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ON THE GEOMETRIC CONSTRUCTIBILITY OF CYCLIC

POLYGONS WITH EVEN NUMBER OF VERTICES

GÁBOR CZÉDLI AND ÁDÁM KUNOS

Abstract. We deal with convex cyclic polygons with even order, that is, with
inscribed n-gons where n is even. We prove that these polygons are in general
not constructible with compass and ruler, provided n is at least six and even.
We conjecture that the statement also holds for odd orders. Some related
questions are also discussed.

1. Introduction and the main results

A (convex) cyclic polygon is an n-gon inscribed in a circle. Here n denotes the
order, that is the number of vertices, of the polygon. Constructibility is always
understood as the classical geometric constructibility with compass and ruler. Our
main goal is to prove the following theorem.

Theorem 1.1. If 6 ≤ n and n is even, then the cyclic n-gon is in general not

constructible from its sides by compass and ruler. For n = 4, it is constructible.

Also, we formulate the following conjecture.

Conjecture 1.2. Let n ≥ 3 be a natural number. The cyclic n-gon is in general
constructible from its side lengths if and only if n ∈ {3, 4}.

Besides Theorem 1.1, there are some other results that support this conjecture.
For n = 5, the cyclic pentagon is in general not constructible by Schreiber [5,
Theorem 2]. Also, there is a more involved approach for n = 5 in Varfolomeev [6].
However, none of these two approaches for n = 5 seems to carry over for larger odd
numbers. In particular, according to the overview given by Pak [4], the polynomials
used by Varfolomeev [6] would be rather complicated for this purpose. The case
n = 3 is evident. The conjecture is evidently true for all those n for which the
regular n-gon is not constructible; these n are well-known from the Gauss-Wantzel
theorem [7]. Actually, Conjecture 1.2 has been verified for all n ≤ 770, see Section 3
for details.

Note that Schreiber [5, Theorem 3] formulated Conjecture 1.2 as a theorem.
However, his proof is wrong; Section 4 will explain this in three different ways. One
of our arguments in Section 4 relies on cases n ∈ {3, 4} of the following statement,
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2 G. CZÉDLI AND Á. KUNOS

which we recall from Czédli and Szendrei [2, IX.1.26–27 and 2.13]. An illustration
with n = 4 is given in Figure 1. For a stronger statement, see Proposition 3.2 later.

Proposition 1.3 ([2]). Assume that we want to construct a cyclic n-gon Pn from

the distances d1, . . . , dn of its sides from the center of its circumscribed circle. For

n ∈ {3, 4, . . . , 100}, Pn is in general constructible from 〈d1, . . . , dn〉 if and only if

n = 4. In particular, P4 is constructible but P3 is not.

Figure 1. A cyclic n-gon for n = 4

The case n = 3 is somewhat surprising. For n ∈ {5, . . . , 100} \ {15, 17, 51, 85},
Proposition 1.3 follows from the Gauss-Wantzel theorem and Proposition 1.4 below.
For n ∈ {15, 17, 51, 85}, Proposition 1.3 was proved with computer force in [2]. Since
[2] is only available in Hungarian, we will recall the proofs from it for n ∈ {3, 4, 5}.

Next, in connection with Theorem 1.1 and Proposition 1.3, we formulate our
second result.

Proposition 1.4. With the notation of Proposition 1.3, if n ≥ 6 and n is even,

then Pn is in general not constructible from 〈d1, . . . , dn〉.
The following statement, which we recall from Czédli and Szendrei [2, IX.2.14],

extends the scope of Proposition 1.4 to circumscribed polygons.

Remark 1.5 ([2]). Let n ∈ {3, 4, 5, . . .}. With the notation of Proposition 1.3, a
circumscribed n-gon Tn is in general constructible from the distances of its vertices
from the center of the inscribed circle if and only if the inscribed polygon Pn is
constructible from 〈d1, . . . , dn〉 in general.

2. Proofs

Our approach is based on the following well-known statement from classical
algebra. Its Part (C) is the Eisenstein-Schönemann criterion, see Cox [1] for our
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terminology. The degree of a polynomial f(x) in the variable x is denoted by
degx(f). Usually, we assume that we are given some complex numbers, and we
want to construct an additional complex number depending on the given ones.

Proposition 2.1.

(A) Let u ∈ C be the number that we want to construct in general from v1, . . . , vs ∈
C. Let f(x; y1, . . . , ys) in Q[x; y1, . . . , ys] be an irreducible polynomial such that

degx(f) is not a power of 2. If f(u, v1, . . . , vs) = 0, then u is not constructible.

(B) If f(x; y1, . . . , ys) ∈ Z[x; y1, . . . , ys] and there exist c1, . . . , cs ∈ Z such that

g(x) = f(x; c1, . . . , cs) is irreducible in Q[x]and degx(g) = degx(f), then

f(x; y1, . . . , ys) is irreducible in Q[x; y1, . . . , ys].

(C) If f(x) =
∑k

j=0 ajx
j ∈ Z[x] and p is a prime number such that p 6 | ak, p2 6 | a0,

and p | aj for j ∈ {0, . . . , k − 1}, then f(x) is irreducible in Q[x].

For k ∈ {0, 1, 2, . . .} = {0} ∪ N, we need the following two known formulas,
which are easily derived from de Moivre’s formula and the binomial theorem. For
brevity, the conjunction of “2 | j” and “j runs from 0” is denoted by 2 | j = 0,
while 2 6 | j = 1 is understood analogously.

sin(kγ) =

k
∑

26 |j=1

(−1)(j−1)/2

(

k

j

)

(cos γ)k−j · (sin γ)j(2.1)

cos(kγ) =

k
∑

2|j=0

(−1)j/2
(

k

j

)

(cos γ)k−j · (sin γ)j.(2.2)

A prime p is a Fermat prime, if p−1 is a power of 2. A Fermat prime is necessarily

of the form pk = 22
k

+ 1. We know that p0 = 3, p1 = 5, p2 = 17, p3 = 257, and
p4 = 65 537 are primes, but it is an open problem if there exists any other Fermat
prime.

Lemma 2.2. If n = 5 or 8 ≤ n ∈ N, then there exists a prime p such that

n/2 < p < n and p is not a Fermat prime.

Proof. We know from Nagura [3] that, for each 25 ≤ x ∈ R, there exists a prime
in the open interval (x, 6x/5). Applying this result twice, we obtain two distinct
primes in (x, 36x/25). Hence, for 25 ≤ n ∈ N, there are at least two primes in the
interval (n, 2n). Since the ratio of two consecutive Fermat primes above 25 is more
than 2, this gives the lemma for 50 ≤ n. For n ≤ 50, appropriate primes are given
in the following table.

n 5 8–13 14–25 26–45 46–85

p 3 7 13 23 43
�

Proof of Theorem 1.1. It suffices to find an appropriate p ∈ {1, 2, . . . , n − 1} and
a, b ∈ N such that Pn is not constructible even if p of the given n side lengths are
equal to a and the rest n− p side lengths are equal to b. Let r and C be the radius
and the center of the circumscribed circle, respectively.

The half of the central angle for a and b are denoted by α and β, respectively; see
the αi in Figure 1 for the meaning of half central angles. Clearly, Pn is constructible
iff so is u = 1/(2r). Since we will choose a and b nearly equal, C is in the interior
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of Pn, and we have

(2.3) pα+ (n− p)β = π.

It follows from (2.3) that sin(pα)− sin((n− p)β) = 0. Therefore, using (2.1),

(2.4) sinα = au, sinβ = bu, cosα =
√

1− a2u2, and cosβ =
√

1− b2u2,

we obtain that u is a root of the following function:

(2.5)

f (1)
p (x) =

p
∑

26 |j=1

(−1)(j−1)/2

(

p

j

)

(1− a2x2)(p−j)/2 · (ax)j

−
n−p
∑

26 |j=1

(−1)(j−1)/2

(

n− p

j

)

(1− b2x2)(n−p−j)/2 · (bx)j

= Σf
1 − Σf

2 .

Observe that f
(1)
p (x) is a polynomial since p− j and n− p− j are even for j odd.

In fact, f
(1)
p (x) ∈ Z[x] for all a, b ∈ N. Besides f

(1)
p (x) = Σf

1 −Σf
2 , we also consider

the polynomial f
(2)
p (x) = Σf

1 +Σf
2 .

From now on, we assume that 8 ≤ n is even and p is chosen according to
Lemma 2.2. We know from Schreiber [5] that Pn exists if and only if each of the
given side lengths is smaller than the sum of the rest. Hence, obviously, we can
choose a and b such that

(2.6) a ≡ 1 (mod p2), b ≡ 0 (mod p2),

and a/b is so close to 1 that Pn exists and C is in the interior of Pn. The inner
position of C is convenient but not essential, because we can allow a central angle
larger than π; then (2.4) still holds and the sum of half central angles is still π.

Let v ∈ {1, 2}. The assumption n/2 < p < n gives degx(f
(v)
p ) = p. Hence, we

can write

f (v)
p (x) =

p
∑

s=0

c(v)s xs, where c
(v)
0 , . . . , c(v)p ∈ Z.

We have c
(v)
0 = 0 since j > 0 in (2.5). Our plan is to apply Proposition 2.1(C) to the

polynomial f
(v)
p (x)/x. Hence, we are only interested in the coefficients c

(v)
s modulo

p2. Note that this congruence extends to the polynomial ring Z[x] in the usual

way. The presence of (bx)j in Σf
2 yields that all coefficients in Σf

2 are congruent to

0 modulo p2. Therefore, f
(v)
p (x) ≡ Σf

1 (mod p2), and we can assume that the all

the c
(v)
s come from Σf

1 . Each summand of Σf
1 is of degree p. Therefore, computing

modulo p2, the leading coefficient c
(v)
p satisfies the following:

(2.7)

c(v)p ≡
p

∑

26 |j=1

(−1)(j−1)/2

(

p

j

)

(−1)(p−j)/2 (a2)(p−j)/2 aj

= (−1)(p−1)/2

p
∑

26 |j=1

(

p

j

)

ap ≡ (−1)(p−1)/2

p
∑

26 |j=1

(

p

j

)

= (−1)(p−1)/2 2p−1 = (−1)(p−1)/2 + ptp (mod p2) for some tp ∈ Z;
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the last but one equality is well-known while the last one follows from Fermat’s

little theorem. Since Σf
1 gives a linear summand only for j = 1, we have

(2.8) c
(v)
1 ≡

(

p

1

)

· a = pa ≡ p (mod p2).

Next, let 1 ≤ s < p. For j = p, the j-th summand of Σf
1 is ±(ax)p, which

cannot influence c
(v)
s . Hence, modulo p2, c

(v)
s comes from the

∑p−2
26 |j=1 part of Σf

1 .

However, for j ∈ {1, . . . , p−2}, the binomial coefficient
(

p
j

)

is divisible by p. Hence,

we conclude that there exist integers t1, . . . , tp−1 such that

(2.9) c(v)s ≡ pts (mod p2) for s ∈ {1, . . . , p− 1}.
Now, (2.7), (2.8), (2.9), c

(v)
0 = 0, and Proposition 2.1(C) imply that

(2.10) for v = 1, 2, f (v)
p (x)/x is irreducible.

By the choice of p, degx(f
(v)
p (x)/x) = p − 1 is not a power of 2. Since a, b ∈

Z, we can apply Proposition 2.1(A) (with s = 0 since no parameter is given) to

f
(1)
p (x)/x to conclude that Pn is not constructible. Alternatively, we can apply
Proposition 2.1(A) and (B).

Next, assume n = 4. With the notation of Figure 1 and using the fact that
cos δ3 = cos(π − δ1) = − cos δ1, the law of cosines gives

a21 + a23 − 2a1a3 cos δ1 = A2A4
2
= a22 + a24 + 2a2a4 cos δ1,

which yields an easy expression for cos δ1. This implies that cos δ1 is constructible,
and so is the cyclic quadrangle P4. This settles the case n = 4.

Finally, the case n = 6 needs a bit more work, which we quote from Czédli and
Szendrei [2, IX.2.7]. Using the cosine angle addition identity, it is easy to conclude
that, for all κ1, κ2, κ3 ∈ R such that κ1 + κ2 + κ3 = π,

(2.11) (cosκ1)
2 + (cosκ2)

2 + (cosκ3)
2 + 2 cosκ1 · cosκ2 · cosκ3 − 1 = 0 .

Assume that the side lengths are given as follows: a1 = a2 =
√
2, a3 = a4 =√

3, and a5 = a6 =
√
5. It follows from Schreiber [5, Theorem 1], or from an

easy reasoning based on continuity, that these data determine a cyclic polygon
P6. Note that

√
2,

√
3, and

√
5 are constructible from 0 and 1, so we will apply

Proposition 2.1 with s = 0 (no data is given). Let α1, . . . , α6 be the corresponding
central half angles. Define κ1/2 = α1 = α2, κ2/2 = α3 = α4, κ3/2 = α5 = α6, and
u = (1/2r)2, where r is the radius of the circumscribed circle. We have cosκ1 =
cos(2α1) = 1 − 2 · (sinα1)

2 = 1 − 2(a1/2r)
2 = 1 − 2a21u = 1 − 4u. We obtain

cosκ2 = 1 − 6u and cosκ3 = 1 − 10u similarly. Since κ1 + κ2 + κ3 = π, we can
substitute these equalities into (2.11). Hence, we obtain that u is a root of the cubic
polynomial h1(x) = 120x3 − 100x2 + 20x − 1. Since the Schönemann-Eisenstein
Theorem with the prime 5 implies the irreducibility of the “mirror polynomial”
h2(y) = y3h1(1/y) = −y3 + 20y2 − 100y + 120, h1 is irreducible. Therefore, P6 is
not constructible. �

Proof of Proposition 1.4. First, we assume n ≥ 8 since n = 6 will need a separate
treatment. Let p be a prime according to Lemma 2.2. Choose a and b according
to (2.6) such that a/b be sufficiently close to 1. Let d1 = · · · = dp = a and
dp+1 = . . . dn = b be the lengths of the sides of Pn from C. Hence, Pn exists and,
clearly, its interior contains the center C of circumscribed circle. (Note that the
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inner position of C is convenient but not essential if we allow that one of the given
distances can be negative.) The radius of the circumscribed circle is denoted by r,
and let u = 1/r. Instead of (2.4), now we have

(2.12) cosα = au, cosβ = bu, sinα =
√

1− a2u2, and sinβ =
√

1− b2u2.

Combining (2.2), (2.3), and (2.12), and using 2 6 | p and 2 6 | n− p, we obtain that u
is a root of the following polynomial:

(2.13)

gp(x) =

p−1
∑

2|j=0

(−1)j/2
(

p

j

)

(ax)p−j(1− a2x2)j/2

+

n−p−1
∑

2|j=0

(−1)j/2
(

n− p

j

)

(bx)n−p−j(1 − b2x2)j/2 = Σg
1 +Σg

2.

Substituting s for p − j in Σg
1 above and using the rule

(

p
j

)

=
(

p
p−j

)

, we obtain

Σg
1 = (−1)(p−1)/2 · Σf

1 . Similarly, substituting s for n − p − j in Σg
2, we obtain

Σg
2 = (−1)(n−p−1)/2 · Σf

2 . Hence, {gp(x),−gp(x)} ∩ {f (1)
p (x), f

(2)
p (x)} 6= ∅, and

(2.10) yields that gp(x)/x is irreducible. Hence, Proposition 2.1 implies that Pn is
not constructible. This proves the case 2 | n ≥ 8.

Next, we deal with n = 6; our approach below is simpler than the argument
given in Czédli and Szendrei [2, IX.2.13]. Let

(2.14) d1 = d2 = d3 = d4 = 1, d5 = 2, and d6 = 3.

The corresponding central half angles are α1, . . . , α6. As usual, cos(α5) = d5u =
2u, where u = 1/r, and cos(α6) = 3u. We obtain from (2.2) and cos(α1) = u
that cos(α1 + · · · + α4) = cos(4α1) = 8u4 − 8u2 + 1. These equalities, together
with 4α1 + α5 + α6 = π and (2.11), imply that u is a root of x2(64x6 − 32x4 −
16x2 + 9). Since u 6= 0, it is a root of h1(x) = 64x6 − 32x4 − 16x2 + 9. Let
h2(y) = h1(

√
y + 2/2) = y3 + 4y2 + 1. Clearly, since u > 0, (2u)2 − 2 is a root

of h2(y). The polynomial h2(y) is irreducible in Q[y] since 0 /∈ {h2(1), h2(−1)}.
Hence (2u)2 − 2 is not constructible. This implies that neither u, nor r = 1/u is
constructible.

Finally, to remedy the problem that there is no cyclic hexagon satisfying (2.14),
compute h2(y) = h1(

√
y + 2/2) again with the initial assumption cos(α5) = d5u,

cos(α6) = d6u and cos(α1) = u, where d5 and d6 are treated as parameters. Since
we still have degy(h2) = 3, Parts (A) and (B) of Proposition 2.1 imply that P6 is
not constructible. This completes the proof. �

Parts from the proof of Proposition 1.3 (Czédli and Szendrei [2]). Let n = 3. With
d1 = 1, d2 = 2 and d3 = 3, (2.11) and the formulas analogous to (2.12) give that
12x3 + 14x2 − 1 = 0. Substituting x = y/2, we obtain that 2u = 2/r is a root
of h3(y) = 3y3 + 7y2 − 2. Since none of ±1, ±2, ±1/3 and ±2/3 is a root of
h3(y), this polynomial is irreducible. Hence, we conclude that the triangle P3 is
not constructible.

Next, following Czédli and Szendrei [2, IX.1.27], we deal with the cyclic quad-
rangle P4, see Figure 1. Since α1 + α2 + α3 + α4 = π, we have cos(α1 + α2) =
− cos(α3 + α4). Hence, using the cosine angle addition identity and rearranging
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and squaring twice, we obtain

(2.15)

4
∑

j=1

(cosαj)
4 − 2 ·

∑

1≤j<s≤4

(cosαj)
2(cosαs)

2

+ 4 · cosα1 · cosα2 · cosα3 · cosα4 ·
(

−2 +

4
∑

j=1

(cosαj)
2
)

+ 4 ·
∑

1≤j<s<t≤4

(cosαj)
2(cosαs)

2(cosαt)
2 = 0.

Clearly, if we substitute cosαj in (2.15) by dju, for j = 1, . . . , 4, and divide the
equality by u4, then we obtain that u = 1/r is a root of a polynomial of the form
c2x

2 + c0. A straightforward calculation (preferably, by computer algebra) shows
that this polynomial is not the zero polynomial since

c2 = 4(d1d2 + d3d4)(d1d3 + d2d4)(d1d4 + d1d3).

Thus u = 1/r is constructible, and so is P4.
Next, let n = 5, and let d1 = d2 = 1, d3 = d4 = 2 and d5 = 3. With u = 1/r as

before, cos(2α1) = 2(cosα1)−1 = 2u2−1, cos(2α3) = 2 ·(2u)2−1, and cosα5 = 3u.
Applying (2.11) to κ1 = 2α1, κ2 = 2α3, and κ3 = α5, we obtain that u is a root of
the polynomial 96x5 + 68x4 − 60x3 − 11x2 + 6x + 1. Using computer algebra, we
obtain that this polynomial is irreducible. Hence, P5 is not constructible. �

3. Cyclic polygons of odd order

As we have already mentioned, Conjecture 1.2 holds for every n for which the
regular n-gon is not constructible. By the well-known Gauss-Wantzel theorem [7],
all those n ∈ {7, 9, 11, 13, . . . , 5 · 257 − 2 = 1283} for which the regular n-gon is
constructible are listed in the first row of Table 3.1 below; the rest of the table will
be explained soon.

(3.1)

n 15 15 17 51 85 255 257 771

n = 3 · 5 3 · 5 17 3 · 17 5 · 17 15 · 17 257 3 · 257
p 13 11 15 49 83 253 255
a 1 1 1 1 1 1 1
b 2 2 2 2 2 2 2
degx(h(x)/x) 12 10 14 48 82 252 254
irreducible? yes yes yes yes yes yes yes ?

In the rest of this section, let n be odd. We do not assume that p is a prime;

however, we assume that n/2 < p < n and p is odd. In this case, neither f
(1)
p (x)

defined in (2.5), nor f
(2)
p (x) is a polynomial. However, the product

(3.2) h(x) = f (1)
p (

√
x)f (2)

p (
√
x) = (Σf

1 (
√
x))2 − (Σf

2 (
√
x))2

is a polynomial with integer coefficients. The difficulty with h(x) is that even if p
is a prime and a and b are chosen according to (2.6), the counterpart of (2.8) fails,
because of the squares in (3.2). However, in order to make Conjecture 1.2 credible,
one can use computer algebra to obtain Table 3.1 in a few seconds. Actually, we
have used Maple, version V.3, and the corresponding worksheet is available from
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our web sites. The column for n = 771 is beyond the capacity of our personal
computers.

The table shows that the choice p = n− 2, a = 1, and b = 2 of the parameters
works. Generally, p can be chosen differently; this is only exemplified for n = 15.
Observe that, at each column of the table, h(x)/x is irreducible and its degree is
not a power of 2. Therefore, Schreiber [5, Theorem 2] for n = 5, Theorem 1.1, and
Table 3.1 yield the following corollary.

Corollary 3.1. Conjecture 1.2 holds for all n ≤ 770 and for all even n.

Except that the choice p = n − 2 does not work in general, a straightforward
modification of our approach (included in the Maple worksheet mentioned above)
also yields the following statement.

Proposition 3.2. Proposition 1.3 remains true if we replace 100 by 770.

Based on Proposition 1.4 and Remark 3.2, we formulate the following counterpart
of Conjecture 1.2.

Conjecture 3.3. For 2 < n ∈ N, the cyclic n-gon is in general constructible from
the distances of its sides from the center of its circumscribed circle if an only if
n = 4.

4. Notes on Schreiber’s argument

We only deal with a small portion of Schreiber [5], which claims to prove Con-
jecture 1.2. With some insignificant simplifications, the argument given in [5] runs
as follows.

“Suppose for contradiction that the cyclic polygon Pn is in general constructible
for some n > 5. The radius r of its circumscribed circle is an n-ary continu-
ous function of its side lengths a1, . . . , an. Also, it is a “quadratic irrationality”
R = R(a1, . . . , an) depending on a1, . . . , an. Using the continuity of this quadratic
irrationality and that of f , and letting an converge to 0, we conclude that the qua-
dratic irrationality R(a1, . . . , an−1, 0) describes the construction of Pn−1. Thus the
constructibility of Pn implies that of Pn−1, Pn−2, . . . , P5, which is a contradiction
since we know that P5 is not constructible.”

Although [5] does not define “quadratic irrationalities”, they are expressions of
their variables and the operations +, −, ·, /, and √

. Hence, the first objection
against his argument is that quadratic irrationalities are not everywhere continuous.
Nothing excludes the possibility that, say, an is the denominator of a subterm of R
above, and R is not continuous at 〈a1, . . . , an−1, 0〉.

Second, think of the geometric construction as a precise list of elementary steps.
One of these steps can be that we have to take the intersection of two lines, de-
termined by four points constructed already. Nothing excludes the possibility that
these two lines intersect for all an > 0 but they become parallel when an = 0.

Third, suppose for contradiction that the argument quoted from [5] is correct.
We show that the triangle P3 is constructible from the distances d1, d2, d3 of its

sides from the center of the circumscribed circle. Let d
(0)
4 denote the radius of this

circle; of course, d
(0)
4 depends on d1, d2, d3. Let d4 ∈ R such that d4 < d

(0)
4 and

d4 → d
(0)
4 . We know from Proposition 1.3 that the cyclic quadrangle P4 determined

by 〈d1, . . . d4〉 is constructible, and it clearly converges to P3 if d4 → d
(0)
4 . It
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follows from the argument quoted from [5] that P3 is constructible. However, this
contradicts Proposition 1.3.

References

[1] Cox, D. A.: Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered
it first. The American Mathematical Monthly 118/1, 3–21 (1 January 2011)
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