~b(1) = (b
(1)
1 , . . . , b

(1)
k ), . . . , ~b(t) =

(b
(t)
1 , . . . , b

(t)
k ) are elements of L. Then {~b(1), . . . ,~b(t)} generates L if and

only if

(1) For each i ∈ [k], {b(1)
i , . . . , b

(t)
i } generates Li, and

(2) For each i ∈ [k], there is a t-ary lattice term fi such that fi(b
(1)
i ,

. . . , b
(t)
i ) equals 1i, the top element of Li, but for every j ∈ [k]\{i},

fi(b
(1)
j , . . . , b

(t)
j ) equals 0j, the bottom element of Lj.

Visually, we can form a k-by-t matrix with the ~b(i)’s being the columns
and we apply the terms fi to the rows of this matrix.

Proof. First of all, note that 1i and 0j in the lemma exist since Li and Lj are

finitely generated. To prove the “only if” part, assume that {~b(1), . . . ,~b(t)}
generates L. Since the i-th projection L→ Li defined by (x1, . . . , xk) 7→ xi
sends generating sets to generating sets, (1) holds. So does (2) since there
is a lattice term fi such that (0, . . . , 0, 1, 0, . . . , 0) ∈ L (with 1 sitting at the

i-th place) equals fi(~b
(1), . . . ,~b(t)).

To prove the “if” part, assume that (1) and (2) hold, and let ~w =
(w1, . . . , wk) ∈ L. For each i ∈ [k], (1) allows us to pick a t-ary lattice term

gi such that gi(b
(1)
i , . . . , b

(t)
i ) = wi in Li. Furthermore, (2) yields a t-ary
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lattice term fi such that fi(b
(1)
i , . . . , b

(t)
i ) = 1i but fi(b

(1)
j , . . . , b

(t)
j ) = 0j for

all j ∈ [k] \ {i}. Then

~w =
∨
i∈[k]

(
gi(~b

(1), . . . ,~b(t)) ∧ fi(~b(1), . . . ,~b(t))
)
∈ [~b(1), . . . ,~b(t)]lat

completes the proof of Lemma 6.1. �

The following well-known fact follows from, say, Vanstone and Oorschot
[18, Theorem 3.3].

Fact 6.2. For d ∈ N+ and a field F , Sub(FF
d) is a selfdual lattice.

Proof of Theorem 3.2. To ease the notation, let h := bd/2c (“h” comes
from half) and r := 4 + dt/bd2/4ce. We know from (3.4) in Theorem 3.1
that L = Sub(FV ) has an r-dimensional generating vector.

First, we show (3.8). By Remark 3.4, it suffices to show that Lµ is (1+r)-
generated. For i ∈ {1, h}, let Ai be the set of i-dimensional subspaces of
V , that is, Ai is the set of elements of height i in L. In particular, A1 is
the set of atoms of L and |Ah| = µ; see (3.6). Define a binary operation
“product” on A1 as follows: For a, b ∈ A1, let

ab :=

{
c defined in Observation 5.4 if a 6= b and

0 = 0L if a = b.
(6.1)

This operation, denoted by concatenation, has precedence over the lattice
operations. Clearly, Observation 5.4 implies the following.

Fact 6.3. For any b, e ∈ A1, either b 6= e and {0, b, be, e, be ∨ e} is a
sublattice isomorphic to M3, or b = e and be = 0; in both cases, b ≤ be∨ e.

Let ~g = (g1, . . . , gr) be a generating vector of L. Let u1, . . . , uµ be a
repetition-free enumeration of the elements of (the µ-element) Ah. For

j ∈ [r], we define ~b(j) ∈ Lµ as the constant vector (gj , gj , . . . , gj). We

define a further vector, ~b(0) := (u1, u2, . . . , uµ) ∈ Lµ. We claim that

Ψ := {~b(0),~b(1), . . . ,~b(r)} generates Lµ. (6.2)

Since [ui, g1, . . . , gr]lat = L for all i ∈ [µ], Ψ (apart from self-explanatory
notational differences) satisfies (1) of Lemma 6.1.

Showing that Ψ satisfies (2) of Lemma 6.1, too, needs more work. For
each i ∈ [µ], fix an h-element subset Si of A1 such that ui =

∨
{e : e ∈ Si}.

Let ~ξ = (ξ1, . . . , ξr) be a vector of variables, and let ~ξ+ stand for (ξ0, ξ1,

. . . , ξr). For each element w of L, let us fix an r-ary lattice term w∗(~ξ ) such

that w∗(~g) = w. If w = ab, see (6.1), then w∗(~ξ ) is written as (ab)∗(~ξ ).
We can fix a d-element subset B of A1 such that 1 = 1L equals

∨
B. For

each i ∈ [µ], we define the following lattice term:

fi(~ξ
+) :=

∨
b∈B

(
b∗(~ξ ) ∧

∧
e∈Si

(
(be)∗(~ξ ) ∨

(
ξ0 ∧ e∗(~ξ )

)))
. (6.3)

Let (uj , ~g) := (uj , g1, . . . , gr). We need to show that fi(uj , ~g) = 0L if j 6= i

and it is 1L if j = i. For the meetand βb,e(~ξ
+) := (be)∗(~ξ ) ∨

(
ξ0 ∧ e∗(~ξ )

)
occurring in (6.3),

βb,e(uj , ~g) = (be)∗(~g) ∨
(
uj ∧ e∗(~g)

)
= be ∨

(
uj ∧ e

)
. (6.4)
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There are two cases to consider. First, assume that j = i. Then, for
every e ∈ Si = Sj , e ≤ uj yields that βb,e(uj , ~g) = be∨ e, whereby Fact 6.3
implies that b∗(~g) = b ≤ βb,e(uj , ~g). Thus, the meet

∧
e∈Si

as a meetand in

(6.3) makes no effect and we obtain that fi(uj , ~g) =
∨
b∈B b

∗(~g) =
∨
b∈B b =

1L if j = i, as required.
Second, assume that j 6= i. Since ui =

∨
Si and uj , belonging to the

antichain Ah, are incomparable, there is an e ∈ Si such that e � uj . For
this atom e, uj ∧ e in (6.4) is 0L, whence βb,e(uj , ~g) = be. Thus, each of
the joinands of

∨
b∈B in (6.3) is (at most) b∗(~g) ∧ βb,e(uj , ~g) = b ∧ be = 0,

no matter whether b = e or b 6= e. Therefore, fi(uj , ~g) = 0 if j 6= i, as
required. Hence, Ψ satisfies (2) of Lemma 6.1, whereby we conclude (6.2).
Thus, fmng(Lk) ≤ fmng(Lµ) ≤ 1 + r = 5 + dt/bd2/4ce, proving (3.8).

Next, we deal with the first inequality in (3.7). Let M := bd2/4c and
m := fmng(L). For the sake of contradiction, suppose that

m = fmng(L) < dt/Me (indirect assumption). (6.5)

Let {g1, . . . , gm} be a generating set of L = Sub(V ) = Sub(FF
d). For

each i ∈ [m], let ni be the dimension of the subspace gi. Let us pick an
ni-by-d matrix B(i) over F such that the rows of B(i) form a basis of
gi. After performing the Gauss–Jordan elimination to the rows of B(i),
these rows still form a basis of gi. Hence, we can assume that B(i) is in
reduced row echelon form and the number ni of its rows equals its rank.
So for j, ι ∈ [ni], the ι-th element in the j-th row of B(i) is δj,ι (Kronecker
delta). Note that B(i) has the same shape as A(i) in (5.7) would have if
we changed the universal quantifiers in the main diagonal to units (that is,
to 1’s). Let H(i) stand for the set of those entries of B(i) that differ from
0 and 1. This entries are in the last d−ni columns, so |H(i)| ≤ ni(d−ni).
Hence, using (3.5) and that the quadratic function x 7→ x(d − x) takes
its maximum at d/2, it follows that |Hi| ≤ ni(d − ni) ≤ M . Letting
H := H(1)∪· · ·∪H(m), we have that |H| ≤ mM . Observe that no matter
whether t/M is an infinite cardinal, an integer number, or a non-integer
number, the indirect assumption (6.5) and m ∈ N0 imply that

m < t/M, whereby |H| ≤ mM < t = fmng(F ). (6.6)

Let P denote the subfield of F generated by H. By (6.6), P ⊂ F (proper
subfield). With V ′ := PP

d and L′ := Sub(PV
′), ϕ from Lemma 3.5 is a

lattice embedding L′ → L. For i ∈ [m], using that B(i) is also a matrix
over P , let g′i be the subspace of V ′ spanned by the rows of B(i). Denoting
the set of rows of B(i) by X(i), the last sentence of Lemma 3.5 gives that

ϕ(g′i) = ϕ(SpanP (X(i))) = SpanF (X(i)) = gi (6.7)

for i ∈ [m]. Since ϕ is an embedding, ϕ(L′) is a sublattice of L. This sub-
lattice includes the generating set {gi : i ∈ [m]} by (6.7). Thus, ϕ(L′) = L,
implying that ϕ is surjective. Pick an element r ∈ F \ P . By the surjec-
tivity of ϕ, the 1-dimensional subspace S := SpanF ({(r, 1, 1, . . . , 1)}) ∈ L
has a ϕ-preimage S′ ∈ L. Since ϕ is length-preserving by Lemma 3.5,
S′ is also 1-dimensional. So S′ := SpanP ({(p, q2, q3, . . . , qd)}) for some
p, q2, . . . , qd ∈ P . The last sentence of Lemma 3.5 yields a λ ∈ F such
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that (r, 1, 1, . . . , 1) = λ(p, q2, q3, . . . , qd). Comparing the second compo-
nents, λ = q−1

2 ∈ P . Thus, the equality of the first components yields that
r = pλ ∈ P , contradicting the choice of r. Now that the indirect assump-
tion (6.5) has lead to a contradiction, we have shown the first inequality in
(3.7). Remark 3.4 gives the second inequality, so we have proved (3.7).

Figure 3. For ~g = ~g (i), typ(~g) cannot be (2, 2)

Next, we turn our attention to (3.9) and (3.10). So we assume that F is
a prime field and d = 3. Furthermore, based on the isomorphism given in
(4.1), let Pd−1 = P2 = P2(F ) be the projective plane over F and, in the rest
of the proof of Theorem 3.2, let L := Sub(P2). Some geometric terms and
methods in addition to the lattice theoretic ones will frequently appear in
our considerations. In particular, instead of drawing a usual Hasse diagram
of L = Sub(P2), we visualize L and its sublattices by drawing the points and
lines they contain. Furthermore, we frequently use the following definition
(but only for projective planes) without referencing it.

Definition 6.4. For L = Sub(P2) and a quadruple ~g = (g1, . . . , g4) ∈ L4,
we say that ~g is in general position if for any {i, j, k} ⊂ [4] such that
|{i, j, k}| = 3,

• gi � gj , that is, {g1, . . . , g4} is an antichain;
• if gi, gj , and gk are points, then gi � gj ∨ gk, that is, no three

collinear points occur among the components of ~g; and
• if gi, gj , and gk are lines, then gj ∧ gj � gk, that is, no three

concurrent lines occur among the components of ~g.

A complete quadrangle is a quadruple ~g = (g1, . . . , g4) in general position
such that g1, . . . , g4 are points.

Analogously to an earlier notation, A1 is the set of points while A2 is
the set of lines. We show that

if t = 0, d = 3, and fmng(Lk) = 4, then k ≤ 4. (6.8)

So F is a prime field now, and we can assume that k is the largest positive
integer such that fmng(Lk) = 4. This makes sense since k ≥ 1 by (3.4) and
the maximum exists by Observation 2.1. Choose a 4-dimensional generating

vector (~b(1), . . . ,~b(4)) of Lk. (Here the ~b(i), i ∈ [4], are also vectors since
they belong to Lk.) Let

~g (i) = (g
(i)
1 , g

(i)
2 , g

(i)
3 , g

(i)
4 ) := (b

(1)
i , b

(2)
i , b

(3)
i , b

(4)
i ) for i ∈ [k];

it is a generating vector of L by Lemma 6.1. (6.9)

Define the Kronecker delta in a lattice L by δ
(L)
ii := 1L and, for j 6= i,

δ
(L)
ij := 0L. Let fi, i ∈ [k], be the quaternary lattice terms provided by

Lemma 6.1; then

fi(~g
(j)) = δ

(L)
ij . (6.10)
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As {g(i)
1 , . . . , g

(i)
4 } generates L, it is easy to see that for each i ∈ [k] and

j ∈ [4], g
(i)
j is a point or a line. For later reference, we formulate this fact:

g
(i)
j /∈ {0, 1} and any 4-element generating set ⊆ A1 ∪A2. (6.11)

Figure 4. A quadruple of points not in general position

For x ∈ L, let hgh(x) denote the height of x; it is the projective dimen-
sion plus 1. For example, for x ∈ A1, hgh(x) = 1. For a generating vector
~g = (g1, g2, g3, g4) ∈ L4 of L, define the type and the fine type of ~g as

typ(~g) := (|{i ∈ [4] : gi is a point}|, |{i ∈ [4] : gi is a line}|) and

ftyp(~g) := (hgh(g1),hgh(g2),hgh(g3),hgh(g4)).

We know from (6.11) that the sum of the components of typ(~g) is 4. It

follows from (6.9) and (6.11) that for every generating quadruple ~h and, in
particular, for every i ∈ [k]

ftyp(~h) ∈ {1, 2}4 and ftyp(~g (i)) ∈ {1, 2}4. (6.12)

The type of a fine type ~τ ∈ {1, 2}4 is typ(~τ) := (|{i ∈ [4] : τi = 1}|,
|{i ∈ [4] : τi = 2}|). Note the obvious rule: typ(ftyp(~g (i))) = typ(~g (i)) for
every i ∈ [k]. Note also that our figures and arguments

will omit the most trivial cases like g
(i)
1 = g

(i)
2 . (6.13)

Using that every line contains at least three points, Figure 3 shows that for

any generating quadruple ~h and, in particular, for i ∈ [k],

neither typ(~h) nor typ(~g (i)) can be (2, 2). (6.14)

In P2, any two distinct lines intersect in a point. The following fact is
also well known; see, for example, Veblen and Young [19, page 93].

Fact 6.5. If ~x = (x1, . . . , x4) and ~x′ = (x′1, . . . , x
′
4) are complete quadran-

gles in P2, then P2 has an automorphism ϕ such that ϕ(xi) = x′i for i ∈ [4].
Consequently, L also has such an automorphism.

Therefore, our figures are sufficiently general. We claim the following.

Fact 6.6. Every generating quadruple of L is in general position.

To show this, assume that ~h is a generating quadruple. Since typ(~h) 6=
(2, 2) by (6.14) and L is selfdual, see Fact 6.2, we can assume that typ(~h) ∈
{(4, 0), (3, 1)}. If typ(~h) = (4, 0), then ~h is in general position by Figure 4

and (6.13). For typ(~h) = (3, 1), we draw the same conclusion from Case 1
of Figure 5 and Figure 6. Thus, Fact 6.6 holds.

Our next step is to show the following fact.

Fact 6.7. If |F | ≥ 3, then for each generating vector ~g = (g1, g2, g3, g4) of
L, there is a complete quadrangle (p1, . . . , p4) of L such that pi ≤ gi for
i ∈ [4].
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Figure 5. Proving Fact 6.7

Figure 6. Three collinear points and a line

To show Fact 6.7, observe that Facts 6.5 and 6.6 take care of the case
typ(~g ′) = (4, 0). Hence, there are five cases to consider, see Figure 5, but
each of them is obvious. We exclude Cases 1 and 3 since then {g1, . . . , g4}
does not generate L; indeed, the figure shows on the right what the gener-
ated sublattice is and this sublattice is clearly not the whole L since every
line of the projective plane has at least three10 points. In Cases 2, 4, and 5,
the figure shows how to choose the pi’s. Note for later reference that only
Case 2 needs the assumption that |F | ≥ 3, which makes it possible to pick
a fourth point on the line g4. So, Figure 5 has proved Fact 6.7.

Now we can show that

if typ(~g (i)) ∈ {(4, 0), (0, 4)} for some i ∈ [k], then k = 1. (6.15)

For the sake of contradiction, suppose that, say, typ(~g (1)) ∈ {(4, 0), (0, 4)}
but k > 1. By the selfduality of L, see Fact 6.2, we can assume that
typ(~g (1)) = (4, 0). First, we assume that |F | ≥ 3. Fact 6.7 yields a complete

10We now have at least four points since |F | ≥ 3. However, we continue to use the
term “at least three points” to make this argument applicable also when |F | = 2.
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quadrangle ~p such that pi ≤ g(2)
i for i ∈ [4]. By Fact 6.6, ~g (1) is a complete

quadrangle. Thus, by Fact 6.5, we can take an automorphism ϕ of L such

that ϕ(~g
(1)
i ) = pi ≤ g(2)

i for i ∈ [4]; we write ϕ(~g (1)) ≤ ~g (2) for short. Using
(6.10) and the fact that f1 is order-preserving, we obtain that

1 = ϕ(δ
(L)
11 ) = ϕ(f1(~g (1))) = f1(ϕ(~g (1))) ≤ f1(~g (2)) = δ

(L)
12 = 0, (6.16)

which is a contradiction showing (6.15) for the case |F | ≥ 3.
If |F | = 2 and so the projective plane is the Fano plane, then the argu-

ment for (6.15) needs the following modifications. Even though Case 2 of
Figure 5 and Fact 6.7 fail for the Fano plane, Fact 6.7 still holds for the
particular case typ(~g) ∈ {(1, 3), (0, 4)} since then the earlier argument re-
lies only on Cases 3, 4, and 5 of Figure 5. Like we did right after (6.15), we
assume that (6.15) is false and its failure is witnessed by ~g (1) of type (4, 0)
and ~g (2). If typ(~g (2)) ∈ {(1, 3), (0, 4)}, then the just-mentioned particular
case of Fact 6.7 leads to a contradiction in the same way as before. We know
from (6.14) that typ(~g (2)) 6= (2, 2). If typ(~g (2)) = (4, 0), then Facts 6.5 and
6.6 give an automorphism ϕ : L → L such that ~g (2) = ϕ(~g (1)), whereby
(6.16) (with equality in its middle rather than an inequality) leads to a con-
tradiction. Hence, based on (6.11), we can assume that typ(~g (2)) = (3, 1).

Since, for any i, j ∈ [k], δ
(L)
ij is a fixed point of every automorphism of L,

it follows that for any system (fi : i ∈ [k]) of quaternary lattice terms and
for any family (ψi,j : i, j ∈ [k]) of automorphisms of L,

(6.10) holds if an only if fi
(
ψi,j(~g

(j))
)

= δ
(L)
ij for all i, j ∈ [k]. (6.17)

Figure 7. Notations for the Fano plane

Figure 7 shows how we denote the points and the lines of the Fano plane;
they belong to L and |L| = 16. By Fact 6.6, ~g (2) is in general position.
Thus, by symmetry and (6.17), we can assume that ~g (2) = (a1, a2, a3, w);
see Figure 7. By Fact 6.5 and (6.17), we can also assume that ~g (1) =
(a1, a2, a3, c). To define a subset S, let us agree that sets of the forms
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{xi : i ∈ [3]} and {xi,j : i, j ∈ [3], i 6= j} will simply be denoted by
{xi} and {xi,j}, respectively. These sets consist of three and six elements,
respectively. With these temporary notations, we let

S := {(ai, ai)} ∪ {(ui, ui)} ∪ {(bi, ui)} ∪ {(0, ai)}
∪ {(0, bi)} ∪ {(0, ui)} ∪ {(0, vi)} ∪ {(ai, 1)} ∪ {(bi, 1)}
∪ {(ui, 1)} ∪ {(vi, 1)} ∪ {(ai, vi)} ∪ {(ai, uj)}
∪ {(c, w), (0, 0), (1, 1), (c, 1), (0, w), (w, 1), (0, 1), (0, c)};

(6.18)

the underlined terms of (6.18) will occur in (6.19). It is straightforward to
check11 that S is a sublattice of L2. This fact and (6.10) imply that

(1, 0) =
(
δ

(L)
11 , δ

(L)
12

)
=
(
f1(~g (1)), f1(~g (2))

)
=
(
f1(a1, a2, a3, c), f1(a1, a2, a3, w)

)
=
(
f1(a1, a1), (a2, a2), (a3, a3), (c, w)

)
∈ S, (6.19)

which contradicts (6.18). Hence, (6.15) holds even if |F | = 2, that is, it
holds for all prime fields.

Figure 8. Proving Fact 6.8

Next, for fine types (ξ1, ξ2, ξ3, ξ4) and (η1, η2, η3, η4), let us say that they
are complementary if ξi + ηi = 3 for all i ∈ [4]. (6.12) sheds more light on
this concept.

Fact 6.8. If there are ~g,~g ′ ∈ {~g (i) : i ∈ [k]} such that typ(~g) = (3, 1)
and typ(~g ′) = (1, 3), then k = 2 and, furthermore, ftyp(~g) and ftyp(~g ′) are
complementary.

To show Fact 6.8 by way of contradiction, assume that ~g,~g ′ ∈ {~g (i) :
i ∈ [k]} =: Γ such that typ(~g) = (3, 1) and typ(~g ′) = (1, 3) but ftyp(~g)
and ftyp(~g ′) are not complementary. We know from Fact 6.6 that ~g and ~g ′

are in general position. Apart from permutations, ftyp(~g) = (1, 1, 1, 2) and
ftyp(~g ′) = (1, 2, 2, 2); see Figure 8. The left of Figure 8 shows how to define
three auxiliary points; for example (in the language of L), a24 := (g1∨g3)∧
g4 and a23 := (a34∨g3)∧(a24∨g2); similarly for the middle of the figure. It
is straightforward to see that if (g1, a23, a24, a34) was not in general position
then neither ~g would be, and similarly for (g′1, a

′
23, a

′
24, a

′
34) in the middle

of Figure 8. Hence, Fact 6.5 yields an automorphism ϕ of L such that
ϕ(g′1) = g1, ϕ(a′23) = a23, ϕ(a′24) = a24, and ϕ(a′34) = a34; see on the right

11Alternatively, an appropriate program in Maple V (version 5.9, 1997, Waterloo
Maple Inc.) is available from the author’s website http://tinyurl.com/g-czedli/ and also

from arXiv:2401.00842, the extended version of the paper.

http://tinyurl.com/g-czedli/
https://arxiv.org/pdf/2401.00842
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of Figure 8. As the figure shows, ~g ≤ ϕ(~g ′), understood componentwise.
In other words, ϕ−1(~g) ≤ ~g ′. As ~g and ~g ′ are in Γ = {~g (i) : i ∈ [4]}, we can
assume that ~g (1) = ~g and ~g (2) = ~g ′. So ϕ−1(~g (1)) ≤ ~g (2). Hence (6.16),
with ϕ−1 instead of ϕ, gives contradiction. This shows that

ftyp(~g) and ftyp(~g ′) are complementary, as required. (6.20)

Next, we show that for any fine type ~τ ,

there is at most one ~h ∈ Γ such that ~τ = ftyp(~h). (6.21)

To verify (6.21), we can assume that typ(τ) 6= (2, 2) since otherwise (6.21)

is clear by (6.14). So let ~h,~h′ ∈ Γ such that ~τ = ftyp(~h) = ftyp(~h′); we

need to show that ~h = ~h′. If ~τ ∈ {(4, 0), (0, 4)}, then ~h = ~h′ is clear by
(6.15). Out of the cases typ(τ) = (3, 1) and typ(τ) = (1, 3), it suffices to
settle the first one since then the other follows by duality; see Fact 6.2.
As the components of ~τ share a symmetrical role, we can assume that

~τ = ftyp(~h) = (1, 1, 1, 3); see Case 2 in Figure 5 with ~g instead of ~h. No
problem if |F | = 2, as p4 (the fourth point on g4) is not needed here. On
the right of Case 2 in the figure, the bottom left black-filled point, the
bottom right black-filled point, the middle empty-filled point, and the top
left empty-filled point, in this order, form a complete quadrangle ~z. Indeed,

if ~z was not in general position, then neither ~h would be and so ~h would

contradict Fact 6.6. Observe that ~z determines ~h. Hence, applying Fact

6.5 to ~z and to the analogously defined quadruple determining ~h′, Fact

6.5 implies that ~h′ = ϕ(~h) for some automorphism ϕ of L. In particular,

ϕ(~h) ≤ ~h′. This inequality allows us to repeat the calculation in (6.16)

with ~h and ~h′ in place of ~g (1) and ~g (2), respectively. In this way, we obtain
that 1 ≤ 0 in L, which is a contradiction showing (6.21).

Next, continuing the argument for Fact 6.8, assume that ~h ∈ Γ. By

(6.14) and (6.15), typ(~h) /∈ {(4, 0), (0, 4), (2, 2)}. Hence, typ(~h) = (3, 1) =

typ(~g) or typ(~h) = (1, 3) = typ(~g ′). Since L is selfdual by Fact 6.2 (or since
the second alternative needs almost the same treatment), we can assume

that typ(~h) = (3, 1) = typ(~g). Then ~h ∈ Γ and ~g ∈ Γ have the same

role. Hence (6.20) applies to ~h and ~g ′, whence ftyp(~h) and ftyp(~g ′) are
complementary. As only one fine type is complementary to ftyp(~g ′), we

have that ftyp(~h) = ftyp(~g). Thus, (6.21) yields that ~h = ~g. So ~h = ~g ∈
{~g,~g ′}, implying that k = 2 and completing the proof of Fact 6.8.

Next, assume that k > 2. We know from (6.14) and (6.15) that, for all
i ∈ [k], typ(~g (k)) /∈ {(4, 0), (2, 2), (0, 4)}. So typ(~g (1)) ∈ {(3, 1), (1, 3}. By
duality, we can assume that typ(~g (1)) = (3, 1). As Fact 6.8 together with
k > 2 exclude that typ(~g (i)) = (1, 3) for some i ∈ [k] \ {1}, we have that
typ(~g (i)) = (3, 1) for all i ∈ [k]. Hence, for every i ∈ [k], ftyp(~g (i)) is one of
the fine types (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), and (2, 1, 1, 1). Since each
of these four fine types occurs at most once by (6.21), it follows that k ≤ 4,
proving (6.8).

Clearly, (6.8), the first inequality in (3.4), and the particular (t, d) =
(0, 3) case of (the already proven) (3.8) and (6.8) imply (3.10).
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Next, interrupting the proof of Theorem 3.2, we recall and, for the
reader’s convenience, prove the following lemma; its first part follows from
known deep results.

Lemma 6.9 (Day and Pickering [5], Herrmann [10], Herrmann and Huhn
[11]). Every complete quadrangle ~p = (p1, p2, p3, p4) in P2 (the projective
plane over the prime field F ) is a generating vector of L = Sub(P2). So is
every quadruple ~q in general position such that typ(~q) 6= (2, 2).

In the context of this paper, the proof of Lemma 6.9 is straightforward
and, what is important in Section 8, it does not rely on Gelfand and Pono-
marev’s result, which was mentioned after (2.3). Here, we provide a concise
demonstration. (6.14) shows that the assumption typ(~q) 6= (2, 2) cannot
be omitted from the lemma.

Figure 9. Generating the (subspace lattice of the) pro-
jective plane

Proof of Lemma 6.9. Let ~p be a complete quadrangle. By Fact (6.5), we
can assume that ~p is the canonical complete quadrangle; see Figure 9. Let
S := [pi : i ∈ [4]]lat. The figure shows that the elements of the canonical
von Neumann 3-frame, ai := pi for i ∈ [3] and ci,j = cj,i for i 6= j ∈ [3], are
in S. In particular, 1R〈3,1〉 = c1,3 ∈ S. As R〈3, 1〉 ∼= F by Theorem 4.1,
R〈3, 1〉 is a prime field and so it is generated by 1R〈3,1〉. Therefore, since
S is closed with respect to the field operations by (4.11), R〈3, 1〉 ⊆ S. In
virtue of (5.21), we can apply (5.20) to conclude that S = L, as required.
This proves the first half of Lemma 6.9.

To show the second half, (6.12), the first half of Lemma 6.9, and duality
allow us to assume that typ(~q) = (3, 1). We can assume that q1, q2, q3 are
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points and q4 is a line. Letting ~q play the role of ~g on the left of Figure 8,
we obtain that {a24, a34} ⊆ [q1, . . . , q4]lat =: S. So S contains a complete
quadrangle, (q2, q3, a24, a34), whereby the first part of the lemma implies
that S = L, as required. We have proved Lemma 6.9. �

To complete the proof of Theorem 3.2, we need to show (3.9). With its
assumptions, if fmng(Lk) ≤ 3, then Remark 3.4 would give that fmng(L) ≤
3, contradicting (3.4). Hence, fmng(Lk) ≥ 4. By Remark 3.4, it suffices
to prove that L4 has a 4-element generating set. Let e be a line and a, b, c
be three non-collinear points of the projective plane such that none of
these points lies on e. Then the quadruple (e, a, b, c) is in general position;
think of the left of Figure 8 and (e, a, b, c) := (g4, g1, g2, g3).) Keeping the
explanatory sentence right after Lemma 6.1 in mind, take the matrix

U = (ui,j)4×4 :=


e a b c
a e b c
a b e c
a b c e

 ,

and let ~g (i) = (ui,1, ui,2, ui,3, ui,4) be the i-th row of U for i ∈ [4]. With
~ξ = (ξ1, ξ2, ξ3, ξ4) as a vector of variables, define the following quaternary
lattice terms for i, j ∈ [4], i 6= j:

wi(~ξ ) :=
∧

j∈[4]\{i}

(ξi ∨ ξj),

hi,j(~ξ ) := ξj ∧
∧

s∈[4]\{i,j}

(
wi(~ξ ) ∨ ξs

)
, and

f
(e)
i (~ξ ) :=

∨
j∈[4]\{i}

hi,j(~ξ ). (6.22)

The superscript (e) of fi will be a useful reminder later. Some substitution
values of these terms are given as follows:

ξ1 ξ2 ξ3 ξ4 w1(~ξ ) h1,2(~ξ ) h1,3(~ξ ) h1,4(~ξ ) f
(e)
1 (~ξ )

e a b c 1 a b c 1
a e b c a 0 0 0 0
a b e c a 0 0 0 0
a b c e a 0 0 0 0

The last column above shows that f
(e)
1 (~g (j)) = δ

(L)
1j . By symmetry or by

three additional similar tables,

f
(e)
i (~g (j)) = δ

(L)
ij holds for all i, j ∈ [4]. (6.23)

Note for later reference that all we needed to prove (6.23) is only that

ftyp(a, b, c, e) = (1, 1, 1, 2) and (a, b, c, e) is in general position. (6.24)

By (6.23), Condition (2) of Lemma 6.1 holds. So does Condition (1) of the
same lemma by the second half of Lemma 6.9. Thus, the columns of U
form a 4-element generating set of L4 by Lemma 6.1, completing the proof
of (3.9) and that of Theorem 3.2. �
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7. Proving Theorem 3.3 and Example 3.6

Proof of Theorem 3.3. If λ is infinite, then |L| = 2ℵ0 and so L is not finitely
generated. (In fact, it is not even ℵ0-generated.) If a prime field F occurred
at least five times in the direct product (3.11) and L was 4-generated, then
Sub(FF

3)5 would also be 4-generated by Remark 3.4, contradicting (3.10).
Thus, the condition right after (3.11) is necessary. The rest of the proof
assumes this condition. We need to prove that fmng(L) = 4. In fact, it
suffices to find an at most 4-element generating set since the assumption
λ 6= 0 together with (3.4) and Remark 3.4 imply that fmng(L) ≥ 4. Fur-
thermore, by Remark 3.4 again, we can assume that each prime field occurs
exactly four times. So, taking (4.1) also into account, we assume that

L =
∏
i∈[k]

∏
ν∈[4]

Li,ν , where Li,ν = Sub(P2(Fi)), Fi � Fj

for i 6= j, and we construct an (at most) 4-element generating set of L.
For i ∈ [k], let pi1, pi2, pi3, and pi4 be the points (and also the atoms in the

corresponding subspace lattice) [1, 0, 0], [0, 1, 0], [0, 0,−1], and [1, 1,−1] in
the projective plane P i2 := P2(Fi) over Fi, respectively; see Figure 9 where
the superscript i is never indicated. Let ci2,3 := (pi1∨pi4)∧ (pi2∨pi3). Figure

9 shows how we define ci1,3, ci2,1, and (for later use) wi. We let

qi := ci1,3 ∨ ci2,3 and ~r (i) := (pi1, p
i
2, p

i
3, q

i).

Figure 9 shows and it is easy to verify that

pi4 =
((

(pi1 ∨ pi3) ∧ qi
)
∨ pi2

)
∧
((

(pi2 ∨ pi3) ∧ qi
)
∨ pi1

)
. (7.1)

For i ∈ [k], we define the following four quadruples:

~r (i,1) := (qi, pi1, p
i
2, p

i
3), ~r (i,2) := (pi1, q

i, pi2, p
i
3) (7.2)

~r (i,3) := (pi1, p
i
2, q

i, pi3), ~r (i,4) := (pi1, p
i
2, p

i
3, q

i) = ~r (i). (7.3)

Form a ([k] × [4])-by-4 matrix from these vectors as row vectors. So the
rows of this matrix are indexed by pairs taken from [k]× [4] and there are
four columns. The (i, ν)-th row of the matrix is ~r (i,ν). We claim that the
four columns of the matrix generate L. To prove this, we need to verify
both conditions given in Lemma 6.1. The satisfaction of Condition (1) of
Lemma 6.1 follows from the second half of Lemma 6.9; it also follows from
(7.1) and the first half of Lemma 6.9.

Let ~ξ stand for the vector (ξ1, ξ2, ξ3, ξ4) of variables. To show that Condi-
tion (2) of Lemma 6.1 also holds and to complete the proof of the theorem, it

suffices to define quaternary lattice terms fi,ν = fi,ν(~ξ ) for (i, ν) ∈ [k]× [4]
such that for any (j, κ) ∈ [k]× [4],

fi,ν(~r (j,κ)) =

{
1Lj , if (j, κ) = (i, ν),

0Lj
, if (j, κ) 6= (i, ν).

(7.4)

The term fi,ν that we define is of the form

fi,ν(~ξ ) := gi,ν(~ξ ) ∧ f (e)
ν (~ξ ), where f (e)

ν is taken from (6.22). (7.5)
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(The superscript “(e)” in (7.5) comes from “earlier”.) Note that almost all

of the terms we define in the rest of the proof are quaternary terms on ~ξ but
~ξ will often be dropped. As the components in (7.2)–(7.3) are permuted
cyclically, we do the same with the variables of gi,ν . So we define, in several
steps, gi,4; then, in harmony with (7.2)–(7.3), the rest of the terms gi,ν are
given by the following rules:

gi,1(~ξ ) := gi,4(ξ4, ξ1, ξ2, ξ3), (7.6)

gi,2(~ξ ) := gi,4(ξ1, ξ4, ξ2, ξ3), and (7.7)

gi,3(~ξ ) := gi,4(ξ1, ξ2, ξ4, ξ3), (7.8)

Keeping an eye on Figure 9, R = Ri =: R〈3, 1〉 will also stand for Fi.
In the figure, 0iR := 0Ri , 1iR = c1,3, 2iR = [2, 0,−1], and 3iR = [3, 0,−1] are
already given. (As we have already mentioned, i is not indicated in the
figure.) For all s ∈ N+, we defined siR ∈ Li by induction as follows:

(s+ 1)iR := siR ⊕R 1iR =
((

(siR ∨ wi) ∧ (pi1 ∨ pi4)
)
∨ pi2

)
∧ (pi1 ∨ pi3). (7.9)

Clearly, for all s ∈ N+, we have that siR = [s, 0,−1] ∈ Li; (7.10)

this follows also from Theorem 4.1. When defining lattice terms for a given
i ∈ [k], c∗i and c∗∗i denote terms closely related to a point c ∈ P i2; we
usually drop i if such a term does not depend on it. First, to get rid of
pi4 and bring qi in, we replace pi4 with the right-hand side of (7.1) in every
expression in Figure 9. In harmony with (7.1), (7.9), and Figure 9, we let

p∗4 = p∗4(~ξ ) :=
((

(ξ1 ∨ ξ3) ∧ ξ4
)
∨ ξ2

)
∧
((

(ξ2 ∨ ξ3) ∧ ξ4
)
∨ ξ1

)
,

w∗ = w∗(~ξ ) := (ξ3 ∨ p∗4) ∧ (ξ1 ∨ ξ2), p∗ν = p∗ν(~ξ ) := ξν for ν ∈ [3], (7.11)

0∗ = 0∗(~ξ ) := ξ3, and for s ∈ N0, (7.12)

(s+ 1)∗ = (s+ 1)∗(~ξ )

:=
((

(s∗ ∨ w∗) ∧ (ξ1 ∨ p∗4)
)
∨ ξ2

)
∧ (ξ1 ∨ ξ3). (7.13)

Let c∗1,3 = c∗1,3(~ξ ) := 1∗ and c∗2,3 = c∗2,3(~ξ ) := 1∗(ξ2, ξ1, ξ3, ξ4). (7.14)

So 0∗, 1∗, 2∗, . . . are lattice terms, not numbers. Comparing (7.9), (7.10),
(7.12), and (7.13), we obtain that for all j ∈ [k] and s ∈ N0,

s∗(~r (j)) = [r, 0,−1] =: rjR ∈ Lj . (7.15)

By construction and since the subscripts 1 and 2 share a symmetrical role,
for any j ∈ [k] and ι ∈ [4],

p∗ι (~r
(j)) = pjι , w

∗(~r (j)) = wj , c∗1,3(~r (j)) = cj1,3, c
∗
2,3(~r (j)) = cj2,3. (7.16)

To define further terms, we need to distinguish between two cases.
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First, assume that ti := |Fi| is a prime number. We let

p∗∗i3 = p∗∗i3 (~ξ ) := p∗3 ∧ (ti)
∗, (7.17)

p∗∗i1 = p∗∗i1 (~ξ ) := p∗i1 ∧ (p∗∗i3 ∨ p∗i2 ∨ p∗i4 ),

p∗∗i2 = p∗∗i2 (~ξ ) := p∗i2 ∧ (p∗∗i3 ∨ p∗i1 ∨ p∗i4 ), and

p∗∗i4 = p∗∗i4 (~ξ ) := p∗i4 ∧ (p∗∗i3 ∨ p∗i1 ∨ p∗i2 ).

We claim that for all ι ∈ [4] and j ∈ [k],

in the lattice Lj , p∗∗iι (~r (j)) =

{
pjι , if j = i,

0Lj
if j 6= i.

(7.18)

To show this, observe that we know from (7.15) and (7.16) that both

p∗3(~r (j)) = 0jR and (ti)
∗(~r (j)) = (ti)

j
R are points on the solid (magenta)

horizontal line pj3 ∨ p
j
1 in Figure 9. If j 6= i, then Fj � Fi, 0jR 6= (ti)

j
R, and

the meet of these two distinct points is p∗∗i3 (~r (j)) = ∅ = 0Lj . If j = i, then

0jR and (ti)
j
R are equal, whereby their meet is p∗∗i3 (~r (j)) = 0jR = pj3. This

shows the validity of (7.18) for ι = 3. Based on (7.16) and Figure 9, we
conclude (7.18) from its particular case ι = 3.

Second, we assume that Fi = Q, the field of rational numbers. Every-
thing goes in the very same way as in the previous case when Fi was finite
except that (7.17) and the corresponding argument for the ι = 3 case of
(7.18) need some modifications. As a preparation to this task, with self-
explanatory substitutions and using the terms (7.11)–(7.14), we turn (5.3)
with (i, j, k) = (3, 1, 2) into the quinary lattice term

rec∗312(x, ~ξ ) :=
((((

(x ∨ c∗2,3) ∧ (p∗1 ∨ p∗2)
)
∨ c∗1,3

))
∧ (p∗2 ∨ p∗3) ∨ c∗2,1

)
∧ (p∗3 ∨ p∗1).

With T := {|Fj | : j ∈ [k] and Fj is finite}, let

p∗∗i3 = p∗∗i3 (~ξ ) := p∗3 ∧
∧
t∈T

(
p∗1 ∨ rec∗312(t∗

(
~ξ )
))
. (7.19)

We claim that (7.18) for ι = 3 still holds. If i = j, then Fj ∼= Q and for every

t ∈ T , t∗(~r (j)) = tjR is not the zero element of Rj ∼= Q by (7.15). Hence,

Lemma 5.2 implies that rec∗312(t∗(~r (j))) = rec∗312(tjR) = (1/t)jR belongs to

Rj . In particular, (1/t)jR is distinct from pj1, the infinite point of the (solid
magenta) horizontal axis. This fact and the first equality in (7.16) yield

that the join in (7.19) turns into pj1 ∨ (1/t)jR, which is the (magenta) solid

horizontal line in Figure 9. As this line contains p∗3(~r (j)) = pj3, we have

that p∗∗i3 (~r (j)) = pj3 for j = i, as required.
Now let us examine what happens if j 6= i. Then the prime number

t := |Fj | is in T and the join p∗1 ∨ rec∗312(t∗
(
~ξ )
)

is one of the meetands in

(7.19). By (7.16), t∗(~r (j)) = tjR = 0jR = pj3. We know from Lemma 5.2 that

rec312(pj3) is pj1. Thus, using (7.16) again, the meetand p∗1 ∨ rec∗312(t∗
(
~ξ )
)

turns into pj1∨p
j
1 = pj1 when ~r (j) is substituted for ~ξ. Since p∗3 turns into pj3

after the substitution and pj3 ∧ p
j
1 = 0Lj

, we have that p∗∗i3 (~r (j)) = 0Lj
, as
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required. We have shown that (7.18) for ι = 3 still holds. Based on (7.16),
we conclude (7.18) from its particular case ι = 3.

We have seen that not matter if Fi is finite or not, (7.18) holds for all
i, j ∈ [k] and ι ∈ [4]. This allows us to let

gi,4(~ξ ) :=
∨
ι∈[4]

p∗∗iι (~ξ ); (7.20)

then (7.6), (7.7), and (7.8) define gi,ν(~ξ ) for ν ∈ [3].

Since the “rotational symmetry” of (7.2)–(7.3) and that of (7.6), (7.7), and
(7.8) correspond to each other, it suffices to verify (7.4) only for ν = 4. So

we are examining fi,4(~r (j,κ)) = gi,4(~r (j,κ)) ∧ f (e)
4 (~r (j,κ)); see (7.5).

First, assume that (j, κ) = (i, 4). Then the definition of f
(e)
4 in (6.22)

does not depend on the underlying field and neither the argument showing

(6.23) does, whence it follows from (6.23) and (6.24) that f
(e)
4 (~r (j,κ)) =

f
(e)
4 (~r (i)) = 1Li

= 1Lj
. All the joinands in (7.20) are the respective points

by (7.18). As these points are in general position, we have that gi,4(~r (j,κ)) =

1Lj
. Thus, fi,4(~r (j,κ)) = 1Lj

, as (7.4) requires. Next, assume that (j, κ) 6=
(i, 4). If κ 6= 4, then (6.23) and (6.24) give that f

(e)
4 (~r (j,κ)) = 0Lj

, implying

that fi,4(~r (j,κ)) = 0Lj
, as required. If j 6= i, then (7.18) implies that all the

joinands in (7.20) turn into 0Lj when ~r (j,κ) is substituted for ~ξ, whereby

gi,4(~r (j,κ)) = 0Lj and so fi,4(~r (j,κ)) = 0Lj again, as required. Now that we
have proved (7.4), the proof of Theorem 3.3 is complete. �

Proof of Remark 3.7. It suffices to exclude that F = Q(u) for some u ∈ F .
Suppose the contrary and pick such a u. Then u is transcendental and
80
√

80 = f(u)/g(u) for some polynomials f ∈ Q[x] and g ∈ Q[x]\{0}. Since
u is a root of the polynomial f(x)80 − 80g(x)80 ∈ Q[x], this polynomial
is 0. Hence, with a q ∈ Q such that g(q) 6= 0, 80 = (f(q)/g(q))80. Thus
80
√

80 = f(q)/g(q) ∈ Q, which is a contradiction, as required. �

Proof of Example 3.6. By the well-known multiplicativity of degrees and
the primitive element theorem, see for example Milne [13, Proposition 1.20
and Theorem 5.1], F in Part (a) is t = 1-generated. Hence, Part (a) follows
from (3.4) and (3.8). As the elements βi are independent, t := fmng(F ) in
Part (b) equals 80 by the fundamental theorem on transcendence bases; see
for example Theorem 9.5 in Milne [13]. Therefore, (3.4) and (3.7) imply
Part (b). (3.4) and (3.8) imply Part (c). To verify Part (d) for |F | = 19,
note that k = 102046 is smaller than µ in (3.6) by Tables 1–3. If F = Q,
then k ≤ µ = ℵ0 is trivial. Hence, Lk is 5-generated by (3.8). Since
fmng(A) = ℵ0, (3.7) implies Part (e). Finally, even without Remark 3.7,
Part (f) follows from (3.4) and (3.8) since t = fmng(F ) ∈ {1, 2}. �

8. Appendix: Extracting Gelfand and Ponomarev’s result
from Zádori’s proof

A lot in this paper depends on Gelfand and Ponomarev’s theorem:
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Theorem 8.1 (Gelfand and Ponomarev [7]). If 3 ≤ n ∈ N+, K is a prime
field, and V = Kn is the n-dimensional vector space over K, then the
subspace lattice L(Kn) := Sub(V ) has a 4-element generating set.

At the time of writing, the old website http://www.acta.hu/ of Acta Sci.
Math. (Szeged) provides free access to Zádori’s paper [22], while Gelfand
and Ponomarev’s proof seems to be less available. Thus, we recall Zádori’s
construction briefly and point out how it proves Theorem 8.1. For more
details, see the extended arXiv:2401.00842 version of the present paper.

Given a prime field K, an expression like [−x, x, 0, 0,−2y, z, x + y]vs

stands for the subspace {(−x, x, 0, 0,−2y, z, x + y) ∈ K7 : x, y, z ∈ K}.
Letting c := 1 in his paper [22], Zádori’s five subspaces turn into the fol-
lowing four subspaces.

Definition 8.2 (Zádori’s subspaces [22, c = 1]). For n = 2k + 1 ≥ 3, let

t1 := [0, . . . , 0, xk+1, . . . , x2k+1]vs,

t2 := [x1, . . . , xk, 0, . . . , 0]vs,

t3 := [x1, . . . , xk, 0, x1, . . . , xk]vs, and

t4 = t5 := [x1, . . . , xk, x1, . . . , xk, 0]vs.

Furthermore, for n = 2k ≥ 4, let

t1 := [0, . . . , 0, xk+1, . . . , x2k]vs,

t2 := [x1, . . . , xk, 0, . . . , 0]vs,

t3 := [x1, . . . , xk, x1, . . . , xk]vs, , and

t4 = t5 := [0, x2, . . . , xk, x2, . . . , xk, 0]vs.

Proof of Theorem 8.1 (outline). For n = 3, {t1, . . . , t4} generates L :=
Sub(KK

n) ∼= Sub(P2(K)) by Lemma 6.9 and Figure 9. The same holds for
all 3 ≤ n ∈ N+, because the induction step from {n− 2, n− 1} to n is the
same as in Zádori [22], provided that we keep c = 1 and let t8 := t7 and
t12 := t11 there. This is how Zádori [22] offers a proof of Theorem 8.1. �
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