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Abstract. For a lattice L, let Princ(L) denote the ordered set of principal congru-

ences of L. In a pioneering paper, G. Grätzer characterized the ordered set Princ(L)
of a finite lattice L; here we do the same for a countable lattice. He also showed that

every bounded ordered set H is isomorphic to Princ(L) of a bounded lattice L. We
prove a related statement: if an ordered set H with a least element is the union of a

chain of principal ideals (equivalently, if 0 ∈ H and H has a cofinal chain), then H is
isomorphic to Princ(L) of some lattice L.

1. Introduction

1.1. Historical background. A classical theorem of Dilworth [1] states that

every finite distributive lattice is isomorphic to the congruence lattice of a finite

lattice. Since Dilworth’s result, the congruence lattice representation problem

has attracted many researchers, and dozens of papers belonging to this topic

have been written. The progress is mile-stoned by Huhn [12] and Schmidt [14],

reached its summit in Wehrung [15] and Růžička [13], and was summarized

in Grätzer [6]; see also Czédli [3] and Grätzer [10] for some additional, recent

references.

In [7], Grätzer started an analogous topic of Lattice Theory. Namely, for

a lattice L, let Princ(L) = 〈Princ(L),⊆〉 denote the ordered set of principal

congruences of L. A congruence is principal if it is generated by a pair 〈a, b〉 of

elements. Ordered sets and lattices with 0 and 1 are called bounded. Clearly, if

L is a bounded lattice, then Princ(L) is a bounded ordered set. The pioneering

theorem in Grätzer [7] states the converse: each bounded ordered set P is

isomorphic to Princ(L) for an appropriate bounded lattice L. Actually, the

lattice he constructed is of length 5. Up to isomorphism, he also characterized

finite bounded ordered sets as ordered sets Princ(L) of finite lattices L.
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1.2. Terminology. Unless otherwise stated, we follow the standard termi-

nology and notation of Lattice Theory; see, for example, Grätzer [8]. Our

terminology for weak perspectivity is the classical one taken from Grätzer [5].

Ordered sets are nonempty sets equipped with orderings, that is, with reflexive,

transitive, antisymmetric relations. Note that an ordered set is often called a

partially ordered set, or a poset, or an order.

1.3. Our result. Motivated by Grätzer’s theorem mentioned above, our goal

is to prove the following theorem. A set X is countable if it is finite or countably

infinite, that is, if |X| ≤ ℵ0. An ordered set P is directed if each two-element

subset of P has an upper bound in P . Nonempty down-sets of P and subsets

↓c = {x ∈ P : x ≤ c} are called order ideals and principal (order) ideals,

respectively.

Theorem 1.1.

(i) An ordered set P = 〈P ;≤〉 is isomorphic to Princ(L) for some countable

lattice L if and only if P is a countable directed ordered set with zero.

(ii) If P is an ordered set with zero and it is the union of a chain of principal

ideals, then there exists a lattice L such that P ∼= Princ(L) and |L| ≤

|P |+ ℵ0.

An alternative way of formulating the condition in part (ii) is to say that

0 ∈ P and there is a cofinal chain in P ; see the first paragraph of Section 5

for the definition of cofinality. For a pair 〈a, b〉 ∈ L2 of elements, the least

congruence collapsing a and b is denoted by con(a, b) or conL(a, b). As it was

pointed out in Grätzer [7], the rule

con(ai, bi) ⊆ con(a1 ∧ b1 ∧ a2 ∧ b2, a1 ∨ b1 ∨ a2 ∨ b2) for i ∈ {1, 2} (1.1)

implies that Princ(L) is always a directed ordered set with zero. Therefore,

the first part of the theorem will easily be concluded from the second one.

To compare part (ii) of our theorem to Grätzer’s result, note that a bounded

ordered set P is always a union of a (one-element) chain of principal ideals.

Of course, no bounded lattice L can represent P by P ∼= Princ(L) if P has no

greatest element.

1.4. Basic idea. Let 〈Q;≤〉 be the ordered set given in Step (d) of Figure 1.

Choose a cofinal chain {c0 < c1 < . . .} in Q. In our case, this chain is

{c0 < c1}. The figure shows how to construct a lattice M in several steps (in

our case, four steps) such that Princ(M) ∼= 〈Q;≤〉. In the figure, each ordered

set on the left is isomorphic to the ordered set of principal congruences of the

corresponding lattice on the right. Note that the lattice obtained in Step (b) is

an interval of M . Below, we have a closer look at our mysterious steps leading

to M .

In general, Step (a) of Figure 1 is the following. If 〈H ; ν〉 is a modular

lattice of length 2, then it is isomorphic to the ordered set Princ(L) for the
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Figure 1. An example for our construction

bounded lattice L in Figure 5. The thin edges are labeled by the elements of

H \ {0H , 1H}, while the thick edges of Figure 5 and the rest of the nontrivial

intervals by 1H . In this way, the labeling provides an isomorphism between
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Princ(L) and 〈H ; ν〉. Note that most of the largest labels and previous labels

are not indicated in Figure 1.

Next, assume that 〈H ; ν〉 is a bounded ordered set and that L is the bounded

lattice constructed such that Princ(L) is isomorphic to 〈H ; ν〉. According to

Lemma 5.3, if νI is an ordering and ν ⊆ νI ⊆ H2, then we can extend L to a

bounded lattice LI such that 〈H ; νI〉 ∼= Princ(LI). This construction consists

of repeated applications of single steps, which are called horizontal extensions;

see Figures 7 and 8, or see Steps (b) and (d) in Figure 1. The transition

from L to LI is called a multi-step horizontal extension. The first multi-step

horizontal extension is practically the same as that in Grätzer [7]. However,

in general, we shall also perform vertical extensions; see a few lines below.

Generally, after infinitely many vertical extensions, neither the lattice L, nor

its interval [bp, 1] (in Figure 7) is of finite length. Thus, horizontal extensions

become much more complicated than those in Grätzer [7]; the elements x and y

in Figure 1 indicate why. In particular, M in Figure 1 without x and y would

not work, and the lattice in Figure 8 would be inappropriate if dpq
1 were a

coatom. The complexity of vertical extensions makes it necessary to introduce

several auxiliary concepts.

Since the ordered set in Theorem 1.1 has no largest element in general, we

also need vertical extensions. Assume that Princ(L) ∼= 〈H ; ν〉 and that 〈H ; ν〉

extends to a bounded ordered set 〈HMMM; νMMM〉 such that H is an order ideal of

〈HMMM; νMMM〉, 0HMMM = 0H , and, except for 1HMMM , each new element is incomparable

with any other element distinct from 0HMMM and 1HMMM . (Note that L is not

necessarily bounded and so H need not have a largest element.) It is not

difficult to extend L to a larger lattice LMMM such that Princ(LMMM) ∼= 〈HMMM, νMMM〉, see

Figure 6. We refer to this LMMM as a vertical extension. For example Step (c) in

Figure 1 is a vertical extension. Note that neither our treatment for horizontal

extensions, nor that for vertical ones uses the fact that the orderings in question

are antisymmetric. Thus, without extra work, we deal with these extensions

in a slightly more general setting.

Next, let {c0 < c1 < c2 < . . .} = {cι : ι < κ} be a cofinal chain in the

ordered set 〈P ;≤〉 of Theorem 1.1, and assume that we have already con-

structed a lattice Lι such that Princ(Lι) is isomorphic to the principal ideal

↓cι of 〈P ;≤〉. In order to extend Lι to a lattice Lι+1 such that Princ(Lι+1) is

isomorphic to ↓cι+1, we perform a vertical extension followed by a multi-step

horizontal extension. Finally, at limit ordinals, we form directed unions.

1.5. Method. First of all, we need the key idea from Grätzer [7]. However,

while [7] is based on an 11-element gadget lattice, we need a gadget consisting

of more elements; see Figure 2.

Second, we feel that without the quasi-coloring technique developed in

Czédli [3], the investigations leading to this paper would have not even begun.

As opposed to colorings, the advantage of quasi-colorings is that we have joins

(equivalently, the possibility of generation) in their range sets. This allows
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us to decompose our construction into a sequence of elementary steps. Each

step is accompanied by a quasiordering. If several steps, possibly infinitely

many steps, are carried out, then the join of the corresponding quasiorderings

gives a satisfactory insight into the construction. Even if it is the “coloring

versions” of some lemmas that we only use at the end, it is worth allowing

their quasi-coloring versions since in this way the proofs will be simpler and

the lemmas become more general.

Third, the idea of using appropriate auxiliary structures is taken from

Czédli [2]. Their role is to accumulate all the assumptions our induction steps

will need.

1.6. Outline. The rest of the paper is devoted to the proof of Theorem 1.1.

Quasi-colored lattices, zigzags and auxiliary structures, which are the basic

concepts we need in the proof, are introduced in Section 2. Vertical and

horizontal extensions, which are our main constructive steps, are discussed in

Sections 3 and in the longest section, Section 4, respectively. Finally, Section 5

completes the proof by transfinite induction.

2. Quasi-colorings and auxiliary structures

2.1. Quasi-colored lattices. A quasiordered set is a structure 〈H ; ν〉 where

H 6= ∅ is a set and ν ⊆ H2 is a reflexive, transitive relation on H . Qua-

siordered sets are also called preordered ones. Instead of 〈x, y〉 ∈ ν , we usually

write x ≤ν y. Also, we write x <ν y and x ‖ν y for the conjunction of x ≤ν y

and y �ν x, and that of 〈x, y〉 /∈ ν and 〈y, x〉 /∈ ν , respectively. Similarly,

x =ν y will stand for the conjunction of x ≤ν y and y ≤ν x. If g ∈ H and

x ≤ν g for all x ∈ H , then g is a greatest element of H ; least elements are

defined dually. They are not necessarily unique; if they are, then they are de-

noted by 1H and 0H . If for all x, y ∈ H , there exists a z ∈ H such that x ≤ν z

and y ≤ν z, then 〈H ; ν〉 is a directed quasiordered set. Given H 6= ∅, the set

of all quasiorderings on H is denoted by Quord(H). It is a complete lattice

with respect to set inclusion. For X ⊆ H2, the least quasiorder on H that

includes X is denoted by quo(X). We write quo(x, y) instead of quo({〈x, y〉}).

Let L be an ordered set or a lattice. For x, y ∈ L, 〈x, y〉 is called an ordered

pair of L if x ≤ y. The set of ordered pairs of L is denoted by Pairs≤(L). If

X ⊆ L, then Pairs≤(X) will stand for X2 ∩ Pairs≤(L). Note that we shall

often use the fact that Pairs≤(S) ⊆ Pairs≤(L) holds for subsets S of L; this

explains why we work with ordered pairs rather than intervals. Note also that

〈a, b〉 is an ordered pair iff b/a is a quotient; however, the concept of ordered

pairs fits better to previous work with quasi-colorings.

By a quasi-colored lattice we mean a structure L = 〈L; γ, H, ν〉 where L is

a lattice, 〈H ; ν〉 is a quasiordered set, γ : Pairs≤(L) → H is a surjective map,

and for all 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≤(L),

(C1) if γ(〈u1 , v1〉) ≤ν γ(〈u2 , v2〉), then con(u1, v1) ≤ con(u2, v2);



6 G. Czédli Algebra univers.

Figure 2. Our gadget, Lg7(p, q)

(C2) if con(u1, v1) ≤ con(u2, v2), then γ(〈u1, v1〉) ≤ν γ(〈u2, v2〉).

This concept is taken from Czédli [3]. By the “antichain variant” of (Ci) we

mean the condition obtained from (Ci) by substituting the equality sign for

≤ν and ≤. Prior to [3], the name “coloring” was used for surjective maps

satisfying the antichain variant of (C2) in Grätzer, Lakser, and Schmidt [11],

and for surjective maps satisfying the antichain variant of (C1) in Grätzer [6,

page 39]. However, in [3], [6], and [11], γ(〈u, v〉) was defined only for covering

pairs u ≺ v. To emphasize that con(u1, v1) and con(u2, v2) belong to the

ordered set Princ(L), we usually write con(u1, v1) ≤ con(u2, v2) rather than

con(u1, v1) ⊆ con(u2, v2). It follows easily from (C1), (C2), (1.1), and the

surjectivity of γ that if 〈L; γ, H, ν〉 is a quasi-colored lattice, then 〈H ; ν〉 is

a directed quasiordered set with a least element; possibly with many least

elements.

The quasi-colored lattice Lg7 = Lg7(p, q) = 〈Lg7; γg7, Hg7, νg7〉 depicted in

Figure 2 is the basic gadget of the paper. In this notation, the subscript g

comes from “gadget” while “7” comes from (A15′), see later. (Note that 7 is

sufficiently large to have reasonably convenient proofs; smaller values might

cause problems or at least inconvenience.) The gadget Lg7 consists of a 19-

element lattice Lg7, a quasiordered set 〈Hg7; νg7〉, which is actually a chain,

and γg7 is defined by the figure as follows: for 〈x, y〉 ∈ Pairs≤(Lg7),

γg7(〈x, y〉) =






p, if 〈x, y〉 is a p-colored edge in the figure,

q, if 〈x, y〉 is a q-colored edge or 〈x, y〉 = 〈cpq
4 , dpq

4 〉,

0Hg7
, if x = y,

1Hg7
, otherwise (if the interval [x, y] contains a thick edge).

It is straightforward to see that Lg7 is a quasi-colored lattice; this task is

particularly easy if one uses the description of congruences given in Grätzer [9].
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2.2. Horizontal distance and zigzags. For a lattice or ordered set L, the

interior ordered set of L is L−01 = 〈L−01;≤〉, where ≤ is inherited from L and

L−01 = L \ {0L, 1L} in the sense that {0L, 1L} denotes the set, possibly the

empty set, consisting of the least and greatest elements of L. In particular,

L−01 = L iff L has neither a least, nor a greatest element. The interior

comparability graph or, in short, the graph of L is Gicg(L) = 〈L−01; ∦〉; its

vertex set is L−01, and 〈x, y〉 is an edge of this graph iff x ≤ y or y ≤ x. For

X, Y ⊆ L−01, if

z0 ∈ X, zn ∈ Y , z0 ∦ z1 ∦ · · · ∦ zn, and |{z0, . . . , zn}| = n + 1, (2.1)

then 〈z0 , . . . , zn〉 is a Gicg(L)-path from X to Y , or between X and Y , of

length n. The (horizontal) distance δ(X, Y ) ∈ N0 of X, Y ⊆ L−01 is the

minimum of lengths of Gicg(L)-paths between X and Y ; it is ∞ if there is

no path from X to Y . In the most important case of (2.1), X = {x} and

Y = {y}; then we write x, y, and δ(x, y) instead of X, Y , and δ(X, Y ). Note

that δ : L−01 × L−01 → N0 = {0, 1, 2, . . .} is a distance function. That is,

δ(x, y) = 0 ⇐⇒ x = y, δ(x, y) = δ(y, x), and δ(x, y) + δ(y, z) ≥ δ(x, z) hold

for all x, y, z ∈ L−01.

Figure 3. The ordered set Z7

Next, consider a 9-tuple

Z7 = 〈c2, d2; c3, d3; c4, e, d4; c5, d5〉 (2.2)

of elements belonging to L−01 . If the ordering of L−01 (equivalently, the or-

dering of L) restricted to Zset
7 := {c2, d2, c3, d3, c4, e, d4, c5, d5} is the one given

by Figure 3, then we call Z7 a zigzag of Gicg(L). To explain the mysterious

subscript 7, note that the labeling provides a canonical embedding of Zset
7 into

Lg7, see Figure 2. The subsets {c2, d2} and {c4, e, d4} are called the lower

fibers of Z7 given in (2.2) while {c3, d3} and {c5, d5} are its upper fibers. Note

the terminological difference: although the fibers of a zigzag are chains, it has

only four fibers but much more chains. If Z7 is zigzag of Gicg(L) such that

its lower fibers are order ideals and its upper fibers are order filters in L−01,

then Z7 is called a tight zigzag of Gicg(L). We say that a Gicg(L)-path (2.1)

goes through the tight zigzag Z7 if each fiber of Z7 contains at least one of

the elements z0, . . . , zn. For a subset X of L−01 and n ∈ N = {1, 2, . . .}, the

neighborhood with radius n of X is

Nbhn(X) = {y ∈ L : δ(x, y) ≤ n for some x ∈ X}.
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Clearly, the inclusions X ⊆ Nbh1(X) ⊆ Nbh2(X) ⊆ . . . hold.

Figure 4. The lattice N6

Next, let L be a (not necessarily bounded) lattice. We say that a quadruple

〈a1, b1, a2, b2〉 ∈ L4 is an N6-quadruple of L if

{b1 ∧ b2 = a1 ∧ a2, a1 < b1, a2 < b2, a1 ∨ a2 = b1 ∨ b2}

is a six-element sublattice, see Figure 4. If, in addition, b1 ∧ b2 = 0L and

a1 ∨ a2 = 1L, then we speak of a spanning N6-quadruple. For a subset X

of L2, the least lattice congruence including X is denoted by con(X). In

particular, con({〈a, b〉}) = con(a, b). The least and the largest congruence of

L are denoted by ∆L and ∇L, respectively.

2.3. Auxiliary structures and their substructures. Now, we are in the

position to define the key concept we need. In the present paper, by an auxil-

iary structure we mean a structure

L = 〈L; γ, H, ν, δ, ε,Z〉 (2.3)

such that the following eight properties hold:

(A1) 〈L; γ, H, ν〉 is a quasi-colored lattice and |L| ≥ 3.

(A2) The quasiordered set 〈H ; ν〉 has exactly one least element, 0H , at most

one greatest element, and at least three elements.

(A3) δ and ε are H → L maps such that δ(0H) = ε(0H) and, for all x ∈

H \ {0H}, δ(x) ≺ ε(x); note that we usually write ax and bx instead

of δ(x) and ε(x), respectively.

(A4) For all p ∈ H , γ(〈δ(p), ε(p)〉) = p, that is, γ(〈ap, bp〉) = p.

(A5) If p and q are distinct elements of H \{0H}, then 〈δ(p), ε(p), δ(q), ε(q)〉,

also denoted by 〈ap, bp, aq, bq〉, is an N6-quadruple of L.

(A6) For all p ∈ H \ {0H}, the subsets Dp := {x ∈ L : 0L 6= x ≤ ap} and

Up := {x ∈ L : bp ≤ x 6= 1L} are sublattices. (The notation comes

from “down” and “up”. If L has no greatest element 1L, then x 6= 1L

means no restriction and Up = ↑bp, the principal filter generated by bp.

Similarly, Dp = ↓ap if L has no least element 0L.)

(A7) For all p ∈ H and 〈x, y〉 ∈ Pairs≤(Dp) ∪ Pairs≤(Up), if x 6= y, then

p ≤ν γ(〈x, y〉).

(A8) Z is a set of tight zigzags of Gicg(L). (Note that Z need not contain

all tight zigzags of Gicg(L). In particular, Z can be the empty set.)
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We say that L in (2.3) is a strong auxiliary structure if it is an auxiliary

structure and the following five additional properties hold.

(A9) H has a (unique) greatest element 1H , and L is a bounded lattice.

(A10) The set {x ∈ L : 0L ≺ x ≺ 1L} consists of at least three elements.

(A11) con
(
{〈ar, br〉 : r ∈ H and r 6= 1H}

)
6= ∇L.

(A12) For all p ∈ H−01 and Z7 ∈ Z, we have Nbh1({ap, bp}) ∩Zset
7 = ∅.

(A13) If p, q ∈ H−01 such that p 6= q and 〈ap, bp, aq, bq〉 is a spanning

N6-quadruple, then each Gicg(L)-path from {ap, bp} to {aq, bq} goes

through at least one tight zigzag from Z.

The conjunction of (A1), (A2), and (A10) imply (A9); we will not rely on this

observation. Next, we mention three additional properties of strong auxiliary

structures. The first one, (A14′), is a straightforward consequence of the fact

that if x belongs to the set mentioned in (A10), then x is a complement of all

elements in L \ {0L, x, 1L}. The next one follows from (A12) and (A13), and

the third one from the second and Nbh1(Dr ∪ Ur) ⊆ Nbh2({ar, br}).

(A14′) if Ψ is a congruence of L distinct from ∇L, then {0L} and {1L} are

singleton Ψ-blocks.

(A15′) For all p, q ∈ H \ {0H} such that 〈ap, bp, aq, bq〉 is a spanning N6-

quadruple, δ({ap, bp}, {aq, bq}) ≥ 7.

(A16′) For all p, q ∈ H \ {0H} such that 〈ap, bp, aq, bq〉 is a spanning N6-

quadruple, if x ∈ Nbh1(Dp ∪ Up) and y ∈ Nbh1(Dq ∪ Uq), then the

elements x and y are complementary, that is, x∧y = 0L and x∨y = 1L.

If 〈H ; ν〉 is a quasiordered set, then Θν = ν ∩ ν−1 is known to be an

equivalence relation, and the definition [x]Θν ≤ [y]Θν ⇐⇒ x ≤ν y turns

the quotient set H/Θν into an ordered set 〈H/Θν;≤〉. The importance of our

auxiliary structures is first shown by the following lemma.

Lemma 2.1. If L in (2.3) is an auxiliary structure, then the ordered set

Princ(L) is isomorphic to 〈H/Θν ;≤〉. In particular, if ν is an ordering, then

Princ(L) is isomorphic to the ordered set 〈H ; ν〉.

Proof. Clearly, Princ(L) = {con(x, y) : 〈x, y〉 ∈ Pairs≤(L)}. Consider the map

ϕ : Princ(L) → H/Θν, defined by con(x, y) 7→ [γ(〈x, y〉)]Θν . If con(x1, y1) =

con(x2, y2), then [γ(〈x1, y1〉)]Θν = [γ(〈x2, y2〉)]Θν follows from (C2). Hence,

ϕ is a map. It is surjective since so is γ. Finally, it is bijective and an order

isomorphism by (C1) and (C2). �

We say that an auxiliary structure L = 〈L; γ, H, ν, δ, ε,Z〉 is countable if

|L| ≤ ℵ0. In this case, by the surjectivity of γ, |H | ≤ ℵ0 also holds. Next, we

give an example.

Example 2.2. Let H be a set, finite or infinite, such that 0H , 1H ∈ H and

|H | ≥ 3. Let us define ν = quo
(
({0H} × H) ∪ (H × {1H})

)
; note that 〈H ; ν〉

is an ordered set (actually, a modular lattice of length 2). Let L be the lattice

depicted in Figure 5, where {h, g, p, q, . . .} is the set H−01 = H \ {0H , 1H}.
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For x ≺ y, γ(〈x, y〉) is defined by the labeling of edges like in case of Lg7. In

particular, γ(〈z, z〉) = 0H for all z ∈ L, and [x, y] includes a thick (unlabeled)

edge iff γ(〈x, y〉) = 1H . Let δ(0H) = ε(0H) = x0 and Z = ∅. For s ∈ H\{0H},

we define δ(s) = as and ε(s) = bs. Now, obviously, L = 〈L; γ, H, ν, δ, ε,Z〉

is a strong auxiliary structure. If |H | ≤ ℵ0, then L is countable. Note that

the black-filled elements form a simple, selfdual sublattice, which is usually

denoted by M3,3. Hence, L is a selfdual lattice.

Figure 5. The auxiliary structure in Example 2.2

Substructures are defined in the natural way; note that ν = ν ′ ∩ H2 will

not be required below. Namely,

Definition 2.3. Let

L = 〈L; γ, H, ν, δ, ε,Z〉 and L′ = 〈L′; γ′, H ′, ν ′, δ′, ε′,Z ′〉

be auxiliary structures. We say that L is a substructure of L′ if

(i) L is a sublattice of L′, H ⊆ H ′, ν ⊆ ν ′, and 0H′ = 0H ;

(ii) γ is the restriction of γ′ to Pairs≤(L), δ is the restriction of δ′ to H , and

ε is the restriction of ε′ to H .

If, in addition,

(iii) L′ is strong, Z ⊆ Z ′, 0L = 0L′ , 1L = 1L′ , 1H′ ∈ H ,

(iv) for all x ∈ L′, if 0L′ ≺ x ≺ 1L′ , then x ∈ L, and

(v) for each Z7 ∈ Z ′, if Zset
7 ∩ L 6= ∅, then Z7 ∈ Z,

then L is a tight substructure of L′

Assume that L is a tight substructure of L′. Since ∇L = conL(0L, 1L) ∈

Princ(L), 〈H ; ν〉 has a unique largest element by (C1), (C2), and (A2), and

we have 1H = 1H′ . It is straightforward to see that L is strong; for example,

(A11) follows by restricting the corresponding congruence of L′ to L, while

(A13) is a consequence of 2.3(v). Hence, we can emphasize that

if L is a tight substructure of L′, then L,L′ are strong and 1H = 1H′ . (2.4)

If L is a substructure (resp., tight substructure) of L′, then we say L′ is an

extension (resp., tight extension) of L. Clearly, if L, L′, and L′′ are auxiliary
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structures such that L is a substructure of L′ and L′ is a substructure of L′′,

then L is a substructure of L′′; the same holds for strong auxiliary structures

and their tight substructures. This transitivity will often be used in Section 5;

sometimes implicitly. The next two sections indicate how easily and efficiently

we can work with auxiliary structures.

3. Vertical extensions

Figure 6. The auxiliary structure LMMM

Generalizing the idea behind Example 2.2, this section captures, in terms

of extensions of auxiliary structures, how to add an antichain and a new top

element to the quasiordered set H of colors (even if H has no top element).

For an auxiliary structure L = 〈L; γ, H, ν, δ, ε,Z〉 and an arbitrary (possibly

empty) set K, we define the following objects. Let HMMM be the disjoint union

H ∪ K ∪ {1HMMM}, let ZMMM = ∅, and let 0HMMM = 0H . Define νMMM ∈ Quord(HMMM) by

νMMM = quo
(
ν ∪ ({0HMMM} × HMMM) ∪ (HMMM × {1HMMM})

)
.

Consider the lattice LMMM defined by Figure 6, where u, v, . . . denote the elements

of K. The thick dotted lines indicate ≤ but not necessarily ≺; they are edges

only if L is bounded. Note that all “new” lattice elements distinct from 0LMMM and

1LMMM , that is, all elements of LMMM \ (L∪{0LMMM, 1LMMM}), are complements of all “old”

elements. Extend δ and ε to maps δMMM, εMMM : HMMM → LMMM by letting δMMM(w) = aw

and εMMM(w) = bw for w ∈ K ∪ {1HMMM}. Define γMMM : Pairs≤(LMMM) → HMMM by

γMMM(〈x, y〉) =






γ(〈x, y〉), if 〈x, y〉 ∈ Pairs≤(L),

w, if x = aw, y = bw, and w ∈ K,

0HMMM , if x = y,

1HMMM , otherwise.

As usual, we use thick edges in Figure 6 instead of labeling them by 1HMMM .

Finally, let LMMM = 〈LMMM; γMMM, HMMM, νMMM, δMMM, εMMM,ZMMM〉. The proof of the following lemma

is based on Nbh1(L) = L; the straightforward details will be omitted.
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Lemma 3.1. If L is an auxiliary structure, then LMMM is a strong auxiliary

structure. Furthermore, L is a substructure of LMMM and |LMMM| ≤ |L| + |K| + ℵ0.

Since a new bottom element and a new top element are added, we say

that LMMM is obtained from L by a vertical extension; this motivates the triangle

aiming upwards in its notation. Note that if L is a selfdual lattice, then so is

LMMM.

4. Horizontal extensions of auxiliary structures

The purpose of this section is to capture, in terms of tight extensions of

auxiliary structures, how to increase the quasiorder ν of H = 〈H ; ν〉 by a “sin-

gle step” in case H has a largest element. If x ∈ L−01
g7 belongs to the boundary

of the planar lattice Lg7, then we have δ(epq , x) = δ(cpq
4 , x) ≥ 3 for x 6= cpq

6

and δ(epq , x) = δ(cpq
4 , x) = 2 for x = cpq

6 , where δ is understood in the graph

〈L−01
g7 ; ∦〉. This explains that although the planar lattice Lg7 is not selfdual,

the elements cpq
4 and epq behave similarly in most of our considerations. That

is, we can often treat Lg7 as if it were a selfdual lattice with cpq
4 = epq. When

doing so, we will refer to “quasi-duality”. Although the last two components

below have not yet been defined, note that, for i ∈ {1, . . . , 6}, the two rows of

the following matrix
(

ap bp aq bq cpq
i dpq

i Dp Up U q
p Dq

p

bq aq bp ap dpq
7−i cpq

7−i Uq Dq Dq
p U q

p

)

correspond to each other via quasi-duality.

Figure 7. Starting from L, . . .

Assume that

L = 〈L; γ, H, ν, δ, ε,Z〉 is a strong auxiliary structure,

p, q ∈ H−01, and 〈ap, bp, aq, bq〉 is a spanning N6-quadruple.
(4.1)
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We define a structure LBBB = LBBB(p, q) as follows, and it will take a lot of work to

prove that it is a strong auxiliary structure. We call LBBB a horizontal extension

of L; this explains the horizontal triangle in the notation. The construction

of LBBB from L is illustrated in Figures 7 and 8. Note that our lattices can

contain much more elements and in a more complicated way than depicted

in these two figures. The convex subsets (actually, convex sublattices) of L

defined in (A6) are indicated with light grey shapes. The solid lines represent

the covering relation but the dotted lines, which still stand for the ordering,

are not necessarily edges. For example, if bg ≺ 1L, then Ug = {bg} and the

respective dotted line denotes the covering bg ≺ 1L; however, the dotted line

is not a covering if Ug has no largest element. As usual, the thick (unlabeled)

edges are colored by 1H or 1HBBB .

First, we change the N6-sublattice {0L, ap, bp, aq, bq, 1L} into an Lg7, de-

picted in Figure 2, that is, we insert the black-filled circle-shaped elements

into L. Next, to each x ∈ Up \ {bp}, indicated by an empty-filled little square

in Figure 8, we add a new upper cover x+ of x, which is indicated by a black-

filled little square. The set of these new upper covers plus dpq
1 is denoted by

U q
p . The elements dpq

1 and cpq
1 will also be denoted by b+

p and a+
p , respectively.

For x1, x2 ∈ Up, we let x+
1 ≤ x+

2 iff x1 ≤ x2. This means that the ordered

subset Up ∪U q
p of LBBB is isomorphic to the direct product of Up ×C2, where C2

is the 2-element chain. Finally (and similarly), to each y ∈ Dq \ {aq}, we add

a new lower cover y− of y (indicated by a black-filled little square). We let

a−
q = cpq

6 and b−q = dpq
6 . For y1, y2 ∈ Dq, y−1 ≤ y−2 ⇐⇒ y1 ≤ y2. In this way,

we have obtained an ordered set denoted by LBBB; see also (4.9) later for more

exact details. We will prove soon that LBBB is a lattice and L is a sublattice in

it; then it will be clear that

x+ = x ∨ cpq
1 for x ∈ {ap} ∪ Up and

y− = y ∧ dpq
6 for y ∈ {bq} ∪ Dq.

(4.2)

Note that while Grätzer [7] constructed a lattice of length 5, here even the

interval, say, [bp, 1LBBB ] can be of infinite length.

Next, set HBBB = H and Zpq
7 = 〈cpq

2 , dpq
2 ; cpq

3 , dpq
3 ; cpq

4 , epq, dpq
4 ; cpq

5 , dpq
5 〉. Let

ZBBB = Z ∪ {Zpq
7 }. In Quord(HBBB), we define νBBB = quo

(
ν ∪ {〈p, q〉}

)
. Since ν is

reflexive and transitive, we have that

〈r1, r2〉 ∈ νBBB ⇐⇒ r1 ≤ν p and q ≤ν r2, or r1 ≤ν r2, (4.3)

for arbitrary r1, r2 ∈ HBBB. Hence, it follows easily from the validity of (A2)

and (A9) in L that 〈HBBB; νBBB〉 has a unique largest element 1HBBB , a unique least

element 0HBBB , and we have 1HBBB = 1H and 0HBBB = 0H . We extend γ to a map
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Figure 8. . . . , we obtain LBBB

γBBB : Pairs≤(LBBB) → HBBB by

γBBB(〈x, y〉) =






γ(〈x, y〉), if 〈x, y〉 ∈ Pairs≤(L),

γ(〈z, t〉), if 〈x, y〉 = 〈z+, t+〉 ∈ Pairs≤(U q
p ∪ {cpq

1 }),

γ(〈z, t〉), if 〈x, y〉 = 〈z−, t−〉 ∈ Pairs≤(Dq
p ∪ {dpq

6 }),

p, if 〈x, y〉 ∈ {〈cpq
2 , dpq

2 〉, 〈cpq
3 , dpq

3 〉, 〈epq , dpq
4 〉},

q, if 〈x, y〉 ∈ {〈cpq
4 , dpq

4 〉, 〈cpq
5 , dpq

5 〉, 〈cpq
4 , epq〉},

0HBBB , if x = y,

1HBBB , otherwise.

Finally, after letting δBBB = δ, and εBBB = ε, we define

LBBB(p, q) = LBBB as 〈LBBB; γBBB, HBBB, νBBB, δBBB, εBBB,ZBBB〉. (4.4)

Lemma 4.1. If L satisfies (4.1), then LBBB is a bounded lattice. Furthermore,

Spq, given by (4.5) below, and L are {0, 1}-sublattices of LBBB.

Proof. First, we describe the ordering of LBBB more precisely; this description is

the real definition of LBBB. Consider the following subsets of LBBB:

Npq = {cpq
1 , . . . , cpq

6 , dpq
1 , . . . , dpq

6 , epq} ∪ U q
p ∪ Dq

p (new elements),

Bpq
` = {0L = 0LBBB , ap, bp, 1L} ∪ Dp ∪Up (left boundary),

Bpq
r = {0L, aq, bq, 1L = 1LBBB} ∪ Dq ∪ Uq (right boundary),

Bpq = Bpq
` ∪ Bpq

r (boundary),

Rpq
` = Dp ∪ Up ∪ U q

p ∪ {cpq
1 } (left region),

Rpq
r = Dq ∪ Uq ∪ Dq

p ∪ {dpq
6 } (right region),

Spq = Npq ∪Bpq , and

Lpq
g7 = {0L, ap, bp, aq, bq, c

pq
1 , . . . , cpq

6 , epq, dpq
1 , . . . , dpq

6 , 1LBBB}.

(4.5)
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In case of four sets above, we call these sets and their elements “left” or

“right” simply because of their positions in our figures. The definitions of

some of these sets above are redundant; for example, dpq
1 ∈ U q

p . The ordering

within Bpq , which is a subset of L, is inherited from L. By definition, Lpq
g7

∼=

Lg7 = Lg7(p, q). The ordering within Up ∪ {ap} ∪ U q
p ∪ {cpq

1 } and that within

Dq ∪ {bq} ∪ Dq
p ∪ {dpq

6 } are already clear; for example, if x ∈ Up ∪ {ap} and

y+ ∈ U q
p ∪ {cpq

1 }, then x ≤ y+ iff x ≤L y. Thus, since ap is the top element of

Dp and bq is the bottom of Uq , the ordering within Rpq
` and that within Rpq

r

are defined. (A6) implies that

〈Rpq
` ;≤〉 and 〈Rpq

r ;≤〉 are lattices. (4.6)

The above facts, together with Lpq
g7

∼= Lg7 and even Lpq
g7 = Lg7(p, q), define the

ordering within Spq . A routine argument verifies that Spq = 〈Spq ;≤Spq 〉 is a

lattice; the details are omitted. Observe that 1LBBB /∈ Rpq
` ∪ Rpq

r and

for all x ∈ Rpq
` and y ∈ Rpq

r , x ∧Spq y = 0LBBB . (4.7)

Therefore, for x ∈ Npq, there is a unique least element x∗ of Bpq such that

x ≤Spq x∗. Similarly, for x ∈ Npq, there is a unique largest element x∗ of Bpq

such that x∗ ≤Spq x. If x ∈ L, then we let x∗ = x∗ = x. In this way, x 7→ x∗

and x 7→ x∗ are maps from LBBB to L. Note that

(x−)
∗

= x and (y∗)
−

= y for x ∈ Dq ∪ {bq} and y ∈ Dq
p ∪ {dpq

6 };

(x+)∗ = x and (y∗)
+

= y for x ∈ Up ∪ {ap} and y ∈ U q
p ∪ {cpq

1 }.
(4.8)

Using these maps, the exact definition of the ordering in LBBB is described as

follows: for x, y ∈ LBBB,

x ≤LBBB y ⇐⇒






x ≤L y, if x, y ∈ L, or

x ≤Spq y, if x, y ∈ Spq , or

x ≤L y∗, if x ∈ L \ Spq and y ∈ Npq, or

x∗ ≤L y, if x ∈ Npq and y ∈ L \ Spq .

(4.9)

Observe that for u1, u3 ∈ Bpq and u2 ∈ Npq, the conjunction of u1 ≤Spq u2

and u2 ≤Spq u3 implies {0LBBB , 1LBBB}∩{u1, u3} 6= ∅. Hence, it is straightforward

to see that ≤LBBB is an ordering and ≤L is the restriction of ≤LBBB to L. Note

that, for x ∈ LBBB,

x∗ = 1L∩↓x and x∗ = 0L∩↑x; (4.10)

that is, x∗ is the greatest element of L∩↓x, and dually for x∗. Unless otherwise

specified, ≤, ‖, ∨, ↓epq, etc. will be understood in LBBB.

Next, we define a mapping u 7→ û from L to Spq . For u ∈ L \ {0L}, either

u ∈ Dp, or u∨bp ∈ Up∪{1L} is the smallest element up of Bpq
` ∩↑u. Similarly,

Bpq
r ∩ ↑u has a smallest element uq. If u 6= 0LBBB , then it follows from (A16′)

that 1LBBB ∈ {up, uq}. Hence, for each u ∈ L, Bpq ∩ ↑u has a smallest element;
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we denote it by û. For u ∈ Npq, we let û = u. Note that,

for every u ∈ LBBB, û is the smallest element of Spq ∩ ↑u,

and u ∈ ↓Up \ ↓ap implies û = u ∨L bp.
(4.11)

For later reference, we quasi-dualize (4.11). For u ∈ L\{1L}, either u ∈ Uq , or

u∧aq ∈ Dq ∪{0L} is the largest element uq of Bpq
r ∩↓u. Similarly, Bpq

` ∩↓u has

a largest element up. Hence, for each u ∈ L, Bpq ∩ ↓u has a largest element;

we denote it by ŭ. For u ∈ Npq, we let ŭ = u. Note that,

for every u ∈ LBBB, ŭ is the largest element of Spq ∩ ↓u,

and u ∈ ↑Dq \ ↑bq implies ŭ = u ∧L aq.
(4.12)

Next, for x ‖ y ∈ LBBB, we want to show that x and y has a join in LBBB. There

are several cases to consider. The order ideal generated by U q
p will be denoted

by ↓U q
p . Since U q

p is directed, ↓U q
p will turn out to be a lattice ideal of LBBB.

Case 4.2. We claim that if {x, y} ⊆ L, then L, x ∨L y is the join of x and y

in LBBB. To prove this, we can assume that {x, y} ⊆ ↓U q
p , since otherwise {x, y}

has no upper bound outside L. Let z ∈ Npq be an upper bound of {x, y}.

We obtain from (4.10) that x ≤L z∗ (even if x ∈ Spq) and y ≤L z∗. Hence,

x ∨L y ≤L z∗ ≤ z, proving x ∨LBBB y = x ∨L y.

Case 4.3. We claim that if {x, y} ⊆ Spq , then x∨Spq y is the join of x and y in

LBBB. (We have already mentioned that 〈Spq ;≤〉 is a lattice.) For {x, y} ⊆ Rpq
`

or {x, y} ⊆ Rpq
r , this follows from (4.8) and (4.10) in a straightforward way

by considering several cases. Next, assume that x ∈ Rpq
` and y ∈ Rpq

r , and

suppose, for a contradiction, that z ∈ L \ {1LBBB} is an upper bound of {x, y}.

We have x∗ ≤L z and y∗ ≤L z by (4.10). Since x ≤ x∗ ≤ z < 1L, the element

x ∈ Rpq
` has a nontrivial upper bound in L. Thus, x∗ = x ∈ Dp ∪ Up ⊆

Nbh1(Dp ∪ Up). Since y ∈ Rpq
r , we have y∗ ∈ Dq ∪ Uq ⊆ Nbh1(Dq ∪ Uq).

Hence, the validity of (A16′) in L yields that 1L = x∗ ∨L y∗ ≤L z <L 1L, a

contradiction. Thus, we conclude the validity of x∨Spq y = x∨LBBB y for the case

{x, y} ⊆ Rpq
` ∪Rpq

r . The same holds in the remaining case {x, y} 6⊆ Rpq
` ∪Rpq

r ,

because then all upper bounds of {x, y} belong to Spq .

Case 4.4. For x ∈ L \ Bpq = L \ Spq and y ∈ Npq = Spq \ L, we claim that

x ∨LBBB y =

{
x̂ ∨Spq y, if x ∈ ↓U q

p (equivalently, if x ∈ ↓Up),

x ∨L y∗, if x /∈ ↓U q
p (equivalently, if x /∈ ↓Up).

(4.13)

To prove this, first we assume that x ∈ ↓U q
p . We conclude from (A16′) that

x̂ ∈ Dp ∪ Up and x ∈ Nbh1(Dp ∪ Up). Suppose, for a contradiction, that

{x, y} has an upper bound z in L \ {1L} . We have y∗ ≤L z by (4.10). Since

y∗ ∈ Dq∪Uq ⊆ Nbh1(Dq ∪Uq), (A16′) yields z = 1, contradicting z ∈ L\{1L}.

Hence, all upper bounds of {x, y} belong to Spq . This proves the first half of

(4.13). The second half is obvious, because x ∈ L \ ↓U q
p has no upper bound

outside L.
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Cases 4.2–4.4 prove that LBBB is a join-semilattice. By quasi-duality, it is a

lattice. Cases 4.2, 4.3, and their quasi-duals also prove that L and Spq are

{0, 1}-sublattices of LBBB. This completes the proof of Lemma 4.1. �

We need a lemma from Dilworth [4], see also Grätzer [5, Theorem III.1.2].

Lemma 4.5. If L is a lattice and 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≤(L), then the

following three conditions are equivalent.

(i) con(u1, v1) ≤ con(u2, v2);

(ii) 〈u1, v1〉 ∈ con(u2, v2);

(iii) there exists an n ∈ N and there are xi ∈ L for i ∈ {0, . . . , n} and

〈yij , zij〉 ∈ Pairs≤(L) for 〈i, j〉 ∈ {1, . . . , n} × {0, . . . , n} such that the

following equalities and inequalities hold:

u1 = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = v1

yi0 = xi−1, yin = u2, zi0 = xi, and zin = v2 for 1 ≤ i ≤ n,

yi,j−1 = zi,j−1 ∧ yij and zi,j−1 ≤ zij for j odd, i, j ∈ {1, . . . , n},

zi,j−1 = yi,j−1 ∨ zij and yi,j−1 ≥ yij for j even, i, j ∈ {1, . . . , n}.

(4.14)

The situation of Lemma 4.5 is outlined in Figure 9; note that the ele-

ments depicted do not form a sublattice in general and they are not neces-

sarily distinct. The second half of (4.14) says that, in terms of Grätzer [5],

〈yi,j−1, zi,j−1〉 is weakly up or down perspective into 〈yij , zij〉; up for j odd

and down for j even. Besides weak perspectivity, we recall that 〈x1, y1〉 is

perspective to 〈x2, y2〉 if there are i, j ∈ {1, 2} such that i 6= j, xi = xj ∧ yi,

and yj = xj ∨yi. Projectivity is the reflexive transitive closure of perspectivity.

Figure 9. Illustrating Lemma 4.5 for n = 4

For a quasiordered set 〈H ; ν〉, we say that p ∈ H is a join of the elements

q1, . . . , qn ∈ H , in notation, p =ν

∨n
i=1 qi, if qi ≤ν p for all i and, for every

r ∈ H , the conjunction of qi ≤ν r for i = 1, . . . , n implies p ≤ν r. Even if a join

exists, it need not be unique in the usual sense, but it is unique modulo =ν .

Lemma 4.6 (“Chain Lemma” for quasi-colored lattices). If 〈L; γ, H, ν〉 is a

quasi-colored lattice and {u0 ≤ u1 ≤ · · · ≤ un} is a finite chain in L, then

γ(〈u0 , un〉) =ν

n∨

i=1

γ(〈ui−1, ui〉) holds in 〈H ; ν〉. (4.15)
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Proof. Let p = γ(〈u0, un〉) and qi = γ(〈ui−1, ui〉). Since con(ui−1, ui) ≤

con(u0, un), (C2) yields qi ≤ν p for all i. Next, assume that r ∈ H such that

qi ≤ν r for all i. By the surjectivity of γ, there exists a 〈v, w〉 ∈ Pairs≤(L)

such that γ(〈v, w〉) = r. It follows by (C1) that 〈ui−1, ui〉 ∈ con(ui−1, ui) ≤

con(v, w). Since con(v, w) is transitive and collapses the pairs 〈ui−1, ui〉, it col-

lapses 〈u0, un〉. Hence, con(u0, un) ≤ con(v, w), and (C2) implies p ≤ν r. �

Now, we are in the position to prove the main lemma of the paper.

Lemma 4.7. The structure LBBB = LBBB(p, q), which is defined in (4.4) with

assumption (4.1), is a strong auxiliary structure, and L is a tight substructure

of LBBB. Furthermore, |LBBB| ≤ ℵ0 + |L|.

Proof. Since we work both in L and LBBB, relations, operations and maps are

often subscripted by the relevant structure; in the absence of subscripts, we

are in LBBB. By Lemma 4.1, LBBB is a bounded lattice. We obtain from (4.3) that

(A2) holds for LBBB. It follows trivially from the construction and Lemma 4.1

that LBBB satisfies (A3), (A4), (A5), (A9), and (A10).

Next, we deal with (A6). Let r ∈ H \ {0H} and {x, y} ⊆ Ur ; we have to

prove that x ∨ y ∈ Ur. Equivalently, we have to prove that x ∨ y 6= 1LBBB . For

{x, y} ⊆ L, this follows from the validity of (A6) in L. If {x, y} ⊆ Npq, then

both x and y belong to {cpq
1 } ∪ U q

p , since br ∈ ↓x ∩ ↓y and br ∈ L. Hence,

x ∨ y 6= 1LBBB , because Rpq
` is sublattice by (4.6). Therefore, we can assume

that x ∈ L \ Spq and y ∈ Npq. We obtain from (4.10) that br ≤ y∗ and

y ∈ {cpq
1 } ∪U q

p . If we had y∗ = ap, then br ≤ ap would contradict either (A5),

if r 6= p, or (A3), if r = p. Hence, y∗ ∈ Up, and for later reference, we note

that

for all r ∈ H, br � ap. (4.16)

Since L satisfies (A6) and {x, y∗} ⊆ Ur , we obtain x ∨ y∗ 6= 1L. Clearly,

x∨ y∗ ∈ Up. Using that Rpq
` is a sublattice of LBBB, it follows that (x∨ y∗)∨ y ∈

Rpq
` . Thus, x ∨ y = x ∨ (y∗ ∨ y) = (x ∨ y∗) ∨ y 6= 1LBBB . Consequently, Ur is a

sublattice of L, and LBBB satisfies (A6) by quasi-duality.

The members of Pairs≤(LBBB)\
(
Pairs≤(L)∪Pairs≤(Spq)

)
will be called mixed

pairs. In other words, a pair is called mixed if exactly one of its components

belongs to L. By the definition of γBBB ,

if 〈x, y〉 is a mixed pair, then γBBB(〈x, y〉) = 1HBBB . (4.17)

In order to verify (A7), assume that r ∈ H , 〈x, y〉 ∈ Pairs≤(Ur), and x 6= y.

If 〈x, y〉 ∈ Pairs≤(L), in other words, 〈x, y〉 is an old pair, or 〈x, y〉 is a mixed

pair, or γBBB(〈x, y〉) = 1HBBB , then r ≤νBBB γBBB(〈x, y〉) follows from ν ⊆ νBBB, (4.17),

and the validity of (A7) in L. Hence, we can assume that 〈x, y〉 ∈ Pairs≤(Npq).

Since 0L 6= br ≤ x and br ∈ L, we obtain that x ∈ U q
p ∪ {cpq

1 }. Actually, we

have x ∈ U q
p , since x = cpq

1 , combined with (4.10) and (cpq
1 )∗ = ap, would

contradict (4.16). Similarly, y ∈ U q
p . Clearly, x∗, y∗ ∈ Up ⊆ L. Hence,

using the definitions, the validity of (A7) in L, and (4.8), we obtain that
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r ≤ν γ(〈x∗, y∗〉) = γBBB(〈(x∗)
+

, (y∗)
+
〉) = γBBB(〈x, y〉). Thus, by quasi-duality,

LBBB satisfies (A7).

Next, we prove that, for 〈x, y〉 ∈ Pairs≤(LBBB),

γBBB(〈x, y〉) = 1HBBB =⇒ conLBBB(x, y) = ∇LBBB . (4.18)

First, assume that 〈x, y〉 ∈ Pairs≤(L) and γBBB(〈x, y〉) = 1HBBB , that is, γ(〈x, y〉) =

1H . Since (C1) holds in L and γ(〈0L, 1L〉) ≤ν 1H = γ(〈x, y〉), we obtain ∇L =

conL(0L, 1L) ≤ conL(x, y). Hence, 〈0L, 1L〉 ∈ conL(x, y). Using Lemma 4.5

and the fact that L is a sublattice of LBBB by Lemma 4.1, we obtain 〈0LBBB , 1LBBB〉 ∈

conLBBB(x, y), and (4.18) holds in this case. Second, assume that 〈x, y〉 ∈

Pairs≤(LBBB) is a mixed pair in the sense of (4.17), and keep in mind that (A14′),

which is a consequence of (A10), holds in LBBB. Figure 8 shows (and it is straight-

forward to prove) that there exist x1, y1 ∈ Bpq such that x ≤ x1 ≺ y1 ≤ y

and 〈x1, y1〉 is perspective to 〈0LBBB , u〉 or 〈u, 1LBBB〉 for some u ∈ (LBBB)
−01

.

Hence, we conclude conLBBB(x, y) = 1HBBB from (A14′). Third, we are left

with the case 〈x, y〉 ∈ Pairs≤(Npq) and γBBB(〈x, y〉) = 1HBBB . If [x, y] contains

a thick edge x1 ≺ y1 of Figure 8, then the previous case applies. Other-

wise, either 〈x, y〉 ∈ Pairs≤(U q
p ∪ {cpq

1 }), or 〈x, y〉 ∈ Pairs≤(Dq
p ∪ {dpq

6 }). By

quasi-duality, we can assume the first alternative. Using (4.8), we have that

〈x, y〉 = 〈(x∗)
+
, (y∗)

+
〉, which is perspective to 〈x∗, y∗〉. Thus, conLBBB(x, y) =

conLBBB(x∗, y∗), γBBB(〈x, y〉) = γBBB(〈x∗, y∗〉), and the first case applies since 〈x∗, y∗〉

belongs to Pairs≤(L). This proves (4.18).

Let Θ denote the congruence of L described in (A11). Let

Ψ = {〈x+, y+〉 : x, y ∈ Up ∪ {ap} and 〈x, y〉 ∈ Θ},

Γ = {〈x−, y−〉 : x, y ∈ Dq ∪ {bq} and 〈x, y〉 ∈ Θ} and

Φ = {epq , cpq
4 , dpq

4 }2 ∪ {cpq
2 , dpq

2 }2 ∪ {cpq
3 , dpq

3 }2 ∪ {cpq
5 , dpq

5 }2.

Here, Ψ and Γ are equivalence relations on the sets {cpq
1 }∪U q

p and {dpq
6 }∪Dq

p,

respectively, and Φ is the equivalence on {epq , cpq
2 , . . . , cpq

5 , dpq
2 , . . . , dpq

5 } whose

blocks are the fibers of Zpq
7 . Let ΘBBB = Θ∪Ψ∪Γ∪Φ; its blocks are the Θ-blocks,

the Ψ-blocks, the Γ-blocks, and the Φ-blocks. The restriction of Θ to subset

X ⊆ L will be denoted by ΘeX . Since the Θ-blocks, the Θe{ap}∪Up
-blocks,

and the Θe{bq}∪Dq
-blocks are convex sublattices, so are the ΘBBB-blocks.

To prove that ΘBBB is a congruence, assume that 〈x, y〉 ∈ ΘBBB ∩ Pairs≤(LBBB),

x 6= y, and z ∈ LBBB \ {0L, 1L} such that x ≤ z; we claim that

〈x ∨ z, y ∨ z〉 ∈ ΘBBB. (4.19)

Since Θ is taken from (A11), (A14′) gives that {x, y} ∩ {0L, 1L} = ∅. By

the convexity of ΘBBB-blocks, we can assume that y ‖ z. Based on Grätzer [8,

Lemma 11], a tedious but straightforward argument shows that ΘBBBeSpq is a

congruence. Since so is Θ = ΘBBBeL, we can assume that {x, y, z} 6⊆ Spq and

{x, y, z} 6⊆ L. Since both L and Npq are unions of ΘBBB-blocks, there are two

cases to consider.
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First, assume that 〈x, y〉 ∈ Pairs≤(L) and z ∈ Npq = LBBB \ L. It follows

from 0LBBB < x < z that cpq
1 ≤ z. If z ∈ U q

p , then 〈x ∨ bp, y ∨ bp〉 ∈ Θ ∩ U2
p =

ΘBBBeSpq ∩U2
p , 〈x∨ z, y ∨ z〉 = 〈x∨ bp ∨ z, y ∨ bp ∨ z〉, and the fact that ΘBBBeSpq

is a congruence give (4.19). Hence, we consider z = cpq
1 . If we have y ≤ bp,

then y ‖ z = cpq
1 , y ≤ dpq

1 , and cpq
1 ≺ dpq

1 yield 〈x ∨ z, y ∨ z〉 = 〈cpq
1 , dpq

1 〉 ∈ ΘBBB.

Thus, we assume that y � bp, that is, bp < bp ∨ y. Since x ≤ cpq
1 , we have

x ≤ (cpq
1 )∗ = ap ≤ bp by (4.10). Hence, 〈bp, bp ∨ y〉 = 〈bp ∨L x, bp ∨L y〉 ∈ Θ 6=

∇L. Thus, (A14′) yields bp ∨ y 6= 1L = 1LBBB , implying y ∈ ↓Up. Using (4.11)

and y � ap, we have that ŷ = y ∨ bp. Therefore, y ∨ z = ŷ ∨Spq cpq
1 ; either by

(4.13), if y ∈ L \ Spq , or because y = ŷ ∈ Spq . Since ŷ = y ∨ bp, we obtain

that 〈bp, ŷ〉 = 〈x ∨ bp, y ∨ bp〉 ∈ Θ ⊆ ΘBBB. Joining this with z = cpq
1 , we have

〈dpq
1 , y ∨ z〉 ∈ Ψ, which implies (4.19) since 〈x ∨ z, dpq

1 〉 = 〈cpq
1 , dpq

1 〉 ∈ Ψ.

Second, assume that 〈x, y〉 ∈ Pairs≤(Npq) and z ∈ L \ Spq . We still have

{x, y} ∩ {0LBBB , 1LBBB} = ∅, by the definition of ΘBBB. Since x < z < 1L implies

x ∈ Dq
p ∪ {dpq

6 }, the definition of ΘBBB gives {x, y} ⊆ Dq
p ∪ {dpq

6 }. By (4.8) and

the definition of ΘBBB, we obtain 〈x∗, y∗〉 ∈ Θ. We have x∗ ≤ z since x ≤ z. If

we had z ∈ ↓Up, then z ∈ Nbh1(Dp ∪Up), x∗ ∈ Dq ∪Uq ⊆ Nbh1(Dq ∪Uq), and

the validity of (A16′) in L would imply x∗ = z ∧L x∗ = 0L, whence x = 0L,

contradicting {x, y}∩ {0LBBB , 1LBBB} = ∅. Hence, z /∈ ↓Up, and (4.13) yields that

〈x∨z, y∨z〉 = 〈x∗∨L z, y∗∨L z〉 ∈ Θ ⊆ ΘBBB. This proves (4.19). Since ΘBBB is an

equivalence relation, (4.19) and its quasi-dual imply that ΘBBB is a congruence

on LBBB. Since it is distinct from ∇LBBB , LBBB satisfies (A11).

Next, we prove the converse of (4.18). Assume that 〈x, y〉 ∈ Pairs≤(LBBB)

such that γBBB(〈x, y〉) 6= 1HBBB ; we want to show that conLBBB(x, y) 6= ∇LBBB . Since

this is clear if x = y, we assume x 6= y. First, if x, y ∈ L, then let r = γ(〈x, y〉).

Applying (C1) to γ and (A4) to L, we obtain conL(x, y) = conL(ar, br).

Hence ΘBBB, which we used in the previous paragraphs, collapses 〈x, y〉, and

conLBBB(x, y) ⊆ ΘBBB ⊂ ∇LBBB . Second, if {x, y} ∩ L = ∅, then there exists a

pair 〈x′, y′〉 ∈ Pairs≤({ap} ∪ Up) ∪ Pairs≤({bq} ∪ Dq) ⊆ Pairs≤(L) such that

γBBB(〈x, y〉) = γBBB(〈x′, y′〉) and 〈x, y〉 is projective to 〈x′, y′〉. For example, if

〈x, y〉 ∈ Pairs≤({cpq
1 } ∪ U q

p ), then we let 〈x′, y′〉 = 〈x∗, y∗〉. Thus, since pro-

jective pairs generate the same congruence, this case reduces to the first case.

Finally, |L∩{x, y}| = 1 is excluded by (4.17). Now, after verifying the converse

of (4.18), we have proved that, for all 〈x, y〉 ∈ Pairs≤(LBBB),

γBBB(〈x, y〉) = 1HBBB ⇐⇒ conLBBB(x, y) = ∇LBBB. (4.20)

Observe that γBBB is isotone in the sense that

if w1 ≤ w2 ≤ w3 ≤ w4, then γBBB(〈w2, w3〉) ≤νBBB γBBB(〈w1, w4〉). (4.21)

This follows from (4.17), from the definition of γBBB, and from the fact that γ

is isotone by (C1) and (C2) .

Next, to prove that γBBB satisfies (C1), assume that 〈u1, v1〉 and 〈u2, v2〉

belong to Pairs≤(LBBB) such that γBBB(〈u1, v1〉) ≤νBBB γBBB(〈u2, v2〉). Let ri =

γBBB(〈ui, vi〉), for i ∈ {1, 2}. We have to show conLBBB(u1, v1) ≤ conLBBB(u2, v2).
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By (4.20), we can assume that r2 6= 1HBBB . We also have that r1 6= 1HBBB , since

otherwise 1HBBB = r1 ≤νBBB r2 and the satisfaction of (A2) for LBBB would give

r2 = r1 = 1H . Similarly, we can assume that r1 and, consequently, also r2 differ

from 0HBBB , since otherwise u1 = v1, and so conLBBB(u1, v1) = ∆LBBB would clearly

imply conLBBB(u1, v1) ≤ conLBBB(u2, v2). Thus, r1, r2 ∈ H−01 = (HBBB)
−01

. By the

construction of LBBB, 〈ui, vi〉 is projective to some 〈u′
i, v

′
i〉 ∈ Pairs≤(L) such that

γBBB(〈ui, vi〉) = γBBB(〈u′
i, v

′
i〉). Projectivity implies conLBBB(ui, vi) = conLBBB(u′

i, v
′
i).

Therefore, we can assume that 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≤(L), because other-

wise we could work with 〈u′
1, v

′
1〉 and 〈u′

2, v
′
2〉.

According to (4.3), we distinguish two cases. First, assume that r1 ≤ν r2.

Since γBBB extends γ, we have that

γ(〈u1, v1〉) = γBBB(〈u1, v1〉) = r1 ≤ν r2 = γBBB(〈u2, v2〉) = γ(〈u2, v2〉).

Applying (C1) to γ, we obtain 〈u1, v1〉 ∈ conL(u1, v1) ≤ conL(u2, v2). Using

Lemma 4.5 (i) ⇒ (iii) in L and then Lemma 4.5 (iii) ⇒ (i) in LBBB, we obtain

that conLBBB(u1, v1) ≤ conLBBB(u2, v2).

Second, assume that r1 ≤ν p and q ≤ν r2. Since γBBB(〈ap, bp〉) = γ(〈ap, bp〉) =

p and γBBB(〈aq, bq〉) = q by (A4), the argument of the previous paragraph yields

conLBBB(u1, v1) ≤ conLBBB(ap, bp) and conLBBB(aq , bq) ≤ conLBBB(u2, v2). Clearly

(or applying Lemma 4.5 within Spq), we have conLBBB(ap, bp) ≤ conLBBB(aq, bq).

Hence, transitivity yields conLBBB(u1, v1) ≤ conLBBB(u2, v2). Consequently, γBBB

satisfies (C1).

Next, to prove that γBBB satisfies (C2), we assume that 〈u1, v1〉, 〈u2, v2〉 ∈

Pairs≤(LBBB) such that conLBBB(u1, v1) ≤ conLBBB(u2, v2). Our purpose is to show

that γBBB(〈u1, v1〉) ≤νBBB γBBB(〈u2, v2〉). We can assume that u1 6= v1 and, by

(4.20), that conLBBB(u2, v2) 6= ∇LBBB. That is, {conLBBB(u1, v1), conLBBB(u2, v2)}

is disjoint from {∆LBBB,∇LBBB}. We obtain from (4.17) that none of 〈u1, v1〉

and 〈u2, v2〉 is a mixed pair. If 〈ui, vi〉 is a new pair, that is, if {ui, vi} ∈

Pairs≤(Npq), then we can consider an old pair 〈u′
i, v

′
i〉 such that γBBB(〈u′

i, v
′
i〉) =

γBBB(〈ui, vi〉) and so, since γBBB satisfies (C1), conLBBB(u′
i, v

′
i) = conLBBB(ui, vi).

Hence, we can assume that 〈u1, v1〉 and 〈u2, v2〉 are old pairs, that is, they

belong to Pairs≤(L).

The starting assumption conLBBB(u1, v1) ≤ conLBBB(u2, v2) is witnessed by

Lemma 4.5. Let xj, yij, zij ∈ LBBB, for i ∈ {1, . . . , n} and j ∈ {0, . . . , n}, be

elements that satisfy (4.14); see also Figure 9. To ease our terminology, the

ordered pairs 〈yij , zij〉 will be called witness pairs. Since conLBBB(u2, v2) 6= ∇LBBB ,

none of the witness pairs generate ∇LBBB. Thus, by (4.17) and (4.20),

none of the witness pairs is mixed or 1HBBB -colored. (4.22)

Take two consecutive witness pairs, 〈yi,j−1, zi,j−1〉 and 〈yij , zij〉. Here

i, j ∈ {1, . . . , n}, and (4.14) says that 〈yi,j−1, zi,j−1〉 is weakly perspective

into 〈yij , zij〉. We want to show that

γBBB(〈yi,j−1, zi,j−1〉) ≤νBBB γBBB(〈yij , zij〉). (4.23)
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To make the notation easier, we let y0 = yi,j−1, z0 = zi,j−1, p0 = 〈y0 , z0〉,

y1 = yij , z1 = zij, and p1 = 〈y1, z1〉. With this notation, (4.23) turns into

γBBB(p0) ≤νBBB γBBB(p1); (4.24)

this is what we have to prove now. We assume y0 < z0 since (4.24) trivially

holds otherwise. Hence, y1 < z1 also holds. By (4.21), we can also assume

perspectivity rather than weak perspectivity. That is, as depicted in Figure 10,

either z0 ‖ y1, z0 ∧ y1 = y0 and z0 ∨ y1 = z1, (4.25)

or y0 ‖ z1, y0 ∧ z1 = y1 and y0 ∨ z1 = z0; (4.26)

By (4.22), there are three cases to consider.

Figure 10. Perspectivities (4.25) and (4.26)

Case 4.8. If both p0 and p1 are old, then conL(p0) = conL(p1). Applying

(C2) for L, we conclude the relation γ(p0) ≤ν γ(p1). Thus, since γBBB extends γ,

(4.24) holds for old witness pairs.

Case 4.9. If p0, p1 ∈ Pairs≤(Npq), that is, if both p0 and p1 are new, then

there are only few cases, and (4.24) follows in a straightforward way from our

assumptions and the definition of γBBB . For example, let p0, p1 ∈ Pairs≤(U q
p ),

and consider the old pairs (p0)∗ := 〈(y0)∗, (z0)∗〉 and (p1)∗ := 〈(y1)∗, (z1)∗〉.

Since the maps in the second row of (4.8) are reciprocal lattice isomorphism

between {ap}∪Up and {cpq
1 }∪U q

p , it follows that (p0)∗ and (p1)∗ are perspective.

Hence, conL((p0)∗) = conL((p1)∗), and we obtain from (C2), applied for L,

that γ((p0)∗) =ν γ((p1)∗). On the other hand, we have γBBB(p0) = γ((p0)∗) and

γBBB(p1) = γ((p1)∗) by (4.8) and the definition of γBBB. Hence, (4.24) follows by

transitivity.

Case 4.10. Assume that one of p0 and p1 is old and one is new. We claim

γBBB(p0) =νBBB γBBB(p1), (4.27)

which is a stronger statement than (4.24). Since the role of p0 and p1 in (4.27)

is symmetric, we can assume that p0 is old and p1 is new. By quasi-duality,

we also assume (4.25). Since 0LBBB < y0 < y1, y0 is an old element, and y1 is a

new one, we have y1, z1 ∈ {cpq
1 } ∪ U q

p and z0 ∈ ↓Up.

First, assume that y1 = cpq
1 ; see Figure 11. We conclude from (4.9) that

y0 ≤ ap. Since z0 � cpq
1 , we have z0 � ap. Hence, ẑ0 = z0 ∨ bp ≤ z1 by (4.11).

Let u = z0 ∧ bp; we have y0 ≤ u. Denote γ(〈bp, ẑ0〉) and γ(〈u, z0〉) by r and r′,

respectively. Since 〈bp, ẑ0〉 and 〈u, z0〉 are perspective in L, (C2) yields

r′ =ν r. (4.28)
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Figure 11. Case 4.10 with y1 = cpq
1

Since y0 ≤ ap < bp and, by assumption (4.25), y0 = z0 ∧ cpq
1 , it follows

that y0 = bp ∧ y0 ∧ bp = bp ∧ z0 ∧ cpq
1 ∧ bp = u ∧ ap. Denote γ(〈y0 , u〉)

by p′. If u � ap, then 〈y0 , u〉 is perspective to 〈ap, bp〉 in L since ap ≺ bp

by (A3), so (C2) yields p′ =ν p. Otherwise, if u ≤ ap, then we obtain from

y0 ≤ u ≤ z0∧ap ≤ z0∧cpq
1 = y0, (A1), and (A2) that p′ = γ(〈u, u〉) = 0H ≤ν p.

Hence,

p′ ≤ν p, and even p′ =ν p if u � ap. (4.29)

As a subcase, assume that ẑ0 = bp. (We would obtain this situation from

Figure 11 by collapsing each of the r′-colored and r-colored intervals to its

bottom.) We have that y0 < z0 = z0 ∧ bp = u. This excludes u ≤ ap, because

z0 � y1 = cpq
1 . Hence, p′ =ν p by (4.29). Since z1 = z0 ∨ y1 = ẑ0 ∨ cpq

1 =

bp ∨ cpq
1 = dpq

1 , we conclude

γBBB(p0) = γ(〈y0 , u〉) = p′ =ν p = γ(〈ap, bp〉) = γBBB(〈cpq
1 , dpq

1 〉) = γBBB(p1);

that is, (4.27) holds.

We are left with the subcase ẑ0 > bp. We obtain p ≤ν r from (A7). Hence,

using Lemma 4.6, we obtain γ(〈ap, ẑ0〉) =ν r. Since z1 = z0 ∨ cpq
1 = ẑ0 ∨ cpq

1 =

(ẑ0)
+

by (4.13) and (4.2), it follows that γBBB(p1) = γ(〈ap , ẑ0〉), and we obtain

γBBB(p1) =ν r. Since (4.29), p ≤ν r, and (4.28) imply p′ ≤ν r′ by transitivity,

Lemma 4.6 yields γBBB(p0) =ν r′. Therefore, (4.27) and (4.24) follow from

(4.28).

Second, assume that y1 ∈ U q
p ; see Figure 12. Let r′ = γBBB(p0) = γ(p0),

r = γBBB(p1), and let u = ẑ0 ∧ y1 ∈ Up. Since z1 = z0 ∨ y1 = ẑ0 ∨ y1 by

(4.13), 〈u, ẑ0〉 is up-perspective to p1. Since z0 ≤ ẑ0 and u ≤ ẑ0, we have

z0 ∨ u ≤ ẑ0. This, together with (4.11), z0 ≤ z0 ∨ u and z0 ∨ u ∈ Spq ,

implies z0 ∨ u = ẑ0. Hence, p0 is perspective to 〈u, ẑ0〉. Thus, denoting

γBBB(〈u, ẑ0〉) = γ(〈u, ẑ0〉) by r′′, the validity of (C2) in L gives r′ =ν r′′. On the

other hand, the sublattice Up ∪U q
p is isomorphic to Up ×C2 by definitions, see

also (4.8). Therefore, since 〈u, ẑ0〉 is up-perspective to p1, it is straightforward

to see that 〈u, ẑ0〉 is perspective to 〈(y1)∗, (z1)∗〉. By the definition of γBBB and
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Figure 12. Case 4.10 with y1 ∈ U q
p

(4.8), γBBB(〈(y1)∗, (z1)∗〉) = γBBB(p1) = r. Applying (C2) in L to the above-

mentioned perspective pairs, we obtain that r′′ =ν r. Thus, we conclude

r′ =ν r by transitivity, which implies (4.27). Its consequences, (4.24) and

(4.23), also hold.

Cases 4.8–4.10 prove (4.23). Observe that (4.23) for j = 1, . . . , n and tran-

sitivity yield γBBB(〈xi−1, xi〉) = γBBB(〈yi0, zi0〉) ≤νBBB γBBB(〈yin, zin〉) = γBBB(〈u2, v2〉).

Hence, Lemma 4.6 implies γBBB(〈u1, v1〉) ≤νBBB γBBB(〈u2, v2〉). Therefore, LBBB satis-

fies (C2), and (A1) holds for LBBB.

Next, to prove (A8), let Z7 ∈ ZBBB. Clearly, Z7 is a zigzag of Gicg(LBBB); we

only have to show that it is tight. Since the tightness of Zpq
7 is obvious by (4.9),

we can assume that Z7 is an old zigzag, that is, it belongs to Z. By quasi-

duality, it suffices to deal with its upper fibers. So let F be an upper fiber of Z7.

Suppose, for a contradiction, that there exists an element y ∈ LBBB \ L = Npq

such that y ∈ ↑F . Since there is an f ∈ F , which is a nonzero old element,

such that f ≤ y, we have that y ∈ {cpq
1 } ∪ U q

p . By (4.10), f ≤ y∗. Since Z7

is tight in Gicg(L), F is a filter of L−01. Hence, y∗ ∈ F ⊆ Zset
7 . On the other

hand, y∗ ∈ {ap}∪Up ⊆ Nbh1({ap, bp}). This yields Nbh1({ap, bp})∩Zset
7 6= ∅,

which contradicts the validity of (A12) in L. This shows that all elements of

L−01 ∩↑F are old. Hence, L−01∩↑F ⊆ F since Z7 is a tight zigzag of Gicg(L).

Thus, Z7 is a tight zigzag of Gicg(LBBB). Consequently, (A8) holds in LBBB.

Next, to prove (A12), assume that r ∈ H−01 and Z7 ∈ ZBBB = Z ∪ {Zpq
7 }.

If Z7 ∈ Z, then Nbh1({ar, br}) ∩ Zset
7 = ∅ follows from the validity of (A12)

for L. Otherwise, if Z7 = Zpq
7 , then we obtain Nbh1({ar, br})∩Zset

7 = ∅ from

L−01 ∩ ↓((Zpq
7 )

set
) = L−01 ∩ ↑((Zpq

7 )
set

) = ∅. Thus, LBBB satisfies (A12).

Finally, to prove (A13), assume that r, s ∈ H−01 such that 〈ar, br, as, bs〉 is

a spanning N6-quadruple and ~z = 〈z0, . . . , zn〉 in (2.1) is a Gicg(LBBB)-path from

{ar, br} to {as, bs}. We can assume that {z0, . . . , zn} 6⊆ L, since otherwise the

validity of (A13) in L implies that ~z goes through a tight zigzag belonging to

Z ⊆ ZBBB. Suppose, for a contradiction, that ~z does not go through any tight

zigzag from ZBBB. A pair 〈i, j〉 of subscripts is called a critical pair (associated

with ~z) if zi−1 ∈ L, {zi, . . . , zj} ⊆ Npq, and zj+1 ∈ L. The set of critical
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pairs is denoted by CrP(~z). This set is nonempty by the indirect assumption.

Clearly, zi, zj ∈ ({cpq
1 }∪U q

p )∪({dpq
6 }∪Dq

p) holds for every critical pair 〈i, j〉. If

zi ∈ {cpq
1 }∪U q

p and zj ∈ {dpq
6 }∪Dq

p, or zj ∈ {cpq
1 }∪U q

p and zi ∈ {dpq
6 }∪Dq

p, then

〈i, j〉 ∈ CrP(~z) is called a wide critical pair ; otherwise it is a narrow critical

pair. If 〈i1, j1〉 ∈ CrP(~z) such that j2 ≤ j1 holds for all 〈i2, j2〉 ∈ CrP(~z),

then 〈i1, j1〉 is called the last critical pair (associated with ~z). The last wide

critical pair and the last narrow critical pair are defined analogously. (We do

not claim that both of them exist.) If 〈i1, j1〉 is the last wide critical pair, then

〈z1, . . . , zj1〉 will be called the essential part of ~z; if there is no wide critical

pair, then the essential part is empty. We claim that there exists a wide critical

pair. We prove this by induction on |CrP(~z)|. Let 〈i, j〉 be the last critical pair.

We can assume that 〈i, j〉 ∈ CrP(~z) is narrow, since otherwise there is nothing

to prove. By quasi-duality, we can also assume that zi, zj ∈ {cpq
1 } ∪U q

p . Since

L−01∩↑({cpq
1 }∪U q

p ) = ∅, we have zi−1 < zi and zj+1 < zj. By (4.10) and (4.6),

we have that zi−1 ≤ (zi)∗, zj+1 ≤ (zj)∗, and (zi)∗ ∨ (zj)∗ ∈ L−01. Actually,

(zi)∗ ∨ (zj)∗ ∈ {ap}∪Up ⊆ Nbh1({ap, bp}), understood in L. By replacing the

segment 〈zi−1, zi, . . . , zj , zj+1〉 in ~z by 〈zi−1, (zi)∗ ∨ (zj)∗, zj+1〉, we obtain a

new Gicg(LBBB)-path ~z ′ from {ar, br} to {as, bs}. It follows from (A12) that the

element (zi)∗ ∨ (zj)∗, which is the only component of ~z ′ that need not occur

in ~z, cannot belong to an old tight zigzag. Obviously, (zi)∗ ∨ (zj)∗ does not

belong to the new tight zigzag, Zpq
7 . Thus, ~z ′ does not go through any tight

zigzag, because neither does ~z. Therefore, since CrP(~z ′) = CrP(~z) \ {〈i, j〉},

the induction hypothesis applies, and ~z ′ has a wide critical pair. So does ~z,

since ~z ′ and ~z have the same essential parts. This completes the induction,

and we have shown that ~z has a wide critical pair 〈i0, j0〉. Thus, ~z goes trough

the new tight zigzag Zpq
7 ∈ ZBBB, because so does the segment 〈zi0 , . . . , zj0〉.

This is a contradiction, which proves that (A13) holds in LBBB. The proof of

Lemma 4.7 is complete. �

5. Approaching infinity

For an ordered set P = 〈P ;≤〉 and a subset C of P , the restriction of the

ordering of P to C will be denoted by ≤eC . If each element of P has an upper

bound in C, then C is a cofinal subset of P . The following two lemmas belong

to the folklore; having no reference at hand, we will outline their easy proofs.

Lemma 5.1. A countable ordered set is directed if and only if it has a cofinal

chain.

Proof. Let P = 〈P ;≤〉 be a countable ordered set. Obviously, if P has a cofinal

chain, then it is directed, no matter how large its cardinality is.

Conversely, assume that P is directed and countable. Denoting the least

infinite ordinal by ω, there is an ordinal κ ≤ ω such that P = {pi : i < κ}.

Note that {i : i < κ} is a subset of N0 = {0, 1, 2, . . .}. For i, j < κ, there exists

a smallest k such that pi ≤ pk and pj ≤ pk; we let pi ∗ pj = pk. This defines
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a binary operation ∗ on P . Let q0 = p0. For 0 < i < κ, let qi = qi−1 ∗ pi.

A trivial induction shows that qi is an upper bound of {p0, p1, . . . , pi}, for all

i < κ. Hence, {qi : i < κ} is a cofinal chain in P . �

Lemma 5.2. If an ordered set P = 〈P ;≤〉 is the union of a chain of principal

ideals, then it has a cofinal subset C such that 〈C;≤eC〉 is a well-ordered set.

Proof. The top elements of these principal ideals form a cofinal chain D in

P . Let H(D) = {X : X ⊆ D and 〈X;≤eX〉 is a well-ordered set}. For

X, Y ∈ H(D), let X v Y mean that X is an order ideal of 〈Y ;≤eY 〉. Zorn’s

Lemma yields a maximal member C in 〈H(D),v〉. Clearly, C = 〈C;≤eC〉 is

a well-ordered set and it is a cofinal subset in D and also in P . �

Next, we prove a “multi-step” variant of the “1-step” Lemma 4.7. Its proof

and a forthcoming part in the proof of Theorem 1.1 need transfinite inductions.

Generally, but mostly only implicitly, some sort of uniqueness is desired at

inductive definitions; this is easy to achieve in our case by fixing a large well-

ordered set and choosing the first unused member of this set whenever we have

to add a new element or a new color.

Lemma 5.3. Assume that 〈H ; ν〉 and 〈HI; νI〉 are quasiordered sets with a

unique least element 0H = 0HI and a unique largest element 1H = 1HI such

that HI = H. If ν ⊆ νI and L = 〈L; γ, H, ν, δ, ε,Z〉 is a strong auxiliary

structure such that 〈ap, bp, aq, bq〉 is a spanning N6-quadruple for every pair

〈p, q〉 ∈ νI \ ν, then L has a tight extension LI = 〈LI; γI, HI, νI, δI, εI,ZI〉

such that |LI| ≤ ℵ0 + |L|. In particular, if L is countable, then so is LI.

Proof. We can assume ν 6= νI since otherwise LI = L would do. Since every

set can be well-ordered, we can write νI \ ν = {〈pι, qι〉 : ι < κ}, where κ is

an ordinal number. In Quord(H), we define νλ = quo
(
ν ∪ {〈pι, qι〉 : ι < λ}

)

for λ ≤ κ. Note that ν0 = ν and νκ = νI. Let L0 = L. For each 0 < λ ≤ κ,

we want to define a strong auxiliary structure Lλ = 〈Lλ; γλ, Hλ, νλ, δλ, ελ,Zλ〉

such that

Lµ is a tight substructure of Lλ for all µ ≤ λ. (5.1)

We define these Lλ by (transfinite) induction as follows. The strong auxiliary

structure L0 = L has already been defined.

Successor step. Assume that λ is a successor ordinal, that is, λ = η + 1,

and the strong auxiliary structures Lι = 〈Lι; γι, Hι, νι, δι, ει,Zι〉 are already

defined for all ι ≤ η and (5.1) is satisfied up to η. There are two cases.

First, if pη ≤νη
qη, then νλ = νη and we let Lλ = Lη. Second, if pη �νη

qη, then 〈pη, qη〉 ∈ νI \ ν and 〈ap, bp, aq, bq〉 is a spanning N6-quadruple by

the assumptions of Lemma 5.3. Hence, Lemma 4.7 allows us to let Lλ =

LBBB(pη , qη), which is a tight extension of Lη. By transitivity and reflexivity,

Lµ is a tight substructure of Lλ for all µ ≤ λ. Thus, (5.1) is inherited by Lλ

from Lη.
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Limit step. Assume that λ is a limit ordinal. As one would expect, we let

Lλ =
⋃

η<λ Lη , γλ =
⋃

η<λ γη , δλ =
⋃

η<λ δη = δ, ελ =
⋃

η<λ εη = ε, and

Zλ =
⋃

η<λ Zη. Note that Hλ = HI = H and νλ =
⋃

η<λ νη. We assert that

Lλ = 〈Lλ; γλ, Hλ, νλ, δλ, ελ,Zλ〉

is a strong auxiliary structure satisfying (5.1). Since all the unions defining

Lλ are directed unions, Lλ is a lattice and 〈Hλ; νλ〉 is a quasiordered set. By

the same reason, γλ, δλ, and ελ are maps. (Actually, δλ = δ0 = δ and ελ = ε.)

It is straightforward to check that all of (A1),. . . ,(A13) hold for Lλ; we only

do this for (A1), that is, we verify (C1) and (C2), and also for (A11).

Assume γλ(〈u1, v1〉) ≤νλ
γλ(〈u2, v2〉). Since the unions are directed, there

exists an η < λ such that u1, v1, u2, v2 ∈ Lν and we have γη(〈u1, v1〉) ≤νη

γη(〈u2, v2〉). Using that the auxiliary structure Lη satisfies (C1), we ob-

tain conLη
(u1, v1) ≤ conLη

(u2, v2), that is, 〈u1, v1〉 ∈ conLη
(u2, v2). Using

Lemma 4.5, we conclude 〈u1, v1〉 ∈ conLλ
(u2, v2) in the usual way. This im-

plies conLλ
(u1, v1) ≤ conLλ

(u2, v2). Therefore, Lλ satisfies (C1).

Similarly, if conLλ
(u1, v1) ≤ conLλ

(u2, v2), then Lemma 4.5 easily im-

plies the existence of an η < λ such that 〈u1, v1〉 ∈ conLη
(u2, v2), that is,

conLη
(u1, v1) ≤ conLη

(u2, v2). Thus, (C2) for Lη yields γη(〈u1, v1〉) ≤νη

γη(〈u2, v2〉) and we conclude γλ(〈u1, v1〉) ≤νλ
γλ(〈u2, v2〉). Hence, Lλ satisfies

(C2) and (A1).

Next, for the sake of contradiction, suppose that (A11) fails in Lλ. This

implies that 〈0Lλ
, 1Lλ

〉 belongs to
∨{

conLλ
(ap, bp) : p ∈ H−01

λ

}
, where the

join is taken in the congruence lattice of Lλ. Since principal congruences

are compact, there exists a finite subset T ⊆ H−01
λ such that 〈0Lλ

, 1Lλ
〉

belongs to
∨
{conLλ

(ap, bp) : p ∈ T}. Thus, there exists a finite sequence

0Lλ
= c0, c1, . . . , ck = 1Lλ

of elements of Lλ such that, for i = 1, . . . , k,

〈ci−1, ci〉 ∈
⋃
{conLλ

(ap, bp) : p ∈ T}. Each of these memberships are wit-

nessed by finitely many “witness” elements according to (4.14); see Lemma 4.5.

Taking all these memberships into account, there are only finitely many wit-

ness elements all together. Hence, there exists an η < λ such that Lη contains

all these elements. Applying Lemma 4.5 in the converse direction, we obtain

that 〈0Lη
, 1Lη

〉 = 〈0Lλ
, 1Lλ

〉 belongs to
∨
{conLη

(ap, bp) : p ∈ T}. This is

a contradiction, because Lη satisfies (A11). Thus, Lλ is a strong auxiliary

structure. The satisfaction of (5.1) for Lλ is evident.

We have seen that Lν is an auxiliary structure for all λ ≤ κ such that (5.1)

holds. Letting λ equal κ and taking (2.4), (5.1), L = L0 and 〈HI; νI〉 =

〈Hκ; νκ〉 into account, we obtain the existence part of the lemma. Finally,

|LI| ≤ ℵ0+|L| and the last sentence of the lemma follow from the construction

and basic cardinal arithmetics. �

A non-empty subset X of a quasiordered set 〈Y ;≤Y 〉 is called a (quasiorder)

ideal if for all x ∈ X and y ∈ Y , y ≤Y x implies y ∈ X.
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Lemma 5.4. Let H be a quasiorder ideal of a quasiordered set 〈HN; νN〉. If

〈HN; νN〉 has a unique smallest element 0HN and a unique largest element 1HN ,

then each auxiliary structure L = 〈L; γ, H, νNeH , δ, ε,Z〉 has an extension LN =

〈LN; γN, HN, νN, δN, εN,ZN〉 such that |LN| ≤ |L| + |HN| + ℵ0 and, furthermore,

if H 6= HN, then LN is a strong auxiliary structure.

Proof. We can assume that H 6= HN, since otherwise we can let LN = L. Let

ν = νNeH . With K = HN\(H∪{1HN}), let LMMM = 〈LMMM; γMMM, HMMM, νMMM, δMMM, εMMM,ZMMM〉 be

the vertical extension of L from Lemma 3.1. It is a strong auxiliary structure.

Clearly, νMMM ⊆ νN. If we had a pair 〈p, q〉 ∈ νN \ νMMM such that p, q ∈ H ,

then 〈p, q〉 ∈ νNeH = ν ⊆ νMMM would be a contradiction. This implies easily

that, for every pair 〈p, q〉 ∈ νN \ νMMM, 〈ap, bp, aq, bq〉 is a spanning N6-quadruple.

Therefore, with 〈HMMM, νMMM, HN, νN〉 playing the role of 〈H, ν, HI, νI〉, Lemma 5.3

yields a tight extension LN := LI of LMMM . We have that

|LN| ≤ |LMMM| + ℵ0 ≤ |L| + |K| + ℵ0 ≤ |L|+ |HN|+ ℵ0

by the construction and basic cardinal arithmetics, and LN is an extension of

L by transitivity. Applying (2.4) to LMMM and LN, we conclude Lemma 5.4. �

We are now in the position to complete the proof of our theorem.

Proof of Theorem 1.1. In order to prove part (ii) of the theorem, assume that

P = 〈P ; νP 〉 is an ordered set with zero, and it is the union of a chain of

principal ideals. We also assume that |P | ≥ 3, since otherwise we can let

L = P . By Lemma 5.2, there exist an ordinal number κ and a cofinal chain

C = {cι : ι < κ} in P such that |↓c0| ≥ 3 and, for ι, µ < κ, we have ι < µ ⇐⇒

cι < cµ. The cofinality of C means that P is the union of the principal ideals

↓cι, ι < κ. For 1 ≤ λ ≤ κ, let Hλ =
⋃

ι<λ ↓cι, and let νλ be the restriction

νP eHλ
of νP to Hλ. Note that Hλ is always an order ideal of P , but it is

not a principal ideal in general. Our aim is to define, for each 1 ≤ λ ≤ κ, an

auxiliary structure

Lλ = 〈Lλ; γλ, Hλ, νλ, δλ, ελ,Zλ〉

such that

Lµ is a substructure of Lλ for every µ with 1 ≤ µ ≤ λ. (5.2)

To define L1, let H ′ = ↓c0 = H1 and ν ′ = ({0P} × H ′) ∪ (H ′ × {c0}). We

define a strong auxiliary structure L′ = 〈L′; γ′, H ′, ν ′, δ′, ε′,Z ′〉 from 〈H ′; ν ′〉

exactly the same way as we defined L from 〈H ; ν〉 in Example 2.2, see also

Figure 5. Note that L′ is a strong auxiliary structure, all of its N6-quadruples

are spanning N6-quadruples, and ν ′ ⊆ ν1. This allows us to let L1 be the tight

extension (L′)
N

of L′ given by Lemma 5.3.

If λ = η +1 is a successor ordinal, then cη is the greatest element of Hλ and

Hη is an order ideal of Hλ. Thus, we can let Lλ = (Lη)N by Lemma 5.4, and

(5.2) follows from this lemma by transitivity. If λ is a limit ordinal, then we

define Lλ almost as the (directed) union of the Lη, 1 ≤ η < λ, in the following
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way. We let γλ =
⋃

1≤η<λ γη , δλ =
⋃

1≤η<λ δη, ελ =
⋃

1≤η<λ εη; we already

know that Hλ =
⋃

1≤η<λ Hη and νλ =
⋃

1≤η<λ νη; however, we let Zλ = ∅.

The fact that Lλ is an auxiliary structure and the validity of (5.2) follow by

a straightforward argument similar to the one we used in the limit step of the

proof of Lemma 5.3.

We have defined Lλ for all λ ≤ κ such that (5.2) holds. Hence, in particular,

Lκ = 〈Lκ; γκ, Hκ, νκ, δκ, εκ,Zκ〉 = 〈Lκ; γκ, P, νP , δκ, εκ,Zκ〉

is an auxiliary structure. Thus, letting L = Lκ, Lemma 2.1 implies that

Princ(L) is isomorphic to 〈P ; νP 〉. This proves part (ii) of Theorem 1.1, since

|L| ≤ |P |+ ℵ0 follows from the construction by basic cardinal arithmetics.

In order to prove part (i), assume that L is a countable lattice. Obvi-

ously, we have |Princ(L)| ≤ |Pairs≤(L)| ≤ ℵ0, and we mentioned at (1.1) that

Princ(L) is always a directed ordered set with 0, no matter what the size |L|

of L is. The converse follows from part (ii) and Lemma 5.1. �

Remark 5.5. Clearly, if P = 〈P ;≤〉 is a bounded ordered set (resp., a finite

bounded ordered set), then we can choose a singleton cofinal chain, and our

construction yields a bounded lattice (resp., a finite lattice) L with the prop-

erty Princ(L) ∼= P . In this way, we obtain a new proof for the main result of

Grätzer [7], except that while [7] constructs a lattice of length 5, our L is of

larger (or even infinite) length in general.
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