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Abstract. A lattice is (1+1+2)-generated if it has a four-element generating

set such that exactly two of the four generators are comparable. We prove that
the lattice Quo(n) of all quasiorders (also known as preorders) of an n-element

set is (1 + 1 + 2)-generated for n = 3 (trivially), n = 6 (when Quo(6) consists
of 209 527 elements), n = 11, and for every natural number n ≥ 13. In 2017,

the second author and J. Kulin proved that Quo(n) is (1 + 1 + 2)-generated if
either n is odd and at least 13 or n is even and at least 56. Compared to the

2017 result, this paper presents twenty-four new numbers n such that Quo(n)
is (1 + 1 + 2)-generated. Except for Quo(6), an extension of Zádori’s method

is used.

1. Introduction

1.1. Outline. The present section is introductory, and it is structured as follows.
Subsection 1.2 contains the basic concepts used in the paper. Subsection 1.3 gives
a short historical survey. This survey motivates our target, which is presented in
Subsection 1.4. Subsection 1.5 is a comment on the joint authorship. Sections 2
and 3 prove for some values of n that the lattice Quo(n) of quasiorders of an n-
element finite set is (1 + 1 + 2)-generated. Sections 2, the longest section, proves
this for n = 3 and n = 6 while Section 3 is devoted to n = 11 and all n ≥ 13.
At the end of Section 3, Remark 3.4 summarizes which Quo(n) are known to be
(1 + 1 + 2)-generated and which are not.

1.2. Basic concepts. Given a set A, a relation ρ ⊆ A2 is a quasiorder (also known
as a preorder) if ρ is reflexive and transitive. With respect to set inclusion, the set
of all quasiorders of A form a lattice Quo(A) = 〈Quo(A),⊆〉, the quasiorder lattice

of A. The meet of ρ, τ ∈ Quo(A) is their intersection, and so we can write that
ρ ∧ τ = ρ ∩ τ . The join ρ ∨ τ of ρ and τ is the transitive closure of ρ ∪ τ . That
is, for x, y ∈ A, we have 〈x, y〉 ∈ ρ ∨ τ if and only if there exists an n ∈ N

+ :=
{1, 2, 3, 4, . . .} and there are elements z0 = x, z1, z2, . . . , zn−1, zn = y in A such that
〈zi−1, zi〉 ∈ ρ ∪ τ for all i ∈ {1, . . . , n}. Symmetric quasiorders are equivalences

(also known as equivalence relations). The equivalences of A also form a lattice,
the equivalence lattice Equ(A) of A, which is a sublattice of Quo(A).
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n 1 2 3 4 5 6 7

|Equ(n)| 1 2 5 15 52 203 877

|Quo(n)| 1 4 29 355 6 942 209 527 9 535 241

Table 1. |Equ(n)| and |Quo(n)| for n ∈ {1, 2, . . . , 7}

Since we are only interested in these lattices up to isomorphism, we will often
write Equ(|A|) and Quo(|A|) instead of Equ(A) and Quo(A), respectively. In par-
ticular, Quo(6), which plays a distinguished role in this paper, is the quasiorder lat-
tice with a six-element underlying set. Note that Equ(A) and Quo(A) are complete
lattices but the concept of complete lattices only occurs here in the introductory
section when the literature is surveyed. In the rest of the sections, we only deal
with finite lattices, which are automatically complete.

A four-element subset X of a poset (partially ordered set) Y is a (1+1+2)-subset
of Y if exactly two elements of X are comparable. A subset X of a lattice L is a
(1+1+2)-generating set of L if X is a (1+1+2)-subset of L that generates L. If a
lattice L has a (1+1+2)-generating set, then we say that L is (1+1+2)-generated.

1.3. Earlier results. In 1976, Poguntke and Rival [12] proved that each lattice can
be embedded into a four-generated finite simple lattice. (It turned out much later
that three generators are sufficient if we drop simplicity; see Czédli [5].) Partition
lattices, which are the same as equivalence lattices up to isomorphism, are well
known to be simple. Thus, Pudlák and Tůma’s result that every finite lattice
is embeddable into a finite partition lattice, see [13], superseded Poguntke and
Rival’s result in 1980. However, Poguntke and Rival’s result still served well as
the motivation for Strietz [15] and [16] to prove that Equ(n) is four-generated for
3 ≤ n ∈ N

+ and it is (1 + 1 + 2)-generated for 10 ≤ n ∈ N
+.

In 1983, Zádori [18] gave an entirely new method to find four-element generating
sets of Equ(n) and extended Strietz’s result by proving that Equ(n) is (1 + 1 + 2)-
generated even for 7 ≤ n ∈ N

+. His method was the basis of all the more involved
methods that were used to find small generating sets of Equ(A) and Quo(A) in the
last three and a half decades. During this period, four-element generating sets and
even (1 + 1 + 2)-generating sets (in the sense of complete generation) of Equ(A)
were given for all infinite sets A with “accessible” cardinalities; see Czédli [2], [3],
and [4]. Even the lion’s share of Czédli and Oluoch [9] is based on Zádori’s method.
Also, this period witnessed that extensions of his method were used to find small
generating sets of Quo(A) by Chajda and Czédli [1], Czédli [6], Czédli and Kulin [8],
and Takách [17], and even the methods used by Dolgos [10] and Kulin [11] show lots
of similarity with Zádori’s method. Theorem 1.1 of this subsection will summarize
the strongest results on (1 + 1 + 2)-generating sets of quasiorder lattices that were
proved before the present paper.

Note that sometimes the structure 〈Quo(A),
∨

,
∧

, −1〉 with ρ−1 := {〈x, y〉 :
〈y, x〉 ∈ ρ} rather than the complete lattice 〈Quo(A),

∨

,
∧

〉 was considered. So the
title of Takách [17] should not mislead the reader since, after removing the operation
ρ 7→ ρ−1, Takách [17] yields a six-element generating set of 〈Quo(A),

∨

,
∧

〉.
In 1983, Zádori [18] left the problem whether Equ(n) is (1 + 1 + 2)-generated

for n ∈ {5, 6} open. The difficulty of these small values lies in the fact that his
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method does not work for small n. This explains that it took 37 years to solve
Zádori’s problem on Equ(5) and Equ(6); see Czédli and Oluoch [9] for the solu-
tion. While [9] contains a traditional proof that Equ(6) is (1 + 1 + 2)-generated,
computer programs were used to show that Equ(5) is not. This shows that “small”
equivalence lattices create more difficulty than larger ones. The quotient marks
indicate that Equ(5) and Equ(6) are not so small; see Table 1. This table has been
taken from Sloane [14]. Note that the |Equ(n)| row and the first five numbers of
the |Quo(n)| row of Table 1 also occur in Chajda and Czédli [1] and were obtained
by a straightforward computer program twenty-five years ago.

Our knowledge on small generating sets of quasiorder lattices evolved parallel to
and in interactions with the analogous question about equivalence lattices. Small
generating sets of infinite (complete) quasiorder lattices were given in Chajda and
Czédli [1] even before dealing with infinite equivalence lattices. Surprisingly, it was
quasiorders that showed the way how to pass from finite equivalence lattices to
infinite ones. Prior to the present paper, our knowledge on small generating sets of
Quo(A) was summarized in the last sentence of Theorem 1.1 in Czédli [6] and in
Theorem 3.5 and Lemma 3.3 of Czédli and Kulin [8] as follows.

Theorem 1.1 (Czédli [6] and Czédli and Kulin [8]). If A is a non-singleton set

with accessible cardinality, then the following assertions hold.

(i) If |A| 6= 4, then Quo(A) is four-generated as a complete lattice.

(ii) If 13 ≤ |A| is a finite odd number, then Quo(A) is (1 + 1 + 2)-generated.

(iii) If 56 ≤ |A| is a finite even number, then Quo(A) is (1 + 1 + 2)-generated.

(iv) If A is infinite, then Quo(A) is (1 + 1 + 2)-generated as a complete lattice.

(v) If A is finite and |A| ≥ 3, then Quo(A) is not a three-generated lattice.

Note that ZFC has a model in which all infinite sets are of accessible cardinalities.
We do not know whether Quo(A) has a four-element generating set if |A| = 4.
(Based on our experience with computer programs for equivalence lattices, see
Czédli and Oluoch [9], we guess that this question could be solved by a computer
program that would require days of computer time if the same personal computer
was used as in case of [9]. Developing such a computer program was not pursued
at the time of writing.)

Although this paper presents (1+1+2)-generating sets for several new values of
n, the existence of (1+1+2)-generating sets remains an unsolved problem for a few
values. The only value of n ≥ 2 for which we know that Quo(n) is not (1 + 1 + 2)-
generated is n = 2; this follows trivially from |Quo(2)| = 4 since a four-element
lattice cannot have a three-element antichain.

To conclude this subsection, we note the following about quasiorder lattices.
Armed with our tools based on Zádori’s method, the large values of n create less
difficulty than its small values (apart from very small values where the problem is
trivial or easy). In view of the history of equivalence lattices, it is not a surprise that
the present paper extends the scope of (ii) and (iii) of Theorem 1.1 by adding some
slightly smaller numbers n. The surprise is that now we also add a significantly
smaller number, n = 6, where Quo(6) is a huge lattice but Zádori’s method cannot
be used.

1.4. Target. We are going to prove that the 209 527-element lattice Quo(6) is
(1+1+2)-generated; see Theorem 2.2, which is the main result of this paper. We will
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also prove that Quo(A) is (1 +1 +2)-generated for |A| ∈ {11}∪ {n ∈ N
+ : n ≥ 13};

see Theorem 3.3.

1.5. Joint authorship. Sections 1 and 2 are joint work of the two authors. The
contribution of the first author to Section 2 is about sixty percent. Section 3 is due
to the second author.

2. A (1 + 1 + 2)-generating set of Quo(6)

The least quasiorder {〈x, x〉 : x ∈ A} of A will be denoted by ∆ = ∆A. For
elements x and y of A, the following two members of Quo(A) will play a particularly
important role in our proofs:

q(x, y) = {〈x, y〉} ∪ ∆ and e(x, y) = e(y, x) = {〈x, y〉, 〈y, x〉} ∪ ∆. (2.1)

We allow that x = y; however, q(x, x) = ∆ and e(x, x) = ∆ will not play any
significant role in our proofs. The atoms of Quo(A) and those of Equ(A) are
exactly the q(x, y) and the e(x, y) with x 6= y ∈ A. The importance of q(x, y) and
e(x, y) lies in the following well-known and trivial fact: for any non-singleton set A
and for every ρ ∈ Quo(A) and θ ∈ Equ(A),

ρ =
∨

{q(x, y) : 〈x, y〉 ∈ ρ} and θ =
∨

{e(x, y) : 〈x, y〉 ∈ θ}. (2.2)

Figure 1. α, β, γ, and δ

Next, let A = {a, b, c, d, f, g}. Note the gap in the alphabetical order; e is not in
A since e is used to denote an atom of Equ(A) in (2.1) and many times later. We
define the following quasiorders of A:

α := e(d, f) ∨ e(f, g), β := α ∨ e(b, c) ∨ q(b, a)

γ := e(a, b) ∨ e(a, d) ∨ e(c, f), δ := e(b, c) ∨ e(c, g) ∨ e(a, f).
(2.3)

These quasiorders are visualized in Figure 1 by the corresponding directed graphs.
(The edges without arrows are directed in both ways.) Namely, for ρ ∈ {α, β, γ, δ}
and x, y ∈ A, we have that 〈x, y〉 ∈ ρ if and only if there is a directed path (possibly
of length 0) in the graph corresponding to ρ in Figure 1.

For the sake of the following remark, let 〈u1, u2, u3, u4, u5, u6〉 := 〈b, a, c, d, f, g〉
and β? := β ∨ q(a, b) = β ∨ q(u2, u1).

Remark 2.1. Each of α, β?, γ, and δ is an equivalence, α < β?, and it has been
proved in Czédli and Oluoch [9] that {α, β?, γ, δ} is a (1 + 1 + 2)-generating set of
Equ(6) = Equ({u1, u2, u3, u4, u5, u6}).

We are going to prove the following statement.
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Theorem 2.2. With the quasiorders defined in (2.3), {α, β, γ, δ} is a (1 + 1 +
2)-generating set of the quasiorder lattice Quo(6) = Quo({a, b, c, d, f, g}). Hence,

Quo(6) is (1 + 1 + 2)-generated.

As Remark 2.1 indicates, our generating set is only slightly different from the one
used in Czédli and Oluoch [9]. However, this little difference results in a substantial
change in the complexity of the proofs. Indeed, while only six equations were
necessary in [9] to prove that {α, β?, γ, δ} generates Equ(6), we are going to use
twenty-five equations, (2.8)–(2.32), to prove Theorem 2.2.

Proof of Theorem 2.2. First, we fix our notation and describe the corresponding
technique. For ρ ∈ Quo(A), let Θ(ρ) := ρ ∩ ρ−1 = {〈x, y〉 : 〈x, y〉 ∈ ρ and 〈y, x〉 ∈
ρ}, which is the largest equivalence relation of A included in ρ. On the quotient
set A/Θ(ρ), we can define a relation ρ/Θ(ρ) as follows: for Θ(ρ)-blocks x/Θ(ρ) and
y/Θ(ρ) in A/Θ(ρ), we let

〈x/Θ(ρ), y/Θ(ρ)〉 ∈ ρ/Θ(ρ)
def
⇐⇒ 〈x, y〉 ∈ ρ.

It is a well-known folkloric fact that ρ/Θ(ρ) is well defined and it is a partial order,
the so-called order induced by ρ. Hence, A/Θ(ρ) = 〈A/Θ(ρ), ρ/Θ(ρ)〉 is a poset.
For several choices of ρ, we will frequently draw the Hasse diagram of this poset
in order to give a visual description of ρ. In such a diagram, the Θ(ρ)-blocks are
indicated by rectangles. However, we adopt the following convention:

if {x} is a singleton block of Θ(ρ) such that for every
{x} 6= Y ∈ A/Θ(ρ) we have that 〈{x}, Y 〉 /∈ ρ/Θ(ρ)
and 〈Y, {x}〉 /∈ ρ/Θ(ρ), then {x} is not indicated in
the Hasse diagram of A/Θ(ρ).

(2.4)

In other words, if x ∈ A has the property that

(∀y ∈ A)
(

{〈x, y〉, 〈y, x〉} ∩ ρ 6= ∅ =⇒ x = y
)

,

then (the necessarily singleton) block x/Θ(ρ) is not indicated in the Hasse diagram.
For example, the quasiorders defined in (2.3) are visualized by diagrams as follows.

α : d, f, g , β :

a d, f, g

|

b, c

, γ : a, b, d c, f , δ : b, c, g a, f . (2.5)

Since we are going to perform a lot of computations with quasiorders, convention
(2.4) and the above-mentioned visual approach will be helpful for the reader in the
rest of the proof. Note that if a diagram according to our convention is given and
x 6= y ∈ A, then we have 〈x, y〉 ∈ ρ if and only if both the block x/Θ(ρ) of x
and that of y are drawn in the (Hasse) diagram and x/Θ(ρ) ≤ y/Θ(ρ) according
to the diagram. In particular, if x and y are in the same block, then 〈x, y〉 ∈ ρ.
Note also that our computations in the proof never require dealing with pairs of
the form 〈x, x〉. Although the following observation is quite easy to prove, it will
substantially ease our task.

Observation 2.3 (Disjoint Paths Principle). For k, s ∈ N
+ and a set B, let

x, y, u0 = x, u1, . . . , uk−1, uk = y, v0 = x, v1, . . . , vs−1, vs = y be elements of
B such that {u1, . . . , uk−1} ∩ {v1, . . . , vs−1} = ∅, |{u1, . . . , uk−1}| = k − 1, and
|{v1, . . . , vs−1}| = s − 1. For i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, let pi ∈ {e, q}
and rj ∈ {e, q}; see (2.1) for the meaning of q and e. Assume that there is an
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i′ ∈ {1, . . . , k} such that pi′ = q or there is a j′ ∈ {1, . . . , s} such that rj′ = q.
Then

q(x, y) =
(

k
∨

i=1

p(ui−1, ui)
)

∧
(

s
∨

j=1

r(vj−1, vj)
)

. (2.6)

Similar observations (sometimes under the name “Circle Principle”) have previ-
ously been formulated in Czédli [2], [6, Lemma 2.1], Czédli and Kulin [4, Lemma
2.5], Kulin [11, Lemma 2.2], and have been used implicitly in Chajda and Czédli [1],
Czédli [3] and [4], and Takách [17]. However, Observation 2.3 is slightly stronger
than its precursors.

The argument proving Observation 2.3 runs as follows. We can assume that
x 6= y. Let ρ denote the quasiorder given on the right of the equality sign in (2.6).
Since the pair 〈x, y〉 belongs to both meetands in (2.6) by transitivity, the inequality
q(x, y) ≤ ρ is clear. Since {u1, . . . , uk−1} ∩ {v1, . . . , vs−1} = ∅, we obtain that

ρ ≤
(

k
∨

i=1

e(ui−1, ui)
)

∧
(

s
∨

j=1

e(vj−1, vj)
)

= e(x, y). (2.7)

Using that the existence of i′ or j′ together with |{u1, . . . , uk−1}| = k − 1, and
|{v1, . . . , vs−1}| = s−1 easily exclude that 〈y, x〉 ∈ ρ, (2.7) implies that ρ ≤ q(x, y).
Combining this with the previously established converse inequality, we conclude
(2.6) and the validity of Observation 2.3. Note that, for brevity, we will often
reference (2.6) rather than Observation 2.3.

Next, resuming the proof of Theorem 2.2, let S denote the sublattice generated
by {α, β, γ, δ} in Quo(6) = Quo({a, b, c, d, f, g}). Since S is closed with respect to
∧ and ∨, it will be clear that the quasiorders given on the left of the equality signs
below in (2.8)–(2.32) all belong to S, provided we use quasiorders already in S on
the right of our equality signs. (To see that the quasiorders on the right are in
S, we will mention the relevant earlier equations except, possibly, (2.5).) We also
need to check that the equalities we claim below hold in Quo(6); we are going to
check this either with the help of the diagrams given on the right of the equalities
in question, or this will prompt follow from (2.6). After these instructions how to
read the displayed equations below, we are ready to compute; the details are easy
to follow provided (2.5) is in the reader’s visual field.

e(b, c) = β ∧ δ by (2.5);

a d, f, g

|

b, c

∧ b, c, g a, f . (2.8)

q(b, a) = β ∧ γ by (2.5);

a d, f, g

|

b, c

∧ a, b, d c, f . (2.9)

e(d, f) = α ∧ (γ ∨ e(b, c)) by
(2.5) and (2.8);

d, f, g ∧ a, b, d, c, f . (2.10)
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q(g, f) = α ∧ (δ ∨ q(b, a)) by
(2.5) and (2.9);

d, f, g ∧

a, f

|

b, c, g

. (2.11)

e(a, d) = γ ∧ (e(d, f) ∨ δ) by
(2.5) and (2.10);

a, b, d c, f ∧ b, c, g a, f, d . (2.12)

q(g, c) = δ ∧ (q(g, f) ∨ γ) by
(2.5) and (2.11);

b, c, g a, f ∧
a, b, d c, f

|
g

. (2.13)

e(a, f) = δ∧ (e(a, d)∨e(d, f))
by (2.5), (2.12), and (2.10);

b, c, g a, f ∧ a, d, f . (2.14)

q(g, a) = (q(g, f) ∨ e(f, a)) ∧
(q(g, c) ∨ e(c, b) ∨ q(b, a))

by (2.6), (2.11), (2.14), (2.13),
(2.8), and (2.9).

(2.15)

q(g, d) = (q(g, f) ∨ e(f, d)) ∧
(q(g, a) ∨ e(a, d))

by (2.6), (2.11), (2.10), (2.15),
and (2.12).

(2.16)

q(b, d) = (q(b, a) ∨ e(a, d)) ∧
(δ ∨ q(g, d)) by (2.9), (2.12),
and (2.16);

a, d

|

b

∧

d
|

b, c, g a, f

. (2.17)

q(g, b) = (q(g, c) ∨ e(c, b)) ∧
(q(g, d) ∨ γ) by (2.13), (2.8),
and (2.16);

c, b

|
g

∧
a, b, d c, f

|
g

. (2.18)

q(b, f) = (q(b, a) ∨ e(a, f)) ∧
(q(b, d) ∨ e(d, f))

by (2.6), (2.9), (2.14), (2.17),
and (2.10).

(2.19)

q(c, f) = (e(c, b)∨ q(b, f))∧ γ
by (2.8) and (2.19);

f

|

c, b

∧ a, b, d c, f . (2.20)

q(b, c) = e(b, c) ∧ (q(b, f) ∨ γ)
by (2.8) and (2.19);

b, c ∧

c, f

|

a, b, d

. (2.21)

q(d, f) = e(d, f)∧(q(b, f)∨γ)
by (2.10) and (2.19);

d, f ∧

c, f

|

a, b, d

. (2.22)

q(a, f) = e(a, f)∧(q(b, f)∨γ)
by (2.14) and (2.19);

a, f ∧

c, f

|

a, b, d

. (2.23)
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q(d, a) = e(d, a) ∧ (q(d, f) ∨
e(f, a))

by (2.6), (2.12), (2.22), and
(2.14).

(2.24)

q(f, a) = e(f, a) ∧ (e(f, d) ∨
q(d, a))

by (2.6), (2.14), (2.10), and
(2.24).

(2.25)

q(b, g) = (q(b, f) ∨ α) ∧ δ by
(2.19);

d, f, g

|

b

∧ b, c, g a, f . (2.26)

q(a, d) = e(a, d) ∧ (q(a, f) ∨
e(f, d))

by (2.6), (2.12), (2.23), and
(2.10).

(2.27)

q(f, d) = e(f, d) ∧ (q(f, a) ∨
q(a, d))

by (2.6), (2.10), (2.25), and
(2.27).

(2.28)

q(c, g) = (e(c, b) ∨ q(b, g)) ∧
(q(c, f) ∨ α) by (2.8), (2.26),
and (2.20);

g

|

c, b

∧
d, f, g

|
c

. (2.29)

q(c, b) = (q(c, g) ∨ q(g, b)) ∧
e(c, b)

by (2.6), (2.29), (2.18), and
(2.8).

(2.30)

q(f, g) = α ∧ (γ ∨ q(c, g)) by
(2.29);

d, f, g ∧

g

|

a, b, d c, f

. (2.31)

q(a, b) = (q(a, f) ∨ q(f, g) ∨
q(g, b)) ∧ γ by (2.23), (2.31),
and (2.18);

b
|
g

|

f

|
a

∧ a, b, d c, f . (2.32)

In the rest of the proof, we only need the twelve atoms of Quo(6) = Quo(A) that
are indicated in Figure 2. Using that these twelve atoms belong to S, we conclude
by (2.6) that, for all x, y ∈ A, the quasiorder q(x, y) belongs to S as well. Hence, it
follows from (2.2) that ρ ∈ S for all ρ ∈ Quo(A). Consequently, S = Quo(A) and
{α, β, γ, δ} is a generating set of Quo(A). Since {α, β, γ, δ} is a (1 + 1 + 2)-subset
of Quo(A), the proof of Theorem 2.2 is complete. �

In addition to the fact that the Disjoint Paths Principle (see Observation 2.3)
has played an important role in the proof above, this principle is also useful to
simplify the proof of the following lemma. This lemma is implicit in Kulin [11]; see
the proof of Part (i) of Theorem 2.1 there.

Lemma 2.4 (Kulin [11]). If A is a set consisting of at least three elements and ρ
belongs to Quo(A) \ Equ(A), then Equ(A) ∪ {ρ} generates the lattice Quo(A).
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Figure 2. Twelve atoms of Quo(A)

Since Equ({a, b})∪{q(a, b)}, which is a three-element chain, is a proper sublattice
of Quo({a, b}), the stipulation that A has at least three elements cannot be omitted
from Lemma 2.4. For the reader’s convenience and also to demonstrate the power
of the Disjoint Paths Principle, we are going to present a new proof of this lemma.

Proof of Lemma 2.4. We can assume that A consists of the vertices a0, a1, . . . , an−1,
listed counterclockwise, of a regular n-gon such that 〈a0, a1〉 ∈ ρ but 〈a1, a0〉 /∈ ρ.
This n-gon is non-degenerate since n = |A| ≥ 3. If i, j ∈ {0, . . . , n − 1} and
j ≡ i+ 1 (mod n), then {ai, aj}, 〈ai, aj〉, and 〈aj , ai〉 are called an undirected edge,
a counterclockwise edge, and a clockwise edge of the n-gon, respectively.

Let S denote the sublattice of Quo(A) generated by Equ(A)∪ {ρ}. Then all the
undirected edges are in S, which means that e(ai, aj) ∈ S for all i, j ∈ {0, . . . , n−1}
with j ≡ i + 1. We say that the counterclockwise version and the clockwise version
of an edge {ai, aj} are in S if q(ai, aj) ∈ S and q(aj, ai) ∈ S, respectively. It follows
from (2.6) that if all the counterclockwise edges and all the clockwise edges of the
n-gon are in S, then all the atoms of Quo(A) are in S and so S = Quo(A) by (2.2).
It also follows from (2.6) that if the counterclockwise version of an (undirected) edge
belongs to S, then the clockwise versions of all other edges are in S. Combining
this fact with its counterpart in which the two directions are interchanged, we
obtain that if at least one directed edge is in S, then all directed edges are in
S and S = Quo(A). Therefore, using that 〈a0, a1〉 ∈ ρ but 〈a1, a0〉 /∈ ρ lead to
q(a0, a1) = e(a0, a1) ∧ ρ ∈ S, we obtain the statement of the Lemma. �

Corollary 2.5. Quo(3) is (1 + 1 + 2)-generated.

Proof. Since Equ(3) = Equ({a, b, c}) is generated by the set {e(a, b), e(b, c), e(c, a)}
of its atoms, {q(a, b), e(a, b), e(b, c), e(c, a)} is a (1 + 1 + 2)-generating set of the
lattice Quo(3) = Quo({a, b, c}) by Lemma 2.4. �

3. (1 + 1 + 2)-generating sets of Quo(n) for n = 11 and n ≥ 13

The basic concept in this section is the following; the notations e(x, y) and q(x, y)
introduced in (2.1) are still in effect.
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Definition 3.1 (Zádori configuration). For 2 ≤ k ∈ N
+, let a0, a1, . . . , ak, b0, b1,

. . . , bk−1 be pairwise distinct elements of a finite set B. Let

α =

k
∨

i=1

e(ai−1, ai) ∨
k−1
∨

i=1

e(bi−1, bi), β =

k−1
∨

i=0

e(ai, bi)

γ =

k
∨

i=1

e(ai, bi−1), ε0 = e(a0, b0), and η = e(ak, bk−1);

(3.1)

they are members of Equ(B). The system of these 2k + 1 elements and five equiv-
alences of B is called a Zádori configuration of (odd) size 2k + 1 in B. The set

A := {a0, . . . , ak, b0, . . . , bk−1} (3.2)

is the support of this configuration.

A Zádori configuration is easy to visualize; following Zádori’s original drawing,
we do this with the help of a graph in the following way. We say that a path in a
graph is horizontal, is of slope 1, and is of slope −1 if all of the edges constituting
the path are such. For vertices x and y in the graph,

〈x, y〉 ∈ α
def
⇐⇒ there is a horizontal path from x to y;

〈x, y〉 ∈ β
def
⇐⇒ there is a path of slope −1 from x to y;

〈x, y〉 ∈ γ
def
⇐⇒ there is a path of slope 1 from x to y;

(3.3)

note that a path of length 0 is simultaneously of slope 1 and of slope −1, and it is
also horizontal. Also, note that (3.3) complies with (3.1).

For example, a Zádori configuration of size 11 is given in Figure 3; disregard the
dashed curved edges for a while. Some of the horizontal edges are labeled by α but,
to avoid crowdedness, not all. The same convention applies for edges of slope −1
and β, and edges of slope 1 and γ.

Zádori configurations played a decisive role in all papers that applied extensions
of Zádori’s method; see Subsection 1.3 for the list of these papers. Given a Zádori
configuration in B with support set A, see (3.1)–(3.2), we define

Equ(BeA) := {θ ∈ Equ(B) : if 〈x, y〉 ∈ θ and {x, y} 6⊆ A, then x = y}. (3.4)

In Zádori [18], this configuration and the following lemma assumed that B = A.
However, this assumption is not a real restriction since the map

Equ(BeA) → Equ(A) defined by θ 7→ θ ∩ (A × A) (3.5)

is clearly an isomorphism, whereby the validity of the following lemma follows from
its original particular case B = A.

Lemma 3.2 (Zádori [18]). Assume that a Zádori configuration of size 2k + 1
with support A is given in B; see (3.1) and (3.2). Then {α, β, γ, ε0, ηk} gener-

ates Equ(BeA).

Note that this lemma is explicitly stated in Czédli [7] and Czédli and Kulin [8],
and implicitly proved (hidden in long proofs) in Czédli [2], [3], [4], and [6], and
Czédli and Oluoch [9]. Now we are in the position to state the result of the present
section.

Theorem 3.3. Let n ∈ N
+ be a natural number.
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(i) If n ≥ 11 and n is odd, then Quo(n) is (1 + 1 + 2)-generated.

(ii) If n ≥ 13, then Quo(n) is (1 + 1 + 2)-generated.

Figure 3. {α, β, γ, δ} is a (1 + 1 + 2)-generating set of Quo(11)

To avoid complicated wording, the scope of part (i) and that of part (ii) are not
disjoint.

Proof of Theorem 3.3. First, to prove part (i), assume that n = 2k + 1 ≥ 11. Take
a Zádori configuration of size 2k + 1 as described in Definition 3.1. Similarly to
(3.4), we let

Quo(BeA) := {ρ ∈ Quo(B) : if 〈x, y〉 ∈ ρ and {x, y} 6⊆ A, then x = y}. (3.6)

Since the map

Quo(BeA) → Quo(A) defined by ρ 7→ ρ ∩ (A × A) (3.7)

is an isomorphism and |A| = 2k + 1 = n, it suffices to show that Quo(BeA) is
(1 + 1 + 2)-generated. (The advantage of not assuming that B = A and working in
Quo(BeA) rather than in Quo(A) will be clear later in the proof of part (ii) of the
theorem.) Define the following members of Quo(BeA):

δ∗ := e(a0, ak) ∨ e(b0, bk−1), δ := δ∗ ∨ q(b1, bk−2), and

δ+ := δ∗ ∨ e(b1, bk−2) = δ ∨ q(bk−2, b1).
(3.8)

The quasiorders δ∗ and δ+ are equivalences but δ is not. For n = 11, δ is visualized
by dashed curved edges in Figure 3. In addition to (3.3) and complying with (3.8),
our convention for δ in Figure 3 (and later in Figure 4) is that

〈x, y〉 ∈ δ
def
⇐⇒ there is a directed path

of curved dashed edges from x to y;
(3.9)

the edges without arrow are directed in both ways. Again, paths of length zero are
permitted. By the peculiarities of δ, the path in (3.9) has to be of length 1 or 0.

Letting S denote the sublattice generated by {α, β, γ, δ} in Quo(BeA), we are
going to show that S = Quo(BeA). Observe that

the blocks of (δ+ ∨ γ) are {a0, a1, ak, b0, bk−1},
{a2, ak−1, b1, bk−2}, and the two-element sets
{ai, bi−1} such that 3 ≤ i ≤ k − 2.

(3.10)

Hence, we obtain that β ∧ (δ+ ∨ γ) = e(a0, b0). Using that the lattice operations
are isotone and 〈a0, b0〉 belongs to the equivalence β ∧ (δ∗ ∨ γ), it follows from

e(a0, b0) ≤ β ∧ (δ∗ ∨ γ) ≤ β ∧ (δ ∨ γ) ≤ β ∧ (δ+ ∨ γ) = e(a0, b0) (3.11)
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that ε0 := e(a0, b0) = β ∧ (δ ∨ γ) ∈ S.
If we disregard δ (but keep δ∗ and δ+), then β and γ play a symmetric role. This

symmetry corresponds to the symmetry of Figure 3 across a vertical axis, if the
arrow is disregarded. Hence, γ∧(δ+∨β) = e(ak, bk−1) and e(ak, bk−1) ≤ γ∧(δ∗∨δ).
Thus,

e(ak, bk−1) ≤ γ ∧ (δ∗ ∨ β) ≤ γ ∧ (δ ∨ β) ≤ γ ∧ (δ+ ∨ β) = e(ak, bk−1). (3.12)

This implies that

ηk := e(ak, bk−1) = γ ∧ (δ ∨ β) ∈ S. (3.13)

Therefore, Equ(BeA) ⊆ S by Lemma 3.2. Since the restriction of the isomor-
phism given in (3.7) to Equ(BeA) is the isomorphism given in (3.5), it follows from
Lemma 2.4, Equ(BeA) ⊆ S, and δ ∈ Quo(BeA) \ Equ(BeA) that S = Quo(BeA).
Furthermore, δ < α and {α, β, γ, δ} is a (1 + 1 + 2)-subset of Quo(BeA). Thus,

{α, β, γ, δ} is a (1 + 1 + 2)-generating set of Quo(BeA). (3.14)

Finally, using that we know from the sentence containing (3.7) that Quo(BeA) ∼=
Quo(A), or letting B := A when Quo(BeA) = Quo(A), part (i) of the theorem
follows from (3.14).

Figure 4. {α, β], γ], δ} is a (1 + 1 + 2)-generating set of Quo(14)

Next, we turn our attention to part (ii). For an odd number n, the validity of
part (ii) follows from part (i). Therefore, to prove part (ii), we can assume that
n ≥ 14 is an even number. We let k := (n−2)/2 ≥ 6. With this k, we use the same
Zádori configuration as in part (i) but now we specify that B = A∪ {c}, where c is
a new element outside A. So |B| = |A|+ 1 = 2k + 2 = n. We still need α, β, γ, δ∗,
δ, δ+ ∈ Quo(BeA) defined in (3.1) and (3.8). Furthermore, we define the following
two members of Quo(B):

β] := β ∨ e(b1, c) and γ] := γ ∨ e(bk−3, c). (3.15)

The assumption k ≥ 6 guarantees that (3.15) makes sense. As opposed to the
previously defined quasiorders of Quo(BeA), now β] and γ] are not in Quo(BeA).
Note that the “distance” (k − 2) − 1 between the members of the two-element
δ+-block {b1, bk−2} as well as that between the “suspension points” b1 and bk−3

of c are at least 2 and the δ-block bk−3/δ is a singleton; this is why we had to
assume that n ≥ 14, that is, k ≥ 6. For the smallest value, n = 14, the situation
is visualized by Figure 4, where the conventions formulated in (3.3) and (3.9) are
valid for 〈α, β], γ], δ〉 instead of 〈α, β, γ, δ〉.
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Let S be the sublattice generated by the (1+1+2)-subset {α, β], γ], δ} of Quo(B).
We are going to show that S = Quo(B). Similarly to (3.10), we observe that

the blocks of (δ+ ∨ γ]) are {a0, a1, ak, b0, bk−1},
{a2, ak−1, b1, bk−2}, {ak−2, bk−3, c}, and the two-
element sets {ai, bi−1} such that 3 ≤ i ≤ k − 3.

(3.16)

Hence, similarly to the three sentences containing (3.10) and (3.11), we have that
β] ∧ (δ+ ∨ γ]) = e(a0, b0). Thus,

e(a0, b0) ≤ β] ∧ (δ∗ ∨ γ]) ≤ β] ∧ (δ ∨ γ]) ≤ β] ∧ (δ+ ∨ γ]) = e(a0, b0), (3.17)

implying that ε0 := e(a0, b0) = β] ∧ (δ ∨ γ]) ∈ S.
Next, to get rid of the non-symmetrically positioned element c, see Figure 4,

observe that β = (ε0∨α)∧β] ∈ S and γ = (ε0∨α)∧γ] ∈ S. Thus, {α, β, γ, δ} ⊆ S,
and it follows from (3.14) that

Quo(BeA) ⊆ S. (3.18)

In particular, e(b1, bk−3) ∈ S. Hence, using that the only (e(b1, bk−3)∨γ)-block that
is not a γ-block is {a2, ak−2, b1, bk−3, c}, we obtain that e(b1, c) = β ∧ (e(b1, bk−3)∨
γ) ∈ S. Similarly, using that e(b1, bk−3) ∈ S by (3.18) and the only (e(b1, bk−3)∨β)-
block that is not a β-block is {a1, ak−3, b1, bk−3, c}, we obtain that e(bk−3, c) =
γ ∧ (e(b1, bk−3) ∨ β) ∈ S. If x ∈ A \ {b1, bk−3}, then

e(x, c) =
(

e(x, b1) ∨ e(b1, c)
)

∧
(

e(x, bk−3) ∨ e(bk−3, c)
)

∈ S (3.19)

by (3.18), e(b1, c) ∈ S, and e(bk−3, c) ∈ S. We obtain from e(b1, c) ∈ S, e(bk−3, c) ∈
S, and (3.19) that e(x, c) ∈ S for all x ∈ A. This fact and (3.18) yield that S
contains all atoms of Equ(B). Using that each element of Equ(B) is the join of
some atoms, see (2.2), we obtain that Equ(B) ⊆ S. Finally, δ ∈ S \ Equ(B) and
Lemma 2.4 (applied to B instead of A) imply that S = Quo(B). So Quo(B) is
generated by its (1 + 1 + 2)-subset {α, β], γ], δ} and |B| = 2k + 2 = n, completing
the proof of Theorem 3.3. �

Remark 3.4 (Summary of (1 + 1 + 2)-generated quasiorder lattices). Now, at the
end of this writing, the following is known on the existence of (1+1+2)-generating
sets of Quo(n) for n ∈ N

+. As new results, this paper proves that Quo(n) is
(1 + 1 + 2)-generated for

n ∈ {3, 6, 11}∪ {14, 16, 18, 20, 22, . . . , 50, 52, 54}; (3.20)

that is, for twenty-four new values of n; see Theorems 2.2 and 3.3 and Corollary 2.5.
We know that, trivially, Quo(1) and Quo(2) are not (1+1+2)-generated. In addition
to (3.20), Quo(n) is (1 + 1 + 2)-generated for all n ≥ 13; see Theorem 3.3. For

n ∈ {4, 5, 7, 8, 9, 10, 12}, (3.21)

we do not know whether Quo(n) is (1 + 1 + 2)-generated.
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