
NOTES ON PLANAR SEMIMODULAR LATTICES. VII.
RESECTIONS OF PLANAR SEMIMODULAR LATTICES

GÁBOR CZÉDLI AND GEORGE GRÄTZER

Abstract. A recent result of G. Czédli and E. T. Schmidt gives a construc-
tion of slim (planar) semimodular lattices from planar distributive lattices by

adding elements, adding “forks”. We give a construction that accomplishes
the same by deleting elements, by “resections”.

1. Introduction

Planar semimodular lattices started to play an important role in G. Grätzer,
H. Lakser, and E. T. Schmidt [11]. Proving that every finite distributive lattice D
can be represented as the congruence lattice of a finite semimodular lattice L,
they, in fact, proved that there is such a planar semimodular lattice L ∈ O(n2).
G. Grätzer and E. Knapp tried to prove that in this result L ∈ O(n2) is optimal.
They studied planar semimodular lattices in [12]–[15]; their conclusion was that
L ∈ O(n2) is, indeed, optimal for a class of planar semimodular lattices, they
called, rectangular. (The general problem is still unresolved.)

These papers were followed by further studies of planar semimodular lattices.
G. Grätzer and J. B. Nation [16] and G. Czédli and E.T. Schmidt [6] proved a
generalization of the Jordan-Hölder theorem, new even for groups.

A lattice L is slim if it is finite and Ji L, the set of non-zero join-irreducible ele-
ments of L, contains no three-element antichain. Slim lattices are planar, so we will
consider planar diagrams of slim semimodular lattices, slim semimodular diagrams.

G. Grätzer and E. Knapp [12] observed that slim semimodular lattices easily
describe all planar semimodular lattices. Indeed, every planar semimodular lattice
can be obtained from a slim semimodular lattice by replacing covering squares with
covering M3-s (adding eyes).

Slim semimodular lattices play an essential role in G. Grätzer and E. Knapp [13]
and [15], G. Grätzer and T. Wares [17], G. Czédli and E. T. Schmidt [7], [8], and [9],
G. Czédli [1], [2], and [3], and G. Czédli, L. Ozsvárt, and B. Udvari [5]. A survey
of these results is presented in [4], a chapter of a forthcoming book.

In this paper, we present a construction of slim semimodular lattices. We con-
struct slim semimodular lattices from planar distributive lattices by a series of
resections. A resection starts with a cover-preserving C2

3 (the dark gray square of
the three-element chain in Figure 1), and it deletes two elements to get an N7 (see
Figure 3) from C2

3, and then deletes some more elements (all the black-filled ones),
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going up and down to the left and to the right, to preserve semimodularity; see
Figure 2 for the result of the resection.

For the basic concepts and notation, we refer the reader to G. Grätzer [10] and
G. Czédli and G. Grätzer [4]. In particular, MiL denotes the set of meet-irreducible
elements of L disctinct from 1.

Outline. Section 2 introduces resections. Section 3 states the main result. Sec-
tion 4 recalls some known results on slim semimodular lattices and proves some
facts on (the inverse of) resection schemes. Section 5 contains the proof of the
main result.

2. The construction

Let D be a slim semimodular diagram. Two prime intervals of D are consecutive
if they are opposite sides of a 4-cell (see Section 4). As in G. Czédli and E. T.
Schmidt [6], maximal sequences of consecutive prime intervals form a C2-trajectory.
So a C2-trajectory is an equivalence class of the transitive reflexive closure of the
“consecutive” relation.

Similarly, let A and B be two cover-preserving C3-chains of D. If they are
opposite sides of a cover-preserving C3 × C2, then A and B are called consecutive.
An equivalence class of the transitive reflexive closure of this “consecutive” relation
is called a C3-trajectory.

We recall the basic properties of C2-trajectories from [6] and [8]; they also hold
for C3-trajectories. For i ∈ {2, 3}, a Ci-trajectory goes from left to right (unless
otherwise stated); they do not branch out. A Ci-trajectory is of two types: an
up-trajectory, which goes up (possibly, in zero steps) and a hat-trajectory, which
goes up (possibly in zero steps), then turns to the lower right, and finally it goes
down (possibly, in zero steps).

Note that the left and right ends of a C2-trajectory are on the boundary of L;
this may fail for a C3-trajectory.

The elements of a Ci-trajectory are the elements of the Ci-chains forming it. Let
A be a cover-preserving Ci-chain in D. By planarity, there is a unique Ci-trajectory
through A. The Ci-chains of this trajectory to the left of A and including A form
the left wing of A. The right wing of A is defined analogously.

Next, let B be a cover-preserving C2
3 = C3 × C3 of the diagram D. Let Wl be

the left wing of the upper left boundary of B and let Wr be the right wing of the
upper right boundary of B. Assume that Wl and Wr terminate on the boundary
of D (that is, the last C3-chains are on the boundary of D). In this case, the
collection of elements of S = B ∪Wl ∪Wr is called a C3-scheme of D, see Figure 1
for an example. The elements of Wl and Wr form the left wing and the right wing
of this C3-scheme, respectively, while B is the base. The middle element of S is
the anchor of the scheme. A C3-scheme is uniquely determined by its anchor. Of
course, D may have cover-preserving C2

3’s that cannot be extended to C3-schemes.
For example, the slim semimodular diagrams in Figure 4 have cover-preserving C2

3

sublattices but no C3-schemes.
The concept of a C2-scheme and the related terminology are analogous, see Fig-

ures 2 and 7 for two examples. The base of a C2-scheme is a cover-preserving N7,
and its wings are in C2-trajectories. The middle element of the base is again called
the anchor, and it determines the C2-scheme. Since C2-trajectories always reach
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Figure 1. Resect this diagram at the element marked by the big
circle by deleting the black-filled elements

Figure 2. to obtain this diagram
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the boundary of D, each cover-preserving N7 sublattice is the base of a unique
C2-scheme.

For i ∈ {2, 3} and a Ci-scheme S, we define the upper boundary, the lower
boundary, and the interior of S as expected.

Let S be a C3-scheme of a slim semimodular diagram D. By removing all the in-
terior elements of S but its anchor, we obtain a new slim semimodular diagram, D′,
and S turns into a C2-scheme of D′. We say that D′ is obtained from D by a resec-
tion; this is illustrated in Figures 1 and 2. The reverse procedure, transforming a
C2-scheme to a C3-scheme by adding new interior elements, is called an insertion.

3. The results

Following D. Kelly and I. Rival [18], we call two planar diagrams similar if there
is a bijection ϕ between them such that ϕ preserves the left-right order of the upper
covers and of the lower covers of an element. We are interested in diagrams only
up to similarity.

A grid is a planar diagram of the form Cm × Cn for m, n ≥ 2. We obtain a slim
distributive diagram from a grid by a sequence of steps; each step omits a doubly
irreducible element from a boundary chain. Our main result generalizes this to slim
semimodular lattice diagrams.

Theorem 1. Slim semimodular lattice diagrams are characterized as diagrams ob-
tained from slim distributive lattice diagrams by a sequence of resections.

Figure 3. N7 and its variants

Figure 4. Some slim semimodular diagrams
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Figure 5. The process does not stop

The proof of this theorem now appears clear. Let D be a slim semimodular
lattice diagram. Find in it a covering N7 as in Figure 2. Perform an insertion to
obtain the diagram of Figure 1. The diagram of Figure 1 has one fewer covering
N7. Proceed this way until we obtain a diagram without covering N7-s.

Remark 2. The argument of the last paragraph does not necessarily work. Start
with the first diagram in Figure 5. Apply an insertion at the black-filled element,
to obtain the second diagram. Apply an insertion at the gray-filled element of the
second diagram, to obtain the third diagram. And so on. It is clear that the number
of covering N7-s is not diminishing.

We define a weak corner of a planar semimodular diagram D as an element x
on the boundary of D with the properties:

(i) x is doubly irreducible;
(ii) x is not comparable to some y ∈ D.

If x is a weak corner such that its lower cover, x∗, has exactly two covers and its
upper cover, x∗, has exactly two lower covers, then we call x a corner. As defined
in G. Grätzer and E. Knapp [14], a planar diagram (and the corresponding lattice)
is rectangular, if it has exactly one left weak corner and exactly one right weak
corner, and these two elements are complementary. Slim semimodular diagrams
can be obtained from slim rectangular diagrams by removing corners, one-by-one.
Moreover, only slim semimodular diagrams can be obtained this way. So we get:

Corollary 3. Slim rectangular diagrams are characterized as diagrams obtained
from grids by a sequence of resections.

4. Schemes

Let D be a slim semimodular diagram. By G. Grätzer and E. Knapp [12] and
G. Czédli and E. T. Schmidt [7, Lemma 2], an element of D has at most two covers.
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We also know from [7, Lemma 6] that a join-irreducible element is on the boundary
of D.

Let a < b in a planar diagram D, and assume that C1 and C2 are maximal chains
in the interval [a, b] such that C1 − {a, b} is strictly on the left of C2, C2 − {a, b}
is strictly on the right of C1, and C1 ∩ C2 = {a, b}. Then, following D. Kelly and
I. Rival [18], the intersection of the right of C1 and the left of C2 is called a region
of D. A region of D is a planar subdiagram of D. Minimal regions are called cells,
and cells with four vertices (and four edges) are 4-cells. For a slim semimodular
diagram D,

(1) the 4-cells and the covering squares of D are the same.

Our proof relies heavily on the following two lemmas, see G. Grätzer and E. Knapp
[12, Lemma 7] for the first and G. Grätzer and E. Knapp [12, Lemma 6] and
G. Czédli and E. T. Schmidt [7, Lemma 15], for the second.

Lemma 4. Let D be a planar lattice diagram. Then D is slim and semimodular
iff its cells are 4-cells and no two distinct 4-cells have the same bottom.

Lemma 5. A slim semimodular diagram is distributive iff it has no cover-preserving
N7.

Let Anchori(D) denote the set of anchors of Ci-schemes of D for i ∈ {2, 3}. The
set of interior elements of D, that is, the set of those elements that are not on the
boundary of D, is denoted by Inter(D). Clearly,

(2) Anchor2(D) ⊆ Inter(D) ∩ MiD.

As in G. Grätzer and E. Knapp [13], an N7 sublattice of D is a tight N7 if the
thick edges in the middle diagram of Figure 3 represent coverings. A tight N7

sublattice is always determined by its inner dual atom, we call it the centre of N7,
see the black-filled element in the lattice in the middle of Figure 3.

Lemma 6. Let D be a slim semimodular diagram and let u ∈ Inter(D) ∩ Mi D.
Then there exists a unique tight N7 sublattice of D with u as the anchor. Moreover,
if [al, bl], [u, u∗], and [ar, br] are consecutive prime intervals of this sublattice, then
this sublattice is {u, u∗, al, bl, ar, br, al ∧ ar}. Conversely, the center of a tight N7

sublattice always belongs to Inter(D) ∩Mi D.

Proof. Assume that u ∈ Inter(D) ∩MiD. Consider the C2-trajectory T containing
[u, u∗]. Since [u, u∗] is not on the boundary of D, this trajectory makes at least
one step to the right, to a prime interval [ar, br]. This step is a down-perspectivity
since u ∈ Mi D. Similarly, T makes a down-perspective step to the left, to [al, bl].
By D. Kelly and I. Rival [18, Lemma 1.2], we obtain easily that bl ∧ br ≤ u. Thus
bl ∧ br = bl ∧ u∧ br ∧ u = al ∧ ar , and we conclude that {u, u∗, al, bl, ar, br, al ∧ ar}
is a tight N7 sublattice of D.

Observe that a tight N7 sublattice with center u is determined by those covering
squares (that is, cover-preserving C2

2 sublattices) of this sublattice that contain
[u, u∗] as an upper prime interval. But these covering squares are 4-cells by (1),
and [u, u∗] is the upper edge of at most two 4-cells. Hence, apart from left-right
symmetry, there is only one tight N7 sublattice with center u, as described in the
last paragraph. This proves the first two parts of the statement. The last part is
trivial. �
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As in G. Grätzer and E. Knapp [14], a cover-preserving m-stacked N7 (sublattice)
of D is a cover-preserving sublattice isomorphic to the (7 + 3m)-element diagram
given, for m = 3, on the right of Figure 3. A cover-preserving 0-stacked N7 is a
cover-preserving N7.

Lemma 7. Let R be a cover-preserving m-stacked N7 sublattice of D. Then R is a
region of D. Furthermore, if R′ is a cover-preserving m-stacked N7 sublattice of D
such that Inter(R) ∩ Inter(R′) 6= ∅, then R′ = R.

Proof. Since R consists of adjacent covering squares, which are 4-cells by (1), it
follows easily that R is a region. Let x0 ≺ · · · ≺ xm be the interior of R. Assume
that t ∈ Inter(R). Then t = xj, and this j is recognized as follows: there is a
sequence t = t0 � · · · � tj such that

(a) tj has only two lower covers;
(b) the ti have three lower covers for i ∈ {1, . . . , j − 1};
(c) ti is the middle lower cover of ti−1, for i ∈ {1, . . . , j}.

It follows that t determines Inter(R), which clearly determines the whole R via
adjacent 4-cells. Hence if t ∈ Inter(R) ∩ Inter(R′), then R = R′. �

In view of Lemma 7, cover-preserving m-stacked N7 sublattices of D are also
called m-stacked N7 regions. For a meet-irreducible element x ∈ D in the interior
of D define x(0) = x. If the meet-irreducible element x(i) is already defined and
x(i)∗

(a) is meet-irreducible,
(b) is in the interior of D,
(c) covers exactly three elements,

then define x(i + 1) = x(i)∗. The rank of x, rankD(x), is the largest m such that
x(m) is defined. By (2), each x ∈ Anchor2(D) has a rank. For another description
of rankD(x), where x ∈ Anchor2(D), see Corollary 9.

Lemma 8. Let D be a slim semimodular diagram. Let x ∈ Anchor2(D) and
rankD(x) = m. Then the following statements hold:

(i) The element x has exactly two lower covers.
(ii) For i ∈ {0, . . . , m}, there exists a unique i-stacked N7 region Ri of D such

that Inter(Ri) = {x = x(0) ≺ · · · ≺ x(i)}.
(iii) The interior of the C2-scheme anchored by x is Inter(Rm).

Proof. (i) is trivial.
To prove (ii), let H(i) denote the condition “there exists a unique i-stacked N7

region Ri of D such that Inter(Ri) = {x = x(0) ≺ · · · ≺ x(i)}”. Observe that x
is the center of a cover-preserving N7 sublattice R0 by definition. It is a 0-stacked
N7 region. Since R0 is also a tight N7 sublattice, R0 is uniquely determined by
Lemma 6. This proves H(0).

Next, let 1 ≤ i ≤ m and assume that H(i−1) holds. Since x(i−1), the anchor of
Ri−1, has only one cover, it follows that x(i) is the top of Ri−1; for an illustration,
see Figure 6. Since x(i) is defined, it satisfies (a)–(c). Hence the lower covers of
x(i) in D are exactly the same as the dual atoms of Ri−1, namely, the left dual
atom a(i)l, the anchor x(i − 1), and the right dual atom a(i)r of Ri−1. Since
x(i) ∈ Inter(D) ∩ Mi D, the right wing starting from [x(i), x(i)∗] has to make its
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Figure 6. Illustrating the proof of Lemma 8

first step downwards to [a(i)r , a(i + 1)r], where a(i + 1)r is a uniquely determined
element of D because

{a(i)r , x(i), a(i + 1)r , x(i) ∨ a(i + 1)r}

is a 4-cell of D. By left-right symmetry, we also obtain a unique 4-cell

{a(i)l, x(i), a(i + 1)l, x(i) ∨ a(i + 1)l}.

Since
{a(i)l, a(i + 1)l, x(i), a(i)r, a(i + 1)r}

generates a (unique) tight N7 sublattice by Lemma 6, it follows that

a(i + 1)l ∧ a(i + 1)r = a(i)l ∧ a(i)r .

This together with the fact that Ri−1 is a cover-preserving (i − 1)-stacked N7 sub-
lattice implies that

Ri = Ri−1 ∪ {a(i + 1)l, x(i)∗, a(i + 1)r}

is a cover-preserving i-stacked N7 region with interior {x = x(0) ≺ · · · ≺ x(i)}.
The uniqueness of this region follows from Lemma 7. Hence H(i) holds for all
i ∈ {0, . . . , m}, proving part (ii) of the lemma.

Finally, (iii) is obvious. �

Corollary 9. Let D be a slim semimodular diagram, and let x ∈ Anchor2(D).
Then rankD(x) is the largest number in the set

{ k | x is the middle atom of a k-stacked N7-region}.

5. The proof of the main result

We start with a simple consequence of Lemma 4:

Lemma 10.
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Figure 7. Insertion at u (t9 plays a role only in Case 3)

(i) Let D be a slim semimodular diagram and let D′ be obtained from D by a
resection at u ∈ Anchor3(D). Then D′ is also a slim semimodular diagram,
u ∈ Anchor2(D′), and up to similarity, D is obtained from D′ by an insertion
at u.

(ii) Conversely, let D be a slim semimodular diagram and let D′ be obtained from
D by an insertion at u ∈ Anchor2(D). Then D′ is also a slim semimodular
diagram, u ∈ Anchor3(D′), and up to similarity, D is obtained from D′ by a
resection at u.

The following lemma is the major step in the proof of Theorem 1. Note that the
inclusions in it are actually equalities, but we do not need—and do not prove—this.

Lemma 11. Let D be a slim semimodular diagram and assume that u ∈ Anchor2(D).
Let D′ denote the diagram obtained from D by performing an insertion at u.

If rankD(u) = 0, then

Anchor2(D′) ⊆ Anchor2(D) − {u}.

If rankD(u) > 0, then

Anchor2(D′) ⊆ (Anchor2(D) − {u}) ∪ {u∗},

and rankD′ (u∗) = rankD(u) − 1.

Proof. Let S denote the C2-scheme anchored by u. Let I be the order-ideal of D
generated by the lower boundary of S and let F be the order filter generated by
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the upper boundary of S. Since I ∩ S is the lower boundary of S and F ∩ S is the
upper boundary of S, planarity implies that, for all x1, x2 ∈ D,

(3) if x1 ≺ x2, x2 ∈ F − S, and x1 /∈ F − S, then x1 ∈ F ∩ S.

By Lemma 8, u is the inner atom of a unique rankD(u)-stacked N7 region, whose
top we denote by v, see Figure 7. (Note that we utilize that t9 exists and is placed
in the diagram as shown only in Case 3; in general, t9 is not in S, and it may not
be in D.) Let pl and pr denote the top elements of the wings. Let sl and sr denote
the largest elements of the wings on the boundary of D. It is possible that sl = pl,
or pl = v, or sr = pr, or pr = v.

If xl in Figure 7 (the element of D′−D covered by pl) belongs to Inter(D′), then
it has at least three lower covers in D′; similarly for xr. All the other elements
of D′ − D are meet-reducible. Thus Anchor2(D′) ⊆ D. So we have to show that
every element w of D ∩Anchor2(D′) = Anchor2(D′) is in Anchor2(D).

Since D can be partitioned into

I ∪ (F − S) ∪ (F ∩ S) ∪ (D − (I ∪ F )),

the condition w ∈ D splits into four cases as to which block in this partition w
belongs to.

Case 1: w ∈ I. If w /∈ S, then w∗ ∈ I ⊆ D by the dual of (3), the unique
cover-preserving N7 sublattice is in I ⊆ D, and w ∈ Anchor2(D), as required by
the lemma. Therefore, we can assume that w belongs to the lower boundary of
S. Since w ∈ Inter(D′) ∩ MiD′, it has to be where a wing (properly) turns down,
w = y in Figure 7 (or symmetrically, on the right). It has exactly two lower covers
by Lemma 8. Thus these lower covers, yl and yr in Figure 7, also belong to the
lower boundary of S. We use the notation y′l and y′r as in Figure 7. Lemma 6 yields
that {y, pl, yl, y

′
l, yr, y

′
r, yl∧yr} is a tight N7 sublattice of D. Since y ∈ Anchor2(D′)

yields that yl∧yr ≺ yl and yl∧yr ≺ yr , this tight N7 sublattice is a cover-preserving
N7 sublattice. Hence y ∈ Anchor2(D), as required.

Case 2: w ∈ F − S. The element w has exactly two lower covers, wl and wr,
by Lemma 8. They belong to F , and we have that wl ∧ wr ≺ wl and wl ∧ wr ≺
wr. If at least one of wl and wr does not belong to S (equivalently, to its upper
boundary, F∩S), then wl∧wr ∈ F by (3), whence the cover-preserving N7 sublattice
determined by w belongs to F and w ∈ Anchor2(D), as required. Hence we can
assume that wl and wr are on the upper boundary of S but wl ∧ wr /∈ F . Since
wl ‖ wr, the only possibility, up to left-right symmetry, is that w = wl ∨ wr equals
pr. However, this case is excluded by Lemma 8 since pr has at least three lower
covers.

Case 3: w ∈ F ∩ S. Let w = t1 be on the upper boundary of S, as in Figure 7.
Since it has only two lower covers by Lemma 8 and belongs to Inter(D′), we conclude
that t1 /∈ {v, pl, pr, sl, sr}. Hence there are elements t0, t2 in the upper boundary of
S, in the same wing as t1, such that t0 ≺ t1 ≺ t2. We use the notation t4, . . . , t8 as in
Figure 7. Consider the cover-preserving N7 sublattice in D′ that is anchored by t1.
Since this sublattice is also a tight N7 sublattice in D′, it is {t0, t1, t2, t6, t7, t8, t9}
with rightmost dual atom t9 by Lemma 6. Therefore, applying Lemma 6 again, the
tight N7 sublattice determined by t1 in D is {t0, . . . , t5, t9}. It is a cover-preserving
N7 sublattice since t3 ≺ t6 and t3 ≺ t4. Thus t1 ∈ Anchor2(D), as required.

Case 4: w ∈ D − (I ∪ F ). Notice that w ∈ Inter(S). By Lemma 8, w belongs
to the interior of the unique m-stacked N7 region Rm with centre u, where m =
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rankD(u). Assume first that m = 0. Then w = u, whence it does not belong to
Anchor2(D′) since it has two upper covers in D′. Secondly, assume that m > 0.
Then, clearly again, u /∈ Anchor2(D′). Moreover, of the other elements in the
interior of S, that is, in

Inter(S) = Inter(Rm) = {u(i) | 1 ≤ i ≤ m },

the element u∗ = u(1) is the only one in Anchor2(D′). �

Proof of Theorem 1. Let D be a diagram. If it is obtained from a slim distributive
diagram by a sequence of restrictions, then D is a slim semimodular diagram by
Lemma 10. Conversely, assume that D is a slim semimodular diagram. By virtue
of Lemma 10, it suffices to show that we can obtain a slim distributive diagram
from D by a finite sequence of insertions. That is, we want a finite sequence
D = D0, D1, . . . of diagrams such that Di+1 is obtained from Di by an insertion,
and the last member of the sequence is distributive. If Di is distributive, then it is
the last member of the sequence, and we are ready. If it is non-distributive, then
Anchor2(Di) is non-empty by Lemma 5. Pick an element ui ∈ Anchor2(Di) such
that rankDi(ui) is the smallest member of { rankDi(x) | x ∈ Anchor2(Di) }, and
perform an insertion at ui to obtain Di+1. This procedure terminates in finitely
many steps by Lemma 11. �

Proof of Corollary 3. If we perform an insertion to obtain D′ from D, then the
weak corners of D′ are the same as those of D, 0D′ = 0D, and 1D′ = 1D. Hence our
statement follows from G. Grätzer and E. Knapp [14, Lemma 6] and the argument
used in the proof of Theorem 1. �

There are some efficient ways to check whether a planar diagram is a slim semi-
modular lattice diagram; in addition to Lemma 4, see [7, Theorems 11 and 12].
The following test follows trivially from the proof of Theorem 1.

Lemma 12. Let D be a planar diagram. Construct the sequence

D = D0, D1, . . .

as in the proof of Theorem 1. Then D is a slim semimodular lattice iff the sequence
terminates with a planar distributive lattice.

Remark 2 points out that the clause “as in the proof of Theorem 1” in Lemma 12
cannot be dropped.
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