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Abstract. Finite (upper) nearlattices are essentially the same mathematical

entities as finite semilattices, finite commutative idempotent semigroups, finite
join-enriched meet semilattices, and chopped lattices. We prove that if an n-

element nearlattice has at least 83 · 2n−8 subnearlattices, then it has a planar
Hasse diagram. For n > 8, this result is sharp.

1. Result and introduction

First, after few definitions, we formulate our main (and only) result; historical
and other comments and an outline of the paper will be given thereafter.

Definition 1.1. Let (L;∨) be a finite n-element join-semilattice. Its natural or-
dering is defined by x ≤ y ⇐⇒ x∨ y = y. For x, y ∈ L, let x∧ y be the infimum of
{x, y} provided it exists. If this infimum does not exist, then x∧y is undefined. The
structure (L;≤,∨,∧) is called a finite (upper) nearlattice; note that this nearlattice
and the join-semilattice (L;∨) mutually determine each other. Apart from a short
historical survey, the adjective “upper” will always be dropped.

The adjective “finite” will usually be dropped but understood. A nearlattice
(L;≤,∨,∧) or, equivalently, the corresponding join-semilattice (L;∨) is planar if
the poset (also known as partially ordered set) (L;≤) is planar; that is, if (L;≤) has
a Hasse diagram that is also a planar representation of a graph. A nonempty subset
of L closed with respect to (the total operation) join and (the partial operation)
meet is called a subnearlattice. Our goal is to prove the following theorem.

Theorem 1.2 (Main Theorem). Let (L;≤,∨,∧) be a finite nearlattice, and let
n := |L| denote the number of its elements. If (L;≤,∨,∧) has at least 83 · 2n−8

subnearlattices, then it is planar. For n ≥ 9, this statement is sharp since there
exists an n-element non-planar nearlattice with exactly 83 ·2n−8−1 subnearlattices.

For another and equivalent variant of the Main Theorem, see Theorem 2.2 later.

Remark 1.3. Every nearlattice with at most seven elements is planar, regardless
the number of its subnearlattices. While the eight-element non-planar boolean
lattice, as a nearlattice, has 73 subnearlattices, every eight-element nearlattice with
at least 74 = 74 · 28−8 subnearlattices is planar.
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Outline. The rest of this introductory section consists of four subsection, namely:
“Outline” (the present subsection), “Motivation and historical comments”, “Notes
on the proof”, and “Notes on the dedication”. After the present section, apart
from two-thirds of a page to prove Remark 1.3, the rest of the paper is devoted
to the proof of Theorem 1.2. In particular, Section 2 contains Theorem 2.2, which
is a useful reformulation of Theorem 1.2. Section 3 is a short section formulating
some statements of geometrical nature on planar nearlattice diagrams. Section 4
defines qn-lattices, which are certain substructures of nearlattices. They are only
technical tools, and the section contains some lemmas to make it clear that the
lion’s share of the proof of the main result relies on qn-lattices. Section 5 consists
of a series of lemmas to exclude some small qn-lattices as substructures of a minimal
counterexample of the Main Theorem, while Sections 6 and 7 exclude further qn-
lattices as substructures with special stipulations. Note that after Section 4, the
reader may decide to jump immediately to Section 8 at first reading in order to see
how to benefit from the lemmas of Sections 5, 6, and 7 rather than checking their
proofs. Most of these proofs rely on a humanly impossible amount of computation
done by a computer in the background, but lots of theoretical arguments are also
needed and they are presented in a readable form. Section 8 completes the proof of
Theorem 1.2. Section 9 is an appendix to describe how to use our freely availably
computer program, which is outlined in Section 4. Also, this section contains a short
sample input file, which was used at one of our lemmas. There is a second appendix
in http://arxiv.org/pdf/1908.08155, the extended version1 of the paper, which
contains all output files; see also the author’s website for possible updates.

Motivation and historical comments. Our result is motivated by similar or
analogous results about lattices and semilattices with many congruences, sublat-
tices, and subsemilattices; see Ahmed and Horváth [1], Czédli [10], [11], [12], [13],
and [14], Czédli and Horváth [18], and Mureşan and Kulin [47]. Below, for later
reference, two of the motivating results are mentioned, both are sharp.

Theorem 1.4 (Czédli [13]). If a finite lattice (L;∨,∧) has at least 83 · 2|L|−8

sublattices, then it is a planar lattice.

Clearly, Theorem 1.2 generalizes the above result.

Theorem 1.5 (Czédli [14]). If an n-element join-semilattice has at least 127 · 2n−8

subsemilattices, then it is planar.

This theorem gives a sufficient condition for a semilattice to be planar. Since
a join-semilattice (L;∨) and the corresponding nearlattice (L;≤,∨,∧) mutually
determine each other, Theorem 1.2 gives another sufficient condition.

Assuming finiteness, semilattices, nearlattices, join-enriched meet semilattices,
join algebras, commutative idempotent semigroups, and chopped lattices are essen-
tially the same mathematical entities modulo the duality principle. They have been
studied from various aspects, and they have been discovered, studied, and baptized
several times. These discoveries and re-discoveries seem not to be aware of each
other; this is our excuse if the list of the earlier names of these structures is not
complete.

The concept of semilattices is as old as that of lattices, so the above-mentioned
entities occur frequently in mathematics.

1This is the extended version.
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Our definition of (upper) nearlattices is the same as the finite version of the
concept of nearlattices studied by Araújo and Kinyon [2], Chajda and Halaš [3],
Chajda and Kolař́ık [4] and [5], and Halaš [43]. Under a different name, as [3] points
out, this concept appeared already in Sholander [50] and [51]. The definition used
in the above papers but Sholander’s ones is the following, but the adjective “upper”
is our suggestion: by a (not necessarily finite) upper nearlattice we mean a join-
semilattice in which every principal filter is a lattice. Since our convention for the
paper is that

unless otherwise explicitly stated, every structure
occurring in this paper is assumed to be finite even
if this is not repeated all the times,

}
(1.1)

the condition on principal filters holds automatically in the scope of this convention.
Hence, in the subsequent subsections and sections, each of our join-semilattices and
nearlattices is an (upper) nearlattice in Chajda at al’s sense. It is a matter of taste
and the actual situation whether one considers the meet as a partial operation in
the definition of finite nearlattices; we do. Note that for a finite join-semilattice
(L;∨), each of

(L;∨), (L;≤,∨,∧), (L;≤), and the partial algebra (L;∧) (1.2)

determines the other three. Thus, no matter which one of the four structures listed
in (1.2) is given, we will also use the other three without further notice.

Finite nearlattices are in very close connection with lattices. First, finite lattices
are exactly the nearlattices with smallest elements. Second, if we add a (possibly
new) zero (that is, a least) element to a finite nearlattice (L;≤,∨,∧), then we

obtain a finite lattice (L(+0);≤,∨,∧). Conversely, if we start from a nonsingleton
finite lattice (K;≤,∨,∧), then we obtain a nearlattice (K(−0);≤,∨,∧) by deleting
its smallest element. Beginning with a finite join-semilattice (L;∨), each of the
lattice (L(+0);≤,∨,∧) and the structures in (1.2) determines the other four.

Many authors, including C̄ırulis [6] (who calls them join-enriched meet semilat-
tices), Hickman [44] (who calls them join algebras), Cornish and Noor [7], Niemi-
nen [48], Noor and Rahman [49], and Van Alten [53] deal with meet-semilattices in
which all principal ideals are lattices; that is, they define lower nearlattices as the
duals of upper nearlattices; the adjective “lower” is our suggestion for the sake of
distinction. Clearly, our Theorem 1.2 remains valid for lower nearlattices.

For the finite case, lower nearlattices appeared and were intensively studied in,
say, Grätzer [26], Grätzer, Lakser and Roddy [36], and Grätzer and Schmidt [38],
[39] and [40] under the name chopped lattices. Grätzer [20] notes that this concept
goes back to G. Grätzer and H. Lakser. With the help of chopped lattices, a lot
of deep results have been proved for congruence lattices of lattices in the above-
mentioned papers.

Note that (upper) nearlattices occur frequently, since the subalgebras of an al-
gebra (A; F ) form a nearlattice with respect to set inclusion; this nearlattice is
not a lattice in general since the emptyset is not a subalgebra. In particular, the
subnearlattices from Theorem 1.2 also form a nearlattice, which is not a lattice.

Theorem 1.5 from [14], which is closely related to Theorem 1.2, has been elabo-
rated to join-semilattices. This explains that we will use upper nearlattices rather
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than lower ones. Now, at the end of this short historical survey, let us empha-
size again that nearlattices in the rest of the paper are always finite and they are
understood according to Definition 1.1.

Finally, we mention three additional ingredients of our motivation; hopefully,
they are applicable for many algebraic structures, not only for lattices and their
generalizations.

First, it is quite natural to study general algebraic structures (A; F ) for which
the size of the congruence lattice, |Con(A; F )|, or that of the subalgebra lattice,
| Sub(A; F )|, are small, because they are the building stones of other structures in
some sense. For example, the description of non-singleton finite groups (G; ·) with
|Con(G; ·)| being as small as possible is probably the deepest mathematical result
that has ever been proved; it is the classification of finite simple groups. Fields are
typically constructed from prime fields, that is, from fields whose subfield lattices
are singletons. Once the smallest values of |Con(A; F )| and | Sub(A; F )| have been
paid a lot of attention to, it seems reasonable to study also the largest values.

Second, the papers mentioned right before Theorem 1.4 indicate that the study of
large or the largest values of |Con(A; F )| and | Sub(A; F )| often leads to interesting
results with nontrivial proofs and, sometimes, to structural descriptions. For exam-
ple, while it seems to be hopeless to give a structural description of non-singleton
finite lattices (L;∨,∧) with |Con(L;∨,∧)| being the smallest or the second small-
est possible number, even the n-element finite lattices (L;∨,∧) with |Con(L;∨,∧)|
being the third and fourth largest possible numbers have been structurally de-
scribed in Ahmed and Horváth [1]. Roughly saying, while algebras (A; F ) with
small |Con(A; F )| or | Sub(A; F )| are the building stones, some of those with large
|Con(A; F )| or | Sub(A; F )| are nice buildings.

Third, it is generally a good idea to associate integer numbers with algebraic
structures, like the numbers of their elements, congruences, and subalgebras, be-
cause these numbers might help in discovering relations between distinct fields of
mathematics by the help of Sloan [52].

Notes on the proofs. Although (the earlier) Theorem 1.4 is a particular case
of (our main) Theorem 1.2, these two theorems require different approaches. The
proof of Theorem 1.4 in Czédli [13] was based on the powerful characterization
of planar lattices given by Kelly and Rival [46]. Since no similar characterization
of planar semilattices is known at the time of this writing, the present paper is
quite different from and more involved than [13]. Note that while the proof of the
Kelly–Rival characterization relies heavily on the fact that every finite planar lattice
contains an element with exactly one upper cover and one lower cover (a so-called
doubly irreducible element), the join-semilattice (T2;∨) in Figure 5 witnesses that
a planar semilattice need not contain such an element. So, even if the future brings
some characterization of finite planar join-semilattices, it will not be obtained from
Kelly and Rival [46] by easy modifications.

Since Theorem 1.4 takes care of the case when (L;≤,∨,∧) from Theorem 1.2
happens to be a lattice, this paper deals only with the case when it is not a lattice.

Notes on the dedication. The number 83 plays a key role in Theorem 1.2, and
at the time of uploading the first version of the paper to arXiv2, professor George
Grätzer celebrated his 83-rd birthday. Furthermore, the topic of the present paper

2This happened yesterday.
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is close to his research interest; this is witnessed by, say, his papers Czédli and
Grätzer [15] and [16], Czédli, Grätzer, and Lakser [17], Grätzer [22], [23], [24],
[25], [27], and [28], Grätzer and Knapp [29], [30], [31], [32], and [33], Grätzer and
Lakser [34], Grätzer, Lakser, and Schmidt [36], Grätzer and Quackenbush [37],
Grätzer and Schmidt [41], and Grätzer and Wares [42] on planar lattices and his
already mentioned papers on chopped lattices.

2. Another form of our result

Relative number of subuniverses. For a nearlattice (L;≤,∨,∧),

the domain of ∧ is Dom(∧) := {(x, y) ∈ L2 : x ∧ y is defined}, and

Sub(L;≤,∨,∧) := {X : X ⊆ L, x ∨L y ∈ X for every (x, y) ∈ X2 , and

x ∧L y ∈ X for every (x, y) ∈ X2 ∩ Dom(∧L)}. (2.1)

Of course, the subscript L above indicates that the join and meet have to be taken
in (L;≤,∨,∧) rather than in (X;≤) with the inherited ordering. So it may happen
that a subposet (X;≤) of (L;≤) is a nearlattice (or even a lattice) on its own right
(with respect to the ordering inherited from (L;≤)) but X /∈ Sub(L;≤,∨,∧). The
members of Sub(L;≤,∨,∧) are the subuniverses of (L;≤,∨,∧), while the nonempty
members of Sub(L;≤,∨,∧) are called the subnearlattices of (L;≤,∨,∧). So,

| Sub(L;≤,∨,∧)| is bigger than the number
of subnearlattices of (L;≤,∨,∧) by 1.

(2.2)

The following concept and notation are taken from Czédli [13] and [14]; it will be
more useful in our arguments than the number of subnearlattices.

Definition 2.1. The relative number of subuniverses of an n-element nearlattice
(L;≤,∨,∧) is defined to be and denoted by

σ(L;≤,∨,∧) := | Sub(L;≤,∨,∧)| · 28−n.

Furthermore, we say that a finite nearlattice (L;≤,∨,∧) has σ-many subuniverses
if σ(L) > 83.

An equivalent form of our result. By (2.2), Theorem 1.2 is clearly equivalent
to the following equivalent theorem; it will be sufficient to prove the latter.

Theorem 2.2. If (L;≤,∨,∧) is a finite nearlattice with σ(L;≤,∨,∧) > 83, then
(L;≤,∨,∧) is planar. In other words, finite nearlattices with σ-many subuniverses
are planar. Furthermore, for every natural number n ≥ 9, there exists an n-element
non-planar nearlattice (L;≤,∨,∧) such that σ(L;≤,∨,∧) = 83.

3. On the geometry of planar lattices

In this section, we make a distinction between (straight) diagrams, which are the
usual Hasse diagrams of posets with straight edges, and curved diagrams, which
are poset diagrams in which curved edges are also allowed. Following Kelly and
Rival [46], by a curved edge we mean a set {(f(y), y) : a ≤ y ≤ b}, where a < b ∈ R

and f : [a, b] → R is a differentiable function; this curved edge goes from the (initial)
point (f(a), a) to the (terminal) point (f(b), b); these two points are the endpoints of
the curved edge. Of course, at the endpoints a and b of the closed interval [a, b] ⊂ R,
the differentiability is required only from the right and from the left, respectively.
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Figure 1. A pointed contour and two rotated pointed contours

Their differentiability ensures that curved edges keep going strictly upwards. Since
the curved edges are the graphs of differentiable functions (but the role of the x-axis
is interchanged with that of the y-axis), they have directional vectors at each of
their points; note that a directional vector is of length 1 by definition. In case of a
curved edge, the directional vector is horizontal at none of its points.

Definition 3.1. By a curved diagram of a finite poset (P ;≤) we mean a collection
of curved edges and |P | many vertices (that is, points) in the plane such that

(i) each element of P is represented by exactly one vertex;
(ii) whenever two distinct curved edges intersect at a point (possibly at an

endpoint), then they have distinct directional vectors at that point;
(iii) there exists a unique curved edge going from a vertex to another vertex if

and only if the second vertex represents an element of P that covers the
element represented by the first vertex.

If, in addition,

(iv) no two distinct curved edges intersect except possibly at a common end-
point,

then the curved diagram is planar.

In a curved diagram, Definition 3.1(iii) allows us to speak of the curved edge
a ≺ b if b covers a in the poset (P ;≤). We know from Kelly [45] that

a poset has a planar curved diagram if and
only if it has a (straight) planar diagram.

}
(3.1)

So, if a nearlattice has a curved planar diagram, then it is planar. In order to
formulate a useful lemma, we need some additional concepts.

Definition 3.2. By a pointed contour we mean a system (Cleft, Cright, Q) such
that Cleft and Cright are curved edges with common initial points and common
terminal points, theses two endpoints are their only common points, Cright is to
the left of Cleft, Cleft and Cright have distinct directional vectors at the common
initial point and also at the common terminal point, and Q is an internal point of
the curve Cright; see Figure 1. The union Cleft ∪ Cright is a closed Jordan curve;
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the union of this curve and its inside region will be called the L-shape determined
by the pointed contour; it is denoted by LSh(Cleft, Cright, Q). So Cleft ∪ Cright ⊆
LSh(Cleft, Cright, Q); in fact, Cleft ∪ Cright is the boundary of this L-shape.

Note that, by Definition 3.1, the directional vector of Cleft at a point is never
vertical, and the same holds for Cright. If e and e′ are distinct edges with a common
initial point X in a curved diagram, then they have distinct directional vectors at
X and it makes sense to say that e is to the left of e′ or conversely, depending on
the directional vectors. The situation is analogous at a common terminal point.

Definition 3.3. Two pointed contours, (Cleft, Cright, Q) and (C ′
left, C

′
right, Q

′) are

equivalent if there exists a bijective transformation (that is, a map)

T : LSh(Cleft, Cright, Q) → LSh(C ′
left, C

′
right, Q

′) (3.2)

such that the following conditions hold: T (Q) = Q′, T (Cleft) = C ′
left, T (Cright) =

C ′
right, the T -image of every curved diagram D in LSh(Cleft, Cright, Q) is a curved

diagram in LSh(C ′
left, C

′
right, Q

′), this D is planar if and only if so is its T -image,

and whenever e and e′ are distinct curved edges with a common endpoint in D such
that e is to the left of e′, then T (e) is to the left of T (e′).

Lemma 3.4. Any two pointed contours are equivalent.

Proof. It is easy to see that the relation “equivalent” in the sense of Definition 3.3
is an equivalence relation on the set of all pointed contours. If, for all (x, y) ∈ R

2,
T : (x, y) 7→ (cx, cy) with a positive constant c ∈ R or T : (x, y) 7→ (x + c, x + d)
with constants c, d ∈ R, that is, if T is a positive homothety or a translation, then
the T -image of (Cleft, Cright, Q) is clearly equivalent to (Cleft, Cright, Q). This allows
us to assume that the y coordinate of the bottom of (Cleft, Cright, Q) and that of
the bottom of (C ′

left, C
′
right, Q

′) are both 0, and they are both 1 for the tops. Next,
we are going to use some rudiments of Analysis; less than what is generally taught
for undergraduates in the first semester. For convenience, we rotate our pointed
contours counterclockwise by 90 degrees, and in the rest of the proof, we will work
with the rotated versions. Let the coordinates of Q and Q′ be denoted by (xQ, yQ)
and (x′

Q, y′Q), respectively.

First, we deal with the case xQ = x′
Q. As Figure 1 shows, we use the notation

Cleft = {(x, f1(x)) : x ∈ [0, 1]}, Cright = {(x, f2(x)) : x ∈ [0, 1]}, C ′
left = {(x, u1(x)) :

x ∈ [0, 1]}, C ′
right = {(x, u2(x)) : x ∈ [0, 1]}; here the f1, f2, u1, and u2 are

differentiable functions on the closed interval [0, 1] ⊂ R and

f1(x) < f2(x) and u1(x) < u2(x) for all 0 < x < 1, (3.3)

f1(0) = f2(0), f1(1) = f2(1), u1(0) = u2(0), u1(1) = u2(1) (3.4)

f ′
1(0) < f ′

2(0), u′
1(0) < u′

2(0), f ′
1(1) > f ′

2(1), u′
1(1) > u′

2(1). (3.5)

Differentiability is required only from the right at 0 and from the left at 1. We let

p(x) :=
u2(x) − u1(x)

f2(x) − f1(x)
, which is positive for x ∈ (0, 1) by (3.3), (3.6)

h(x, y) := p(x) · y + u1(x) − p(x) · f1(x), and T (x, y) := (x, h(x, y)). (3.7)
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At present, p(x) and h(x, y) are defined only for 0 < x < 1. However, indicating
the application of (3.4) over the equality sign, we let

p(0) := lim
x→0+0

p(x)
(3.4)
= lim

x→0+0

(u2(x) − u2(0)) − (u1(x) − u1(0))

(f2(x) − f2(0)) − (f1(x) − f1(0))

= lim
x→0+0

u2(x)−u2(0)
x−0 − u1(x)−u1(0)

x−0

f2(x)−f2(0)
x−0

− f1(x)−f1(0)
x−0

=
u′

2(0) − u′
1(0)

f ′
2(0) − f ′

1(0)

(3.5)
> 0. (3.8)

We obtain similarly that p(1) := limx→1−0 p(x) > 0. Hence, p(x) and h(x, y) are
defined for all x ∈ [0, 1], and T (x, y) is defined on [0, 1] × R. For x ∈ [0, 1], the
equality h(x, f1(x)) = u1(x) is obvious from (3.7). This yields that T (Cleft) = C ′

left.
For Cright, we have to work a bit more. If 0 < x < 1, then

h(x, f2(x)) = p(x) · (f2(x) − f1(x)) + u1(x) = u2(x) − u1(x) + u1(x) = u2(x),

while

h(0, f2(0)) = p(0) · f2(0) + u1(0) − p(0) · f1(0)

(3.4)
= p(0) · f2(0) + u2(0) − p(0) · f2(0) = u2(0).

We obtain h(1, f2(1)) = u2(1) similarly. Hence, T (Cright) = C ′
right.

Next, let g1 and g2 be differentiable real functions defined in some interval
[x0, x0 + ε) ⊆ [0, 1] such that g1(x0) = g2(x0), f1(x) ≤ g1(x) < g2(x) ≤ f2(x)
for all x ∈ (x0, x0 + ε), and g′1(x) < g′2(x). This describes the situation where two
curved edges within LSh(Cleft, Cright, Q) have a common terminal point and the first
one is to the left of the second one. In order to show that their T -images have the
same property, it suffices to show that v′1(x0) < v′2(x0), where vi(x) := h(x, gi(x)).
Computing by (3.7) for i ∈ {0, 1}, we obtain that, for x0 ∈ (0, 1),

v′i(x0) = p(x0)g
′
i(x0) + p′(x0)gi(x0) + u′

1(x0) − p′(x0)f1(x0) − p(x0)f
′
1(x0)︸ ︷︷ ︸ .

This implies the required v′1(x0) < v′2(x0), since g1(x0) = g2(x0) shows that the
under-braced term does not depend on i and p(x0) > 0 by (3.3) and (3.6). By
determining v′i(x0) above, we have also obtained that T maps curved edges to curved
edges and the “left to” relation is preserved, except possibly if the curved edge
departs from the leftmost point or arrives at the rightmost point of (Cleft, Cright, Q).
(At 0 and 1, our functions are defined as limits, whereby the standard derivation
rules do not apply automatically.) By symmetry, it suffices to deal only with
the leftmost point, (0, f1(0)). Assume that g : [0, ε) → R is a function such that
g(0) = f1(0) and g is differentiable at 0 from the right and in (0, ε) for some small
0 < ε ∈ R. Let v(x) := h(x, g(x)). We need to show that v(x) is differentiable at 0
from the right; we have already shown that it is differentiable in (0, ε). We need to
show also that the larger the g′0(0), the larger the v′0(0). Using that g(0) = f1(0)
leads to v(0) = p(0)g(0) + u1(0) − p(0)f1(0) = u1(0),

(v(x) − v(0))/(x − 0) = x−1 ·
(
p(x)(g(x) − f1(x)) + u1(x) − u1(0)

)

= x−1 ·
(
p(x)(g(x) − g(0) − (f1(x) − f1(0))) + u1(x) − u1(0)

)

= p(x)
g(x) − g(0)

x − 0
− p(x)

f1(x) − f1(0)

x − 0
+

u1(x) − u1(0)

x− 0
.

Hence, letting x tend to 0 + 0 and using the continuity of p at 0 from the right, we
obtain that v′(0) (from the right) exists and v′(0) = p(0)g′(0) − p(0)f ′

1(0) + u′
1(0).
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Since p′(0) > 0 by (3.8), we have also shown that if g0(0) gets larger, then so does
v′(0).

Finally, we need to show that T , defined in (3.7), is bijective. Clearly, if
(x1, y1), (x2, y2) ∈ LSh(Cleft, Cright, Q) such that x1 6= x2, then T (x1, y1) and
T (x2, y2) differ in their first coordinates. By (3.6) and (3.8), p(x) > 0 for all x ∈
[0, 1]. Hence if y1 < y2, then T (x, y1) 6= T (x, y2) by (3.7), and it follows that T is in-
jective. For a fixed x0 ∈ [0, 1], the positivity of p(x0) and (3.7) show that h(x0, y) is
a strictly increasing function of y. This fact, T (Cleft) = C ′

left and T (Cright) = C ′
right

imply that T (x0, y) ∈ LSh(C ′
left, C

′
right, Q

′) whenever (x, y) ∈ LSh(Cleft, Cright, Q).

Thus, T is indeed a map from LSh(Cleft, Cright, Q) to LSh(C ′
left, C

′
right, Q

′), as re-

quired. Next, let (x0, z) be an arbitrary point of LSh(C ′
left, C

′
right, Q

′). Then, using

that T maps Cleft and Cright onto C ′
left and C ′

right, respectively, we have that

h(x0, f1(x0)) = u1(x0) ≤ z ≤ u2(x0) = h(x0, f2(x0)).

Therefore, since we have seen that h(x0, y) is a strictly increasing continuous func-
tion of y, there exists a y0 ∈ [f1(x0), f2(x0)] such that h(x0, y0) = z. Thus,
(x0, y0) ∈ LSh(Cleft, Cright, Q) and T (x0, y0) = (x0, z). This shows that T is surjec-
tive, completing the first part of the proof.

Second, we drop the assumption that xQ = x′
Q. By definition, both xQ and

x′
Q are in the open interval (0, 1). Take a strictly increasing differentiable func-

tion g : [0, 1] → [0, 1] such that g(0) = 0, g(1) = 1, g′(0) = g′(1) = 1, and
g(xQ) = x′

Q. With this g, consider the transformation T2 : (x, y) 7→ (g(x), y).

Let (C ′′
left, C

′′
right, Q

′′) be the T2-image of (Cleft, Cright, Q). “Locally”, T acts ap-

proximately like an affine transformation. Furthermore, since g′(0) = g′(1) = 1, T2

approximates the identity map at the leftmost and rightmost points of the pointed
contour. Hence, it is straightforward to see even without computation that the
requirements formulated in Definition 3.3 are fulfilled for T2, (Cleft, Cright, Q), and
(C ′′

left, C
′′
right, Q

′′). Furthermore, Q′′ = Q′ by the choice of g.
Clearly, the composite T ◦ T2 of the translations considered above satisfies the

requirements of Definition 3.3, and it is a bijection from LSh(Cleft, Cright, Q) to
LSh(C ′

left, C
′
right, Q

′). This proves that (Cleft, Cright, Q) and (C ′
left, C

′
right, Q

′) are
equivalent. Furthermore, the bijectivity of T implies that a curved diagram in
LSh(Cleft, Cright, Q) is planar if and only if so is its T -image. �
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Figure 2. Illustration for Corollary 3.5

Armed with Lemma 3.4, the following statement follows trivially from the fact
that, for each element u in a diagram D, there exists an appropriately small pointed
contour (Cleft, Cright, Q) such that u is the only point of the plane that is a common
point of LSh(Cleft, Cright, Q) and the union of edges of D. The statement below
is illustrated by Figure 2. In this figure, (K;≤,∨,∧), (L;≤,∨,∧), another copy
of (K;≤,∨,∧), another copy of (L;≤,∨,∧) together with a contour, and the new
nearlattice are given; in this order from left to right.

Corollary 3.5. Let (L;≤,∨,∧) and (K;≤,∨,∧) be nearlattices, and let u ∈ L. By
taking isomorphic copies if necessary, we assume that L∩K = ∅. Then, on the set
L ∪ (K \ {1K}), the ordering defined by

x ≤ y ⇐⇒






x, y ∈ L and x ≤ y in (L;≤,∨,∧), or

x, y ∈ K \ {1K} and x ≤ y in (K;≤,∨,∧), or

x ∈ K \ {1K}, y ∈ L, and u ≤ y in (L;≤,∨,∧)

yields a new nearlattice (K +u L;≤,∨,∧). If (K;≤,∨,∧) and (L;≤,∨,∧) are pla-
nar, then so is (K +u L;≤,∨,∧).

The edges of a planar nearlattice divide the plane into regions; see Kelly and
Rival [46]. In the sense of the Euclidean metric, some of the regions are infinite as
they contain “the rest of planar points outside”, and there can be finite regions.
Note that there exists at least one finite region if and only if Dom(∧) contains a
pair of incomparable elements. Following Grätzer and Knapp [29], a minimal finite
region is called a cell. In a nearlattice, the lower covers of the top element 1 are
called coatoms. The following corollary is illustrated by Figure 3.

Figure 3. Illustration for Corollary 3.6

Corollary 3.6. Let (L;≤,∨,∧) and (K;≤,∨,∧) be planar nearlattices and fix a
planar diagram for each of them. By taking isomorphic copies if necessary, we can
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assume that L∩K = ∅. Let u, v ∈ L be distinct elements on the same (left or right)
boundary chain of the same cell of (L;≤,∨,∧), with respect to its fixed diagram,
such that u < v and u is not the smallest element of the cell. Let w ∈ K be a
coatom on the boundary of (K;≤,∨,∧), with respect to its fixed diagram, again.
Let (M ;≤) be the poset with M := L ∪ (K \ {w, 1K}) and the ordering defined by

x ≤ y ⇐⇒






x, y ∈ L and x ≤L y in (L;≤,∨,∧), or

x, y ∈ K \ {w, 1K} and x ≤K y in (K;≤,∨,∧), or

x ∈ K \ {w, 1K}, y ∈ L, x ≤K w, and u ≤L y, or

x ∈ K \ {w, 1K}, y ∈ L, and v ≤L y.

Then (M ;≤) is a planar poset.

Proof. After reflecting one or two of our nearlattices across a vertical axis, we can
assume that u and v are on the right boundary of the cell mentioned in the theorem
and w is on the right boundary of (K;≤,∨,∧). The cell in question is dark grey
in the second part of Figure 3. Choose a pointed contour (Cleft, Cright, Q) inside
the cell such that v is the top of this pointed contour and Q = u; see on the right
of Figure 3. Also, choose another pointed contour (C ′

left, C
′
right, Q

′) such that the

diagram of (K;∨,∧) is inside it and w = Q′; see on the left of the figure. It follows
from Lemma 3.4 that (K;≤,∨,∧) has a planar diagram inside (Cleft, Cright, Q)
such that w and 1K are at Q = u and v. The union of this diagram and that of
(L;≤,∨,∧) is a curved planar diagram of (M ;≤). Hence, (M ;≤) is planar by D.
Kelly’s theorem, (3.1). �

4. Substructures, qn-lattices, and jm-constraints

This section begins with some definitions that will be used later in the paper.
Note in advance that even for lattices rather than nearlattices, the concepts we
are going to introduce are distinct from those of partial lattices and weak partial
sublattices discussed in Grätzer’s monograph [21].

For a nearlattice (L;≤,∨,∧), the domain of the meet operation is

Dom(∧) = {(x, y) ∈ L2 : inf{x, y} exists}

= {(x, y) ∈ L2 : {x, y} has a lower bound}

}
(4.1)

since x∧y =
∨
{z : z ≤ x and z ≤ y}, provided the set mentioned here is nonempty.

The domain Dom(∨) is, of course, L × L. By reducing the domains, we obtain the
following concept. By a partial jm-algebra we shall mean a partial algebra of type
(∨,∧) where ∨ and ∧ stand for binary partial operations; the letter j and m come
from the names of operation symbols. We will adhere to the convention that

each equality x ∨ y = z for a partial jm-algebra
will mean that (x, y) ∈ Dom(∨) and x ∨ y = z,
and similarly for the other partial operation.

(4.2)

A partial jm-algebra with ordering is a structure (K;≤,∨,∧) such that (K;≤) is a
poset and (K;∨,∧) is a partial jm-algebra. (That is, we do not require that the
partial operations are isotone.) The following concept is more subtle. Our guiding
example is a nonempty subset K of a nearlattice (L;≤,∨,∧) and the restrictions
of the operations of (L;≤,∨,∧) to K such that Dom(∧K) = Dom(∧L) ∩ {(x, y) ∈
K2 : x ∧L y ∈ K} and analogously for Dom(∨K).
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Definition 4.1. A qn-lattice is a finite partial jm-algebra (K;≤,∨,∧) with ordering
such that the following five axioms hold for every x, y, z, u, v ∈ K; convention (4.2)
will be in effect.

(A1) if (x, y) ∈ Dom(∨), then x ∨ y = sup{x, y} and, dually, x ∧ y = inf{x, y}
whenever (x, y) ∈ Dom(∧).

(A2) if x and y are comparable, then (x, y) ∈ Dom(∨) and (x, y) ∈ Dom(∧).
(A3) (x, y) ∈ Dom(∨) ⇐⇒ (y, x) ∈ Dom(∨) and, dually, (x, y) ∈ Dom(∧) ⇐⇒

(y, x) ∈ Dom(∧).
(A4) x ∨ y = z, z ∨ u = v and y ≤ u imply that x ∨ u = v. Dually, x ∧ y = z,

z ∧ u = v and u ≤ y imply that x ∧ u = v.
(A5) x ∨ y = z and x ≤ u ≤ z imply that u ∨ y = z. Dually, x ∧ y = z and

z ≤ u ≤ x imply that u ∧ y = z.

The letters q and n in the name of qn-lattices comes from “quasi” and “near”.
Clearly, every nearlattice is also a qn-lattice, and every qn-lattice is a partial jm-
algebra with ordering. Since the notations (K;≤,∨,∧) and (K;∨,∧) can mean
various things like a nearlattice, a lattice, or a partial jm-algebra, it will be impor-
tant to frequently specify the meanings of our notations.

Let (L;≤,∨,∧) and (K;≤,∨,∧) be partial jm-algebras with orderings. (In par-
ticular, they can be nearlattices or qn-lattices.) We say that (K;≤,∨,∧) is a weak
partial subalgebra of (L;≤,∨,∧) if its ordering is the restriction of that of L to K,
K ⊆ L,

Dom(∨K) ⊆ Dom(∨L), Dom(∧K) ⊆ Dom(∧L), (4.3)

and, in addition, ∨K and ∧K are the restrictions of ∨L to Dom(∨K) and ∧L to
Dom(∧K), respectively. In this case, (K;∨,∧) is also said to be a weak partial
subalgebra of (L;≤,∨,∧). The adjective “weak” reminds us that the inclusions in
(4.3) can be proper. If both (L;≤,∨,∧) and (K;≤,∨,∧) are qn-lattices, then we
prefer to say that (K;≤,∨,∧) is a sub-qn-lattice of (L;≤,∨,∧) instead of saying
that it is a weak partial subalgebra of (L;≤,∨,∧). Let us emphasize that, by
definition,

a sub-qn-lattice is automatically a qn-lattice. (4.4)

For a qn-lattice (K;≤,∨,∧),

the set Sub(K;≤,∨,∧) of subuniverses
is defined analogously to (2.1);

}
(4.5)

the only difference (apart from replacing L by K) is that now we need (x, y) ∈
X2∩Dom(∨K) rather than (x, y) ∈ X2. As it is clear from (4.5), now a subuniverse
is just a subset of K without any structure on it. Thus, a qn-lattice (K;≤,∨,∧)
can have much more sub-qn-lattices than | Sub(K;≤,∨,∧)|, because a subuniverse
can be the support set of several sub-qn-lattices. So the counterpart of (2.2) does
not hold for qn-lattices. Having its subuniverses just defined, σ(K;≤,∨,∧) is also
meaningful for a qn-lattice (K;≤,∨,∧); see Definition 2.1.

The following easy lemma, which is a particular case of Lemma 2.3 of Czédli [13],
indicates the importance of our new concepts.

Lemma 4.2. If (K;≤,∨,∧) is a sub-qn-lattice of a qn-lattice (M ;≤,∨,∧), then
σ(K;≤,∨,∧) ≥ σ(M ;≤,∨,∧).

By a jm-constraint over a set K we mean a formal equality x∨y = z or x∧y = z
such that {x, y, z} is a three-element subset of K. If W is a set of jm-constraints
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such that whenever x∨ y = z1 and x∨ y = z2 belong to W then z1 = z2 and dually,
then W is coherent. A coherent W together with K determine a partial algebra
(K;∨,∧) in the natural way: Dom(∨K) = {(x, y) ∈ K2 : there is a z ∈ K such
that x ∨ y = z belongs to W}, similarly for Dom(∧K), and the action of ∨K and
∧K in their domains are given by the jm-constraints in W . If K is understood, we
speak about the partial algebra determined by W . We are interested only in the
following particular case.

Definition 4.3. (i) Let K be nonempty subset of a qn-lattice (L;≤,∨,∧). Let
W be a set of jm-constraints over K such that each jm-constraint in W is a
valid equality in (L;≤,∨,∧); such a W is necessarily coherent. Then W is
said to be a set of jm-constraints over K compatible with (L;≤,∨,∧). Note
that the partial algebra determined by W and K is clearly a weak partial
subalgebra of (L;≤,∨,∧).

(ii) By an (L;≤,∨,∧)-compatible set of jm-constraints we mean a set W of jm-
constraints over some K ⊆ L such that W is compatible with (L;≤,∨,∧).
In other words, W is a collection of true equalities in (L;≤,∨,∧).

(iii) Over a subset K of L, let W be a set of jm-constraints compatible with
(L;≤,∨,∧), and keep (4.4) in mind. The least sub-qn-lattice (K;≤,∨,∧)
of (L;≤,∨,∧) such that all the jm-constraints in W are valid equalities
in this sub-qn-lattice is called the qn-lattice determined by W over K in
(L;≤,∨,∧). Here “least” means that whenever all the jm-constraints of
W are valid equalities in a sub-qn-lattice (K;≤,∨′,∧′) of (L;≤,∨,∧), then
(K;≤,∨,∧) is a sub-qn-lattice of (K;≤,∨′,∧′).

(iv) If K is the collection of all elements occurring in the jm-constraints belong-
ing to W , then the reference to K in the form “over K” is usually dropped
and we speak of the qn-lattice determined by W in L. If every element
of a qn-lattice (L;≤,∨,∧) occurs in a jm-constraint belonging to W , then
even the reference to (L;≤,∨,∧) is often dropped and we simply speak of
the qn-lattice determined by W ; however, then it should be clear from the
context what (L;≤) is. This convention of not mentioning (L;≤,∨,∧) is
typical when (L;≤,∨,∧) is given by its diagram.

(v) If a qn-lattice (L;≤,∨,∧) is determined by W and a diagram as in (iv)
and the diagram contains dashed edges, then (L;≤,∨,∧) means any of the
several qn-lattices determined so that we remove some of the dashed edges,
possibly none of them, and make solid the rest of dashed edges, possibly
none of them. In this case, a statement “(L;≤,∨,∧) is not a sub-qn-lattice
of a given qn-lattice (M ;≤,∨,∧)” means that “no matter which dashed
edges are erased and which are made solid, the qn-lattice determined in
this way is not a sub-qn-lattice of (M ;≤,∨,∧)”. Note that the dashed
edges should not be confused with the dotted ones occurring later in the
paper.
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Figure 4. The qn-lattices (S`;≤,∨,∧) for ` ∈ {1, . . . , 4}

Example 4.4. To exemplify Definition 4.3 (iv), we define four qn-lattices as follows;
note that they will be needed later. Let

W := {a ∨ b = m, a ∨ c = m, b ∨ c = m,

d ∧ m = a, e ∧ m = b, f ∧ m = c},

W1 := {d ∨ m = i, e ∨ m = i, f ∨ m = i},

W2 := {d ∨ m = i, e ∨ m = i, f ∨ m = j},

W3 := {d ∨ m = j, e ∨ m = i, f ∨ m = j},

W4 := {d ∨ m = i, e ∨ m = j, f ∨ m = k};

see Figure 4. Then, for ` ∈ {1, 2, 3, 4}, let (S`;≤,∨,∧) be the qn-lattice determined
by the set W ∪ W` of jm-constraints and its diagram. Note that (S1;≤,∨,∧)
is a nearlattice but this is not so for (S`;≤,∨,∧), ` ∈ {2, 3, 4}. For example,
(e, j) /∈ Dom(∧) for ` ∈ {2, 3} and (e, k) /∈ Dom(∧) for ` = 4.

The following lemma is quite easy but it will be important in most of our argu-
ments later.

Lemma 4.5. If W is a set of jm-constraints compatible with a qn-lattice (L;≤,∨,∧)
over K, ∅ 6= K ⊆ L, then the qn-lattice determined by W over K can be described as
follows. We begin with the partial algebra (K;∨0,∧0) determined by W , and take
(K;≤,∨0,∧0), where ≤K is inherited from (L;≤,∨,∧). Assume that, for some
i ∈ N0 := {0, 1, 2, . . .}, (K;≤,∨i,∧i) is already given. If one of the axioms (A1)–
(A5) is violated, then pick a pair (x, y) ∈ K2 and one of the axioms violated by this
pair, and extend the domain of ∨i or ∧i by (x, y) to get rid of this violation; let
(K;≤,∨i+1,∧i+1) denote what we obtain in this way. Note that (K;∨i,∧i) is a weak
partial subalgebra of (K;∨i+1,∧i+1). If none of the axioms (A1)–(A5) is violated,
which happens sooner or later by finiteness, then (K;≤,∨,∧) := (K;≤,∨i,∧i) is
the qn-lattice determined by W over K in (L;≤,∨,∧).

Proof. Since none of the axioms (A1)–(A5) is violated after the inductive procedure,
(K;≤,∨,∧) is a qn-lattice. We need to show only that (K;≤,∨i,∧i) is a weak
subalgebra of (L;≤,∨,∧) for all i ∈ N0. We prove this by induction on i. The
case i = 0 is evident. Assume that (K;≤,∨i,∧i) a weak subalgebra of (L;≤,∨,∧)
for some i. We can assume that (K;≤,∨i+1,∧i+1) is obtained from (K;∨i,∧i)
so that we got rid of a violation of (A4) or (A5), because the axioms (A1)–(A3)
create no problem. If the first half of (A4) was violated then, with the notation
taken from Definition 4.1, the induction hypothesis gives that x ∨L y = x ∨i y = z
and z ∨L u = z ∨i u = v. Since y ≤ u, we can compute in (L;≤,∨,∧) as follows:
x∨u = x∨ (y ∨ u) = (x∨ y)∨ u = z ∨ u = v. That is, x∨L u = v. Hence, enriching



PLANAR SEMILATTICES AND NEARLATTICES 15

the domain of ∨i with (x, u) and letting x ∨i+1 u = v results in a weak subalgebra
of (L;≤,∨,∧), and this subalgebra is (K;≤,∨i+1,∧i+1). Duality takes care of the
second part of (A4); however, then the following fact, which is a trivial property of
infima, has also to be used:

if y ∧ z and x∧ (y ∧ z) are defined in a nearlattice, then so
are x∧ y and (x ∧ y) ∧ z, and the latter equals x∧ (y ∧ z).

}
(4.6)

A similar argument applies for (A5) since nearlattice operations are isotone. This
completes the induction step and the lemma is concluded. �

Convention 4.6. Given a nearlattice (L;≤,∨,∧), let W be an (L;≤,∨,∧)-compat-
ible set of jm-constraints. By the σ-value σ(W ) of W and, if W and (L;≤,∨,∧)
are understood from the context, the σ-value of the situation we mean σ(K;≤
,∨,∧) where K is a subset of L such that the jm-constraints in W are over K and
(K;≤,∨,∧) is the qn-lattice determined by W over K in (L;≤,∨,∧). The least
appropriate K will be denoted by KW ; that is, KW is the collection of all elements
that occur in jm-constraints belonging to W . Hence, σ(W ) = σ(KW ;≤,∨,∧). If
W or the situation is clear from the context, then its σ-value will often be given
by an equality like σ = 83.

We formulate the following easy lemma, which will be used implicitly.

Lemma 4.7. Convention 4.6 makes sense, that is, σ(K;≤,∨,∧) above does not
depend on the choice of the subset K of L.

Proof. Let K be an arbitrary subset of L such that W is over K. Clearly, KW ⊆ K.
Since there is no stipulation on the elements of K \ KW , we have that

σ(K;≤,∨,∧) = | Sub(K;≤,∨,∧)| · 28−|K|

= |{X ∪ Y : X ∈ Sub(KW ;≤,∨,∧), Y ⊆ K \ KW }| · 28−|K|

= | Sub(KW ;≤,∨,∧)| · |{Y : Y ⊆ K \ KW }| · 28−|K|

= | Sub(KW ;≤,∨,∧)| · 28−|KW | · 2|K\KW | · 2|KW |−|K|

= σ(KW ;≤,∨,∧),

completing the proof. �

Lemmas 4.2 and 4.7 together with Convention 4.6 imply the following lemma.

Lemma 4.8. If (L;≤,∨,∧) is a nearlattice and W is an (L;≤,∨,∧)-compatible set
of jm-constraints, then σ(W ) ≥ σ(L;≤,∨,∧). In other words, then σ(L;≤,∨,∧)
is at most the σ-value of the situation.

This lemma will be our main tool to show that σ(L;≤,∨,∧) is sufficiently small.

A computer program. Lemma 4.8 will be useful for our purposes only if we can
determine the σ-values of many situations. Since that much work would be impossi-
ble manually, we have developed a computer program, using Bloodshed Dev-Pascal
v1.9.2 (Freepascal) under Windows 10, to do it. This program, called sublatts, is
available from the author’s website; to find it, look for the present paper in the
list of publications. The input of the program is an unformatted text file describ-
ing an (L;≤,∨,∧)-compatible set W of jm-constraints and the corresponding poset
(KW ;≤); see Convention 4.6. As its output, the program displays σ(W ) on the
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screen and saves it into a text file. Together with the result, σ(W ), the set W is also
displayed and saved. Upon request (using the \verbose=true command), even the
qn-lattice (KW ;≤,∨,∧) determined by W is displayed and saved. The algorithm
implemented by the program is trivial. Namely, by computing the (KW ;≤,∨i,∧i)
for i = 0, 1, 2, . . . successively according to Lemma 4.5, the program determines the
qn-lattice (KW ;≤,∨,∧) in the first step. In the second step, the program takes all

the 2|KW | subsets of KW and counts those that are closed with respect to the par-
tial operations of (KW ;≤,∨,∧). It is clear from the second step that the running
time depends exponentially on |KW |. Fortunately, the biggest |KW | we need for
this paper is only 12, and the program computes σ(W ) for 101 many times in half
a second on a desktop computer with an Intel Core i5-4400 Quad-Core 3.10 GHz
processor.

Note that an earlier program, which was crucial for the papers Czédli [13] and
[14], could also be used here but that would require much more human effort. This
is so because the above-mentioned first step is not built in the earlier program and
the user has to make this step manually while preparing the input files. Note also
that the concept of qn-lattices has been developed for the sake of this first step.

As a consequence of Lemma 4.7, note that if the input files gives a poset (K;≤)
such that (KW ;≤) is a proper subposet of (K;≤), then the program still computes
σ(W ) but in a longer time. Note also the following. Even if the program can detect
many types of errors in the input file, it is the user’s responsibility that the ordering
should harmonize with the qn-lattice operations. However, in most of the cases,
it will not cause an error if some edges are missing from the input; see (7.5) and
Remark 7.8 later.

Figure 5. Three join-semilattices and two qn-lattices

5. Excluding some qn-sublattices

In order to outline the purpose of this section, we need the following convention.

Convention 5.1. For the rest of the paper, we assume that Theorem 2.2 fails
and (Lce;≤,∨,∧) will denote a counterexample of minimal size |Lce|. In particular,
σ(Lce;≤,∨,∧) > 83 but (Lce;≤,∨,∧) is not planar. The notation (Lce;≤,∨,∧)
will always be understood as a nearlattice (rather than, say, a qn-lattice).

We are going to prove several properties of (Lce;≤,∨,∧) until it appears that
(Lce;≤,∨,∧) cannot exist; this will imply Theorem 2.2. We begin with the following
easy lemma. As usual, a subnearlattice is proper if it is not the original nearlattice.

Lemma 5.2. Every proper subnearlattice of (Lce;≤,∨,∧) is planar.
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Proof. Let (K;≤,∨,∧) be a proper subnearlattice of (Lce;≤,∨,∧). Since |K| <
|Lce|, Theorem 2.2 holds for (K;≤,∨,∧). By Lemma 4.2 and Convention 5.1, we
obtain that 83 < σ(Lce;≤,∨,∧) ≤ σ(K;≤,∨,∧). Hence, Theorem 2.2, which is
now applicable even if it has not been proved, yields that (K;≤,∨,∧) is planar. �

For later reference, we prove the following easy lemma. Not only the statement
of the lemma but also its straightforward proof will often be referenced, explicitly or
(later) implicitly. The qn-lattice (T ′

1;≤,∨,∧) in Figure 5 is defined as follows. Let
W be the collection of the following jm-constraints: c ∨ j = e, j ∨ d = f , y ∨ z = x
for every x with two distinct lower covers y and z, and y ∧ z = x for every x with
two distinct covers y and z. Then (T ′

1;≤,∨,∧) is the qn-lattice determined by W .

Lemma 5.3. If the join-semilattice (T1;∨) given in Figure 5 is a subposet of a
finite join-semilattice (K;∨), then the nearlattice (T1;≤,∨,∧) is a subnearlattice of
the nearlattice (K;≤,∨,∧), or the qn-lattice (T ′

1;≤,∨,∧) is a sub-qn-lattice of the
nearlattice (K;≤,∨,∧).

Proof. Unless otherwise stated by subscripts, the operations will be understood in
(K;≤,∨,∧). If j 6= a ∨ b, then let j′ := a ∨ b. Clearly, j′ < j but j′ 6≤ c and
j′ 6≤ e, because otherwise we would get b ≤ c or a ≤ d, which fail. Hence, we can
replace j by j′ so that ((T1 \ {j}) ∪ {j′};≤) is (order-) isomorphic to (T1;≤). This
allows us to assume that j = a ∨ b. Since c 6≤ f , we have that c ∨ j 6≤ f . Hence, if
c ∨ j 6= e, then we can replace e by c ∨ j and we still obtain a poset isomorphic to
(T1;≤). Thus, we can assume that c∨ j = e. In the next step, based on symmetry
(reflection across a vertical line), we can similarly assume that j ∨ d = f .

Next, if c∧ j 6= a, then we replace a by a′ := c∧ j > a. Clearly, say, a′ 6≥ b since
c 6≥ b, and we get an isomorphic poset. But now we have to show that an earlier
achievement remains valid, that is, a′ ∨ b = j. This is clear again since a′ ≤ j and
so j = a ∨ b ≤ a′ ∨ b ≤ j. Hence, we can assume that c ∧ j = a. In the next step,
we can also assume j ∧d = b by symmetry. Note at this point that the order of our
steps made so far was not arbitrary. Now, there are two cases.

First, if e ∧ f = j, then the equalities assumed so far are sufficient to say that
the nearlattice (T1;≤,∨,∧) is a subnearlattice of the nearlattice (K;≤,∨,∧); for
example, c ∧ f = (c ∧ e) ∧ f = c ∧ (e ∧ f) = c ∧ j = a. In other words, denoting by
W the collection of the equalities assumed, the qn-lattice (T1;≤,∨,∧) determined
by W is the same as the nearlattice (T1;≤,∨,∧).

Second, if e ∧ f =: g > j, then {a, b, . . ., g, i, j} is a subposet isomorphic to
(T ′

1;≤). For example, c 6≤ g because otherwise we would obtain that c ≤ f . The
earlier equalities and e ∧ f = g form exactly the set of jm-constraints determining
(T ′

1;≤,∨,∧), and the lemma follows. �

Note in advance that the following lemma as well as many of the subsequent
lemmas come with associated input and output files, which are available together
with our computer program from the author’s website. Also, the extended version3

of the paper, mentioned in the “Outline” subsection of Section 1, contains all the
output files as appendices, and the input files can easily be obtained from the
output files. Note also that, as a rule, the input and output files associated with
a lemma on Xi are called LmXi.txt and LmXi-out.txt, respectively. Here i is
either a concrete natural number, or it is the letter “i” to denote a range of natural

3This is the extended version.
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numbers. Once, to differentiate between two versions, we insert “a” or ‘b” right
before ‘-out.text”. For example, Lemma 6.2 is a statement on T4 (to be defined
in due course) and the associated files are LmT4.txt and LmT4-out.txt, and the
files corresponding to the following lemma are LmSi.txt and LmSi-out.txt The
qn-lattices occurring in the lemma below have been defined in Example 4.4.

Lemma 5.4. For i = 1, . . . , 4, the qn-lattice (Si;≤,∨,∧) is not a sub-qn-lattice of
(Lce;≤,∨,∧).

Proof. Since σ(S1;≤,∨,∧) = 77, σ(S2;≤,∨,∧) = 69.5, σ(S3 ;≤,∨,∧) = 69.5, and
σ(S4;≤,∨,∧) = 64.75, computed by the program, are all less than or equal to 83,
the lemma we are proving follows from Lemma 4.2 and Convention 5.1. �

The next property of (Lce;≤,∨,∧) that we are going to prove is the following.

Lemma 5.5. The nearlattice (T1;≤,∨,∧) is not a subnearlattice of (Lce;≤,∨,∧).

The method of the proof below will be referenced as our parsing technique (with
the help of our computer program). If the reader intends to check the output file
LmT1a-out.txt, then the appendix given in Section 9 is worth reading.

Proof of Lemma 5.5. Suppose the contrary. The notation given in Figure 5 will be
in effect. The initial situation, to be denoted by (C), consists of (T1;≤) and the
operation table, that is, all equalities of the form x∨ y = z and u∧ v = w that hold
in (T1;≤,∨,∧). Note that the input file need not and does not contain the whole
operation table; it suffices to give a smaller set W of jm-constraints such that the
qn-lattice determined W in (T1;≤) is the nearlattice (T1;≤,∨,∧). In fact, it follows
from Lemma 4.2 that even a set smaller than W suffices if its σ-value is at most
83. Unfortunately, since now the σ-value of (C) is 84, which is too large for us,
further work is necessary. Note the following principle in advance; it will frequently
be used later, mostly without referencing it explicitly.

By Lemma 4.2 and Convention 5.1, if the σ-value of a
case (or situation) is at most 83, then this case (or situa-
tion) is excluded. Furthermore, if σ ≤ 83 for all possible
cases, then σ(Lce;≤,∨,∧) ≤ 83 by Lemma 4.2 and Con-
vention 5.1, which is a contradiction completing the proof.





(5.1)

Since (T1;≤,∨,∧) is planar but (Lce;≤,∨,∧) is not, there is an element h ∈
Lce \ T1. If all elements of Lce \ T1 belonged to the principal filter ↑i, then ↑i
would be planar by Lemma 5.2 and thus Lce would also be planar, which is not the
case. Hence, we can assume that h 6≥ i, and there are two cases, (C1) and (C2),
to consider. As always in the rest of the paper unless otherwise explicitly stated,
the operations will be understood in (Lce;≤,∨,∧). Before going into details, let us
agree that, in the whole paper, our convention for subcases is the following.

Case (C~y) is a subcase of Case (C~x) or, in other words, (C~x)
is a parent case of (C~y) if and only if ~x is a proper prefix,
possibly the empty prefix, of the string ~y. When dealing
with (C~y), then the assumptions and jm-constraints of all
parent cases are automatically assumed and they belong to
the situation even if this is not emphasized all the time.






(5.2)

Note that, in order to increase readability, we insert a dot after every second char-
acter of ~y when referencing (C~y).
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(C1): h and i are incomparable, in notation, h ‖ i. Let i ∨ h := k. According to
(5.2), now the situation is that of (C) together with i ∨ h = k, i < k, and h < k.
Using our computer program with the input file LmT1a.txt, we obtain that the
σ-value of the situation (C1) is 71.75; see Convention 4.6. This does not exceed 83,
so we are on the way to applying (5.1). (Alternatively, (5.1) excludes this case.)

(C2): h < i. This case branches into two subcases.
(C2a): h < a and h < b. Then we can assume that a ∧ b = h since otherwise we

can replace h by a ∧ b. The σ-value of the situation is 73.5.
(C2b): h > a and h > b. Then h ≥ j = a ∨ b. By (5.2), h < i. But h /∈ T1,

whence j < h < i. Using that e ∧ f = j, e ∨ f = i, and e ‖ f , it follows that h ‖ e
or h ‖ f . By symmetry, we can assume that h ‖ e. Our argument splits according
to the value of e ∨ h. First, if (C2b.1): e ∨ h = i, then σ = 77. Second, if (C2b.2)
e ∨ h =: k is a new element, then k < i and σ = 66.5. By (5.1), (C2a) and (C2b)
are excluded, whence there remains only one subcase at this level of parsing: h ‖ a
or h ‖ b. By symmetry, it suffices to deal only with the former.

(C2c): h ‖ a. There are six subcases depending on h∨a. Note that h∨a ≤ i and
h ∨ a cannot be b or d, because they are not in the filter ↑a. If (C2c.1): h ∨ a =: k
is a new element, then h < k, a < k, k < i, and σ = 74.5. If (C2c.2): h ∨ a = c,
then σ = 64.5. For (C2c.3): h ∨ a = j, we have that σ = 75.5. (C2c.4): h ∨ a = e
gives that σ = 65.5. The σ-value of (C2c.5): h ∨ a = f is 67.5. Finally, (C2c.6):
h ∨ a = i yields that σ = 68.5. By (5.1), (C2c) is excluded.

We have parsed all subcases, in other words, the parsing tree is complete. By
(5.1), the proof of Lemma 5.5 is complete. �

The lemma below is much easier; the qn-lattice (T ′
1;≤) has been defined right

before Lemma 5.3. The file associated with this lemma is LmT1b-out.txt .

Lemma 5.6. The qn-lattice (T ′
1;≤) is not a sub-qn-lattice of (Lce;≤,∨,∧).

Proof. Since σ(T ′
1;≤,∨,∧) = 81, Lemma 4.2 and Convention 5.1 apply. �

Now, we are in the position to prove the following statement.

Lemma 5.7. The poset (T1;≤), given by Figure 5, is not a subposet of the near-
lattice (Lce;≤,∨,∧).

Proof. Combine Lemmas 5.3, 5.5, and 5.6. �

Next, let (T2;≤,∨,∧) be the seven-element qn-lattice defined by Figure 5 and
determined by the set W := {a∨ b = C, b∨ c = a, c∨ a = B, A∨B = i, B ∨C = i,
C ∨ A = i} of jm-constraints. Note that W is redundant. Note also that (T2;∨) is
the join-semilattice freely generated by {a, b, c} and that Dom(∧) = ∅.

Lemma 5.8. The qn-lattice (T2;≤,∨,∧) is not a sub-qn-lattice of the nearlattice
(Lce;≤,∨,∧).

Proof. Suppose the contrary. A routine argument, similar to the proof of Lemma 5.3,
shows that B∧C = a, C∧A = b, and A∧B = c can be assumed, because otherwise
we can easily enlarge a, b, and c. So, in the rest of the proof, we add these three
equalities to the set of jm-constraints defining the qn-lattice (T2;≤,∨,∧). So, from
now on in the proof, (T2;≤,∨,∧) is a nearlattice. Since σ(T2;≤,∨,∧) = 90 is rather
large, a whole hierarchy of cases have to be considered. Since (T2;≤,∨,∧) is planar
and it is a sub-qn-lattice of the nonplanar nearlattice (Lce;≤,∨,∧), it follows that
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Lce \ T2 is nonempty. By Lemma 5.2, its filter ↑i is planar. Hence, Lce \ T2 is not
included in this filter, because otherwise, as the glued sum of two planar nearlat-
tices, (Lce;≤,∨,∧) would be planar. So, we can pick an element d ∈ Lce such that
d 6≥ i; so either d ‖ i, or d < i. If (C1): d ‖ i, then with d ∨ i := j, we obtain that
σ = 75.5.

(C2): d < i; this case splits into two subcases. First, assume that (C2a): d < a,
d < b, and d < c. Then the principal filter ↑d in (Lce;≤,∨,∧) is a lattice by (4.1).
In this lattice, {A = b ∨ c, B = a ∨ c, C = a ∨ b} generate an 8-element boolean
sublattice by, say, Grätzer [21, Lemma 73]. By the program or Czédli [13, Lemma
2.7], the σ-value of this boolean sublattice is 74, whereby (5.1) excludes (C2a).
The conjunction of d > a, d > b and d > c is also excluded, since it would lead to
d ≥ a∨ b∨ c = i, contradicting the choice of d. Hence, using that (C2a) has already
been excluded, d is incomparable with at least one of a, b, and c. By symmetry, we
can assume that d ‖ a. So, the second subcase is (C2b): d ‖ a. Since a∨d ∈ ↑a\{a},
we have that a ∨ d ∈ {B, C, i, e}, where e denotes a new element such that e < i
since a, d < i. So there are exactly four subcases; namely, (C2b.1): a ∨ d = e,
(C2b.2): a ∨ d = B, (C2b.3): a ∨ d = C, and (C2b.4): a ∨ d = i, but all of them is
excluded by (5.1) since the corresponding σ-values are 77.5, 80, 80, and 81. (Note
that (C2b.3) does not need a separate computation since it follows from (C2b.2)
by B–C symmetry.) By (5.1), (C2b) is excluded and Lemma 5.8 is concluded. �

An element in a poset is meet irreducible if it has exactly one cover. If an ele-
ment x has at least two covers, then it is meet-reducible, no matter whether any
meet resulting in x is defined in the qn-lattice we deal with. Except for the single-
ton nearlattice (or join-semilattice), which is surely distinct from (Lce;≤,∨,∧), a
minimal element is either meet irreducible, or meet reducible.

Lemma 5.9. Every minimal element of (Lce;≤,∨,∧) is meet reducible.

Proof. Suppose the contrary, and let u ∈ Lce be a meet irreducible minimal element.
Clearly, (Lce \ {u};≤,∨,∧) is a proper subnearlattice of Lce. This subnearlattice
is planar by Lemma 5.2. With reference to Corollary 3.5, (Lce;≤,∨,∧) is obtained
from this subnearlattice, playing the role of (L;≤,∨,∧), and the two-element lattice,
acting as (K;≤,∨,∧), by the construction described there. Hence, (Lce;≤,∨,∧) is
planar by Corollary 3.5, which is a contradiction as required. �

6. Sub-nearlattices containing some minimal elements of (Lce;≤,∨,∧)

Although (Lce;≤,∨,∧) is a nearlattice, sometimes we need its join-semilattice
reduct, (Lce;∨); for example, in the following lemma. The join-semilattice (T3;∨)
is defined by Figure 5, where the notations of its elements are also given.

Lemma 6.1. The join-semilattice (T3;∨) cannot be a subsemilattice of the join-
semilattice (Lce;∨) so that a and b (the black-filled elements in the figure) are
minimal elements in (Lce;∨).

Proof. Suppose contrary. Replacing b by d ∧ e if necessary, we can assume that
d ∧ e = b. By Lemma 5.9; a has two distinct covers, p and q; clearly, p ∧ q = a.
Similarly, u ∧ v = c with distinct covers u and v of c. Observe that

{p, q} ∩ {u, v} = ∅, (6.1)
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because a common cover x of a and c would satisfy x ≥ a ∨ c = i but then
a < d < i ≤ x would contradict a ≺ x. By (5.1), we exclude case (C1): {p, q} ⊆ ↓d
and {u, v} ⊆ ↓e since its σ-value is 63.25. Note, in advance, that (6.1) will also
be valid for the rest of cases. Next, we deal with the case when exactly one of the
previous two inequalities hold; by a–c-symmetry, this is case (C2): {p, q} ⊆ ↓d but
{u, v} 6⊆ ↓e. Let, say, u /∈ ↓e. Observe that u 6> e since otherwise c ≺ u would not
hold. Hence, u ‖ c. We will not use v because it may equal e. Since c ≤ e ∧ u < u
and c ≺ u, we have that e∧u = c. If (C2a): u∨e is an “old element”, then u∨e = i
(the only old element larger than e), u < i, and σ = 73. Otherwise, if (C2b):
u∨ e =: w is a new element, then σ = 76.25. Hence, (5.1) excludes (C2). The next
case is (C3): {p, q} 6⊆ ↓d and {u, v} 6⊆ ↓e. Let, say, p 6≤ d and u 6≤ e; we will not
work with q and v. We still have that e ∧ u = c and u ‖ e. Similarly, d ∧ p = a
and p ‖ d. At present, {a, b, c, d, e, p, u, i} is the set of old elements; only i from the
old elements can be but need not be an upper bound of {d, p}, and the same holds
for {e, u}. If both d ∨ p and e ∨ u are old elements, then (C3a): d ∨ p = e ∨ u = i
and σ = 81. If only one of the two above-mentioned joins is a new element, then
symmetry allows us to assume that (C3b): d ∨ p =: x is new and e ∨ u = i is old,
and then σ = 81.5. Next, if (C3c): p ∨ d =: x and u ∨ e =: y are distinct new
elements, then either (C3c.1): x ∨ y =: z is a new element and σ = 64.875, or
(C3c.2): x ∨ y = i and σ = 62. If (C3d): p ∨ d = u ∨ e, then d ∨ p = e ∨ u =: x is
a new element since (5.1) excludes (C3a), x > i since x ≥ a ∨ c = i, and σ = 71.
Thus, (5.1) completes the proof. �

The join-semilattice (T4;∨) is defined in Figure 5.

Lemma 6.2. The join-semilattice (T4;∨) cannot be a subsemilattice of the join-
semilattice (Lce;∨) so that a, b and c (the black-filled elements in the figure) are
minimal elements in (Lce;∨).

Proof. Suppose the contrary. By Lemma 5.9, there are elements p, q, e, f, u, v ∈ Lce

such that p and q are distinct covers of a, the elements e and f are those of b,
and u and v are those of c. Let us agree that {p, e, u} ∩ {d, i} = ∅, whereby
{p, e, u}∩{a, b, c, d, i}= ∅ and we can always use the elements p, e, and u. However,
q, f , and v will be used only if they are distinct from d, d, and i, respectively. This
means that mostly when, say, v occurs in the argument, then v 6= i is assumed
even if this is not mentioned again, and similarly for q and f , which are mentioned
typically when they are distinct from d. Note that if, say, both u and v are used
“at c”, then the jm-constraint u ∧ v = c is included in the situation, and similarly
at a and b. The inequalities a < p, b < e, and c < u are permanent in the situations
but if, say, a < p is the only occurrence of p, then the element p could be omitted
without changing the σ-value. Now, the parsing tree will be larger than in the
previous proofs. Note at this point that whenever a case is excluded, then this
always happens by (5.1) even if (5.1) is not referenced. Furthermore, when a new
case or subcase begins, all the previous ones have already been excluded even if
this is not mentioned.

(C1): u ≤ i and v ≤ i. More precisely, c has two distinct covers in ↓i and they
are denoted by u and v. Then, since c ≺ u < u ∨ v ≤ i, we have that u < i and
v < i. As we have already mentioned, u ∧ v = c.

(C1a): u ∨ v = i. Now, we have to look at a, and then b.
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(C1a.1) {p, q} ⊆ ↓d. Then p ∧ q = a and p ∨ q ≤ d. Observe that none of p
and q covers b, because otherwise this cover of a would be greater than or equal to
d = a∨b, which would contradict a ≺ p < d. Now if (C1a.1a): e ‖ d, then b ≺ e and
b ≤ d ∧ e < e imply that d ∧ e = b and we have that σ = 76.5; otherwise (C1a.1b):
f exists, e ∧ f = b, and σ = 75.875. Hence, by (5.1), (C1a.1) is excluded.

(C1a.2): {p, q} 6⊆ ↓d. That is, {p, q} /∈ ↓d, and we can chose p outside ↓d by p–q
symmetry; q will not be used because we do not know if it is equal to or distinct
from d. Since a ≺ p, we obtain easily that p∧ d = a. Observe that p∨ d is either i,
the only old element larger than d, or a new element x.

(C1a.2a): p ∨ d = i. First, (C1a.2a.1): {e, f} ⊆ ↓d yields that e ∧ f = b and
σ = 72. Second, assume that one of e and f , say e, is not in ↓d, so (C1a.2a.2):
e 6≤ d, that is, d ∧ e = b. Now (C1a.2a.2a): d ∨ e = i yields that σ = 81.5 while
(C1a.2a.2b): d ∨ e =: x, a new element, leads to σ = 76.75. Hence, by (5.1),
(C1a.2a) is excluded.

(C1a.2b): p ∨ d =: x is a new element. First, let (C1a.2b.1): x < i. Then
(C1a.2b.1a): {e, f} ⊆ ↓d gives that σ = 61.625 while (C1a.2b.1b): {e, f} 6⊆ ↓d
and, say, e 6≤ d yields to d ∧ e = b and σ = 76.5. Hence, by (5.1), (C1a.2b.1) is
excluded. Second, let (C1a.2b.2): i < x. Then either (C1a.2b.2a): {e, f} ⊆ ↓d and
σ = 61.125, or say (C1a.2b.2b): e 6≤ d and we obtain that e ∧ d = b and σ = 74.5.
By (5.1), (C1a.2b.2) is excluded. Third, if (C1a.2b.3): x ‖ i, then x ∨ i =: y is a
new element and σ = 65.75. Hence, (C1a.2b), (C1a.2), and (C1a) are excluded.

(C1b): u ∨ v =: g < i is a new element.
(C1b.1): {p, q} ≤ d and q ≤ d. Then p ∧ q = a and σ = 80, whence this case is

excluded.
(C1b.2): {p, q} 6≤ d and, say, p 6≤ d. Then p ∧ d = a, and we continue similarly

to (C1a.2).
(C1b.2a): d ∨ p = i (the only possibility that d ∨ p is an old element). Then

(C1b.2a.1): {e, f} ⊆ ↓d gives that e ∧ f = b and σ = 64.625. Otherwise, if
{e, f} 6⊆ ↓d, then we can assume that e 6≤ d, so (C1b.2a.2): d ∧ e = b, leading to
σ = 78.25. Hence, (C1b.2a) is excluded.

(C1b.2b): d ∨ p =: x is a new element. Now (C1b.2b.1): x < i gives that
σ = 76.5, (C1b.2b.2): i < x leads to σ = 76, and (C1b.2b.3): x ‖ i yields that
x∨ i =: y is a new element and σ = 58.25. Hence, (C1b.2b) is excluded, and so are
(C1b), and (C1).

(C2): u ‖ i. (Apart from u–v symmetry, this is the opposite of (C1) even if
v = i.) Then i ∨ u =: g is a new element and u∧ i = c.

(C2a): {p, q} ⊆ ↓d. Then p ∧ q = a and p ∨ q ≤ d. As in case (C1a.1), none of
p and q covers b. There are two subcase. First, let (C2a.1): p∨ q = d. If (C2a.1a):
{e, f} ⊆ ↓d, then e ∧ f = b and σ = 61.625. Otherwise (even if f = d) we can
assume that (C2a.1b): d ∧ e = b, which gives that σ = 72.5. Hence, (C2a.1) is
excluded. Second, if (C2a.2): p ∨ q =: x < d is a new element, then σ = 81.25.
Thus, (C2a) is excluded.

(C2b): {p, q} 6⊆ ↓d and, say, p /∈ ↓d. Then p ∧ d = a. Depending on p ∨ d,
there are three subcases, because only two of the old elements belong to ↑p ∩ ↑d.
First, let (C2b.1): p ∨ d = i. Then either (C2b.1a): {e, f} ⊆ ↓d, whence e ∧ f = b
and σ = 65.5, or (C2b.1b): {e, f} 6⊆ ↓d and, say, e /∈ ↓d, whence e ∧ d = b and
σ = 81.5. Hence, (C2b.1) is excluded. Second, let (C2b.2): p ∨ d = g. Then either
(C2b.2a): {e, f} ⊆ ↓d, so e ∧ f = b and σ = 65, or (C2b.2b): {e, f} 6⊆ ↓d and, say,
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e /∈ ↓d, whereby e ∧ d = b and σ = 79.5. Hence, (C2b.2) is excluded. Third, if
(C2b.3): p ∨ d =: x is a new element, then either (C2b.3a): {e, f} ⊆ ↓d, e ∧ f = b,
and σ = 61.75, or (C2b.3b): d ∧ e = b allows only three old elements larger than d
and, thus, splits into (C2b.3b.1): d ∨ e = i with σ = 72.25, (C2b.3b.2): d ∨ e = x
with σ = 72.75, (C2b.3b.3): d ∨ e = g with σ = 70.75, and (C2b.3b.4): d ∨ e =: y,
a new element, with σ = 75. Hence, (C2b.3) is excluded, and so are (C2b), and
(C2). Finally, (5.1) completes the proof of Lemma 6.2. �

7. Sub-qn-lattices with entries and anchors

By Czédli [13], if (L;≤,∨,∧) is a finite lattice (not only a nearlattice) that
satisfies σ(L;≤,∨,∧) > 83, than (L;≤,∨,∧) is planar. From our perspective, this
result is equivalent to the following lemma; see Convention 5.1 for the notation.

Lemma 7.1 (Czédli [13]). The nearlattice (Lce;≤,∨,∧) has at least two minimal
elements.

If (Lce;≤,∨,∧) has only two minimal elements, than condition (7.1) below clearly
holds.

Definition 7.2. With the assumption that

any two distinct minimal elements of (Lce;≤,∨,∧)
have the same join, which we denote by m,

}
(7.1)

we introduce the following notations and concepts. The filter M := ↑m is called
the kernel of (Lce;≤,∨,∧). For a minimal element x̃ of (Lce;≤,∨,∧), the set
W (x̃) := ↑x̃ \M is the wing of x̃. An element v ∈ M \ {m} is called an x̃-entry if it
has a lower cover in the x̃-wing W (x̃). Let us emphasize that m is not an x̃-entry.
If v is an x̃-entry and u ∈ W (x̃) is a lower cover of v, then u is an x̃-anchor of v
and the edge u ≺ v is an x̃-bridge. By an entry, an anchor, or a bridge, we mean
an x̃-entry, an x̃-anchor, or an x̃-bridge, respectively, for some minimal element x̃.

Lemma 7.3. Assuming (7.1), let x̃ be a minimal element of (Lce;≤,∨,∧). Then
every wing is an order ideal (also known as a down-set). The wing W (x̃) is the
set of all y ∈ Lce such that x̃ is the only minimal element of the principal ideal
↓y. If ỹ is also a minimal element and ỹ 6= x̃, then u ‖ v holds for all u ∈ W (x̃)
and v ∈ W (ỹ); in particular, then W (x̃) ∩ W (ỹ) = ∅ and no x̃-anchor is a ỹ-
anchor. Finally, an element of Lce is either in the kernel M , or it is in a uniquely
determined wing W (x̃).

Proof. Since is M is a filter also in ↑x̃, it is evident that W (x̃) := ↑x̃ \ M is an
order ideal. The second part follows from the fact every element above two distinct
minimal elements are in the kernel ↑m = M . If, in spite of the assumptions, u and
v are comparable, say, u ≤ v, then x̃ ≤ u ≤ v would lead to x̃ ∈ ↓v ⊆ W (ỹ) and so
ỹ ≤ x̃, a contradiction. Finally, if w ∈ Lce, then take a minimal element x̃ of Lce

such that x̃ ≤ w. If x̃ is the only such element, then w ∈ W (x̃). Otherwise, there
exists a minimal element ỹ ∈ ↓w \ {x̃}, and w ≥ x̃∨ ỹ = m yields that w ∈ M . �

Lemma 7.4. Assuming (7.1), let x̃ be a minimal element of (Lce;≤,∨,∧), and let
i be a minimal x̃-entry with an x̃-anchor c. Then for every y ∈ Lce, if m ≤ y < i,
then c ∧ y = c ∧m.
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Proof. Let y = u0 � u1 � u2 � · · · � un = c∧ y be a maximal chain in the interval
[c∧y, y]. Since wings are order ideals and c ∈ W (x̃), we have that c∧y ∈ W (x̃). So,
c∧y = un /∈ M but u0 = y ∈ M . Hence, there is a least subscript t ∈ {0, . . . , n−1}
such that ut ∈ M but ut+1 /∈ M . Since ut+1 ≥ un = c ∧ y ∈ W (x̃) ⊆ ↑x̃, we have
that ut+1 ∈ ↑x̃. Thus, ut+1 ∈ ↑x̃\M = W (x̃). Now if ut 6= m, then ut is an x̃-entry
with x̃-anchor ut+1, but this is impossibly since ut ≤ y < i and i is a minimal
x̃-entry. Hence, ut = m and so c∧ y = un ≤ ut = m, that is, c ∧ y ≤ m. Using this
inequality and m ≤ y, we obtain that c∧ y = (c∧ y) ∧m = c∧ (y ∧m) = c ∧m, as
required. �

The general assumption for the rest of this section, which is stronger than (7.1),
is the following.

(Lce;≤,∨,∧) has exactly two minimal elements, ã and b̃; the
notations and concepts given in Definition 7.2 will be in effect.

(7.2)

Note that in the input and output files, we write A and B instead of ã and b̃,
respectively. Consider the qn-lattice (T5;≤,∨,∧) determined by Figure 6 and

W ∗ := {a ∨ b = m, c ∨ m = i, d ∨ m = i, e ∨ m = j}. (7.3)

Lemma 7.5. Assuming (7.2), the qn-lattice (T5;≤,∨,∧) cannot be a sub-qn-lattice

of (Lce;≤,∨,∧) so that a = ã, b = b̃, and the thick edges are bridges.

Remark 7.6. Observe that an equivalent assumption for Lemma 7.5 is that a = ã,
b = b̃, and the thick edges correspond to covering pairs (that is, edges) in the
nearlattice (Lce;≤,∨,∧). Indeed, then the jm-constraint a∨ b = m guarantees that
m ∈ T5 is m ∈ Lce, and since the order embedding (T5;≤) → (Lce;≤) preserves
incomparability, it follow easily that the covering pairs corresponding to the thick
edges are bridges in (Lce;≤,∨,∧). Conversely, we know from Definition 7.2 that
bridges are covering pairs. Without separate mentioning, analogous observations
hold for the rest of the lemmas where bridges are mentioned.

Proof of Lemma 7.5. Suppose the contrary. If c ∧ m > ã, then we modify a to
c∧m =: a. Similarly, d∧m =: b. Since thick edges correspond to bridges and, thus,
to coverings, see Remark 7.6, we obtain easily that e∧ i = c since c ≤ e∧ i < i. So,
from now on, the equalities from the set W5 := {c ∧ m = a, d ∧ m = b, e ∧ i = c}
hold. Therefore, we can assume that T5 is determined by the set W ∗ ∪ W5 of
constraints. However, we will occasionally rely on the equality ã ∨ b̃ = m and the
inequalities provided ã ≤ a and b̃ ≤ b. First, we show that

for every x ∈ Lce such that x /∈ T5 = {a, b, c, d, e, i, j, m},
we have that x < a, or x < b, or x > m.

}
(7.4)

Suppose the contrary and take an x that violates (7.4); then x /∈ T5, x 6< a, x 6< b,
and x 6> m. First, assume that (C1): x ‖ a. If (C1a): x ≥ ã, then x∧ a =: y ≥ ã is

a new element, m = ã∨ b̃ ≤ y ∨ b ≤ a∨ b ≤ m gives that y ∨ b = m, and σ = 66.75
excludes (C1a) by (5.1). Second, assume that (C1b): x 6≥ ã. Then x ≥ b̃ since

there are only two minimal elements, whence a∨ x ≥ a∨ b̃ = m. Since ↑m contains
only three old elements, we have that (C1b.1): a∨x = m and σ = 74.5, or (C1b.2):
a ∨ x = i and σ = 74.5, or (C1b.3): a ∨ x = j and σ = 70, or (C1b.4): a ∨ x =: y
is a new element and σ = 76.25. Hence, by (5.1), (C1b) and (C1) are excluded.
Therefore, since x 6< a and x /∈ T5 have been assumed, x > a. Second, assume that
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(C2): x ‖ b (in addition to x > a), and take b ∨ x. Since b ∨ x ≥ b ∨ a = m and
|T5 ∩ ↑m| = 3, there are only four possibilities for b∨ x; namely: (C2a): b∨ x = m,
(C2b): b∨x = i, (C2c): b∨x = j, and (C2d): b∨x =: y is a new element. Since their
σ-values are 70.5, 76.5, 72, and 77.25, respectively, (5.1) excludes (C2). Combining
this fact with x /∈ T5 and x 6< b, we obtain that x > b. But then x ≥ a ∨ b = m,
x 6> m and x /∈ T5 form a contradiction, which proves (7.4).

Clearly, for every y ∈ E := ↓a∪ ↓b∪ [i, j] ∪ ↑j, the poset (T5 ∪ {x};≤) is planar.
Therefore, we can pick an element y ∈ Lce \ (T5 ∪ E); it follows from (7.4) that
m < y. If (C3) y ‖ j, then we let y ∨ j =: z to obtain that σ = 73.5, which
is impossible. This fact combined with y /∈ ↑j gives that y < j. Since y /∈ [i, j]
but y ∈ [m, j], we obtain easily that y ‖ c, y ‖ d, and y ‖ e; for example, c ≤ y
would lead to i = c ∨ m ≤ y ≤ j, which would contradict y /∈ [i, j]. By (7.4), if
e ∧ y /∈ T5, then either e ∧ y < a, contradicting e, y ∈ ↑a, or e ∧ y < b, leading to
the contradiction a ≤ e ∧ y < b, or e ∧ y > m, contradicting e 6≥ m. Hence e ∧ y
is in T5 ∩ ↓e, but it is neither e, nor c since e ‖ y and c ‖ y. Similarly, c ∧ y is in
T5 ∩ ↓c but c∧ y 6= c and d ∧ y is in T5 ∩ ↓d but d ∧ y 6= d. Hence, (C4): c∧ y = a,
d ∧ y = b, e ∧ y = a, and σ = 70 completes the proof by (5.1). �

Consider the qn-lattice (T6;≤,∨,∧) determined by W ∗ from (7.3) and Figure 6.

Lemma 7.7. Assuming (7.2), the qn-lattice (T6;≤,∨,∧) cannot be a sub-qn-lattice

of (Lce;≤,∨,∧) so that a = ã, b = b̃, the thick edges are bridges, and i is a minimal

b̃-entry.

Proof. Suppose the contrary. The thick edges are coverings in (Lce;≤,∨,∧), whence

it follows that c ∧ j = e. We can replace a = ã and b = b̃ by e ∧ m and d ∧ m,
respectively. Then d ∧ j = b by Lemma 7.4. Hence, after letting W ′

6 := {e ∧ m =
a, d∧m = b, d∧ j = b, c∧ j = e}, we can assume that (T6;≤,∨,∧) is determined
by W ∗ ∪ W ′

6; see (7.3). Then σ(T6;≤,∨,∧) = 80, and (5.1) applies. �

The following remark will be useful in the proofs of several statements.

Remark 7.8. Assume that (L;≤1) and (L;≤2) are posets such that for every
x, y ∈ L, if x ≤2 y, then x ≤1 y. Let W be a set of jm-constraints over L. For
i ∈ {1, 2}, let (L;≤i,∨i,∧i) be the qn-lattice determined by W and (the diagram of)
(L;≤i). Then σ(L;≤1,∨1,∧1) ≤ σ(L;≤2,∨2,∧2). In particular, if we remove an
edge from a diagram, then the σ-value of the situation (determined by a given set of
jm-constraints) increases, provided we do not make use of some new incomparability
x ‖2 y (that is, x ‖2 y such that x ≤1 y or y ≤1 x).

The statement of this remark is trivial: if we have less comparable pairs, then
the axioms (A1)–(A5) from Definition 4.1 bring less jm-constraints in, so more
subsets will obey the jm-constraints, whence σ increases. As we know from (5.1),
our permanent intention is show that the σ-values are small enough. Hence, the
practical value of Remark 7.8 is the following.

In our proofs, we can delete any edge of a diagram provided we will
not use the new incomparability and we still can show that σ ≤ 83.

}
(7.5)

Of course, if the σ-value becomes too large after deleting an edge x ≺ y (or x < y),
then our attention turns to the new join x∨ y, which is either an old element, or a
new one, and even to x ∧ y if it exists.
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Figure 6. The qn-lattices (T`;≤,∨,∧), ` ∈ {5, 6, . . . , 10}

Consider the qn-lattice (T7;≤,∨,∧) determined by W ∗ from (7.3) and Figure 6;
the dotted edge is taken into account.

Lemma 7.9. Assuming (7.2), the qn-lattice (T7;≤,∨,∧) cannot be a sub-qn-lattice

of (Lce;≤,∨,∧) so that a = ã, b = b̃, and the thick edges are bridges.

Proof. Suppose the contrary. We can replace a = ã and b = b̃ by c∧ m and d ∧m,
respectively. Note that now a ≤ e may fail; the purpose of the dotted edge is to
remind us of this fact. Since c ‖ e, from e < c ∨ e ≤ j and e ≺ j we obtain that
c∨ e = j. Similarly, we obtain that b∨ e = j. Hence, after deleting the dotted edge
from the diagram and letting W ′

7 := {c ∧ m = a, d ∧ m = b, c ∨ e = j, b ∨ e = j},
we can assume that (T7 ;≤,∨,∧) is determined by W ∗ ∪ W ′

7; see (7.3) and (7.5).
Clearly, e 6< a since otherwise we would get that e ≤ i by transitivity. Hence, based
on the relation between a and e, there are two main cases. First, if (C1): a ‖ e,
then a and the ã-anchor e are in ↑ã, so we can add their meet a ∧ e =: x to T7, we
have that b ∨ x = m (since m = b̃ ∨ ã ≤ b ∨ x ≤ b ∨ a ≤ m) and a ∨ e = j (since
e < a∨ e ≤ j and e ≺ j), and we obtain that σ = 79.5. Hence, (5.1) excludes (C1).

Second, we assume that (C2): a < e. Depending on c∧e, there are two subcases.
We begin with (C2a): c∧e = a, which splits again depending on e∧ i. The analysis
for (C2a.1): e ∧ i = a runs as follows. Since the situation at present describes a
planar qn-lattice and (T5 ∪ {y};≤) remains planar for every y ∈ ↑j, there exists
an additional element y ∈ Lce \ (T∪↑j). So y ‖ j or y < j. If (C2a.1a): y ‖ j,
then letting j ∨ y =: z, σ = 71.5. If (C2a.1b): y < j, then, using that e ≺ j,
either (C2a.1b.1): y ‖ e and so e ∨ y = j with σ = 83, or (C2a.1b.2): y < e, when

y ≥ ã since b̃ 6≤ e ∈ W (ã). So (C2a.1b.2a): a < y with σ = 70, or (C2a.1b.2b):
ã ≤ y < a and so y ∨ b = m and σ = 75.5, or (C2a.1b.2c): y ‖ a and ã ≤ a∧ y =: u
with u ∨ b = m and σ = 57.75. (Note that with u playing the role of y, even
(C2a.1b.2b) excludes (C2a.1b.2c).) At this stage, (5.1) excludes (C2a.1). Since
(C2a.2): e ∧ i =: v > a is also excluded by its σ-value 76.5, (C2a) is impossible.
So is (C2b): c ∧ e =: x > a by its σ = 82. By (5.1), the proof of Lemma 7.9 is
complete. �

Consider the qn-lattice (T8;≤,∨,∧) determined by W ∗ from (7.3) and Figure 6.

Lemma 7.10. Assuming (7.2), the qn-lattice (T8;≤,∨,∧) cannot be a sub-qn-

lattice of (Lce;≤,∨,∧) so that a = ã, b = b̃, the thick edges are bridges, and i is a

minimal b̃-entry.

Proof. Suppose the contrary. As usual, we can replace a = ã and b = b̃ by e ∧ m
and d ∧ m, respectively. But note then a ≤ c may fail; this is what the dotted
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edge indicates. However, c 6≤ a since otherwise we would obtain that c ≤ e. By
Lemma 7.4, d ∧ j = b. Using that c ≺ i, c ‖ e, c ‖ b, and {c, e, b} ⊆ ↓i, we obtain
easily that c∨e = i and c∨b = i. Therefore, after letting W ′

8 := {e∧m = a, d∧m =
b, d ∧ j = b, c ∨ e = i, c ∨ b = i} and removing the dotted edge from the diagram,
see (7.5), we can assume that (T8;≤,∨,∧) is determined by W ∗ ∪ W ′

8; see (7.3). If
(C1): c ‖ a, then letting c ∧ a =: x ≥ ã and adding x to T8, we obtain σ = 83,
which is excluded by (5.1). So let (C2): a < c. Then either (C2a): c ∧ j = a, the
only element of T8 ∩ ↓c ∩ ↓j, and σ = 77, or (C2b): c ∧ j =: x > a and σ = 81.5.
Thus, (5.1) applies and completes the proof. �

Next, let (T9;≤,∨,∧) be the qn-lattice determined by the set

{a ∨ b = m, c ∨ m = i, d ∨ m = e}

of jm-constraints and Figure 6; see Definition 4.3(v) about the dashed edge.

Lemma 7.11. Assuming (7.2), the qn-lattice (T9;≤,∨,∧) cannot be a sub-qn-

lattice of (Lce;≤,∨,∧) so that a = ã, b = b̃, and the two thick edges are bridges.

Proof. Suppose the contrary. As usual, see the proof of Lemma 7.5 or that of
Lemma 7.10, we can assume that c ∧ m = a ≥ ã and d ∧ m = b ≥ b̃. Since c ≺ i
and d ≺ e, see Remark 7.6, we also have that b ∨ c = i and a ∨ d = e. The parsing
runs as follows.

(C1): f ∨ e = i. There are two subcases. First, if (C1a): f ∧ e = m, then either
(C1a.1): e ∧ g = m and σ = 79.5, or (C1a.2): e ∧ g =: x > m and σ = 70. Second,
if (C1b): f ∧ e =: y > m, then either (C1b.1): c ∧ f = a and σ = 79.5, or (C1b.2):
c ∧ f =: z > a (where z is distinct from y because otherwise we would obtain that
c ≥ z = y > m) and σ = 74.5. Hence, (C1) is excluded by (5.1).

(C2): f ∨ e =: p < i. Again, there are two subcases. First, if (C2a): e ∧ f = m,
then either (C2a.1): f ∧ g = m and σ = 81.75, or (C2a.2): f ∧ g =: q > m
(but q 6= p since q < f < p) and σ = 69. Hence, (C2a) is excluded. Second, if
(C2b): e ∧ f =: x > m, then either (C2b.1): c ∧ f = a and σ = 77.75, or (C2b.2)
c ∧ f = y > a, which is distinct from x since otherwise c > y = x > m would
contradict c ‖ m, and σ = 72.625. Hence, (C2b) and (C2) are excluded, and (5.1)
completes the proof of Lemma 7.11. �

Next, we consider the qn-lattice (T10;≤,∨,∧) determined by the set W ∗+ :=
W ∗ ∪ {m ∨ f = k} of jm-constraints, see (7.3), and the diagram given in Figure 6;
the diagram is understood as follows. The dotted edges stand for a < c and b < d,
but they are not necessarily coverings and, later in the proof, we can drop a < c
and b < d. According to Definition 4.3(v), the dashed edges mean that either e < c,
or e ‖ c, and similarly, either f < d, or f ‖ d. Since there are four possibilities
to choose the actual meanings of the dashed edges, we have defined four distinct
versions of (T10;≤,∨,∧); the following lemma is stated for all of them.

Lemma 7.12. Assuming (7.2), no version of the qn-lattice (T10;≤,∨,∧) can be a

sub-qn-lattice of (Lce;≤,∨,∧) so that a = ã, b = b̃, the thick edges are bridges, i

is a minimal common ã-and-b̃-entry, j is a minimal ã-entry, and k is a minimal
b̃-entry.

Proof. Suppose the contrary. As usual, see the proof of Lemma 7.5 or that of
Lemma 7.10, we can assume that e∧m = a ≥ ã and f∧m = b ≥ b̃. Then, of course,
the two dotted edges in the figure need not mean comparability. By Lemma 7.4,
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e∧k = e∧m = a. Since the upper two thick edges stand for coverings, b∨c = i and
a ∨ d = i. (Alternatively, b ∨ c = b ∨ (ã ∨ c) = (b∨ ã) ∨ c = m ∨ c = i and similarly
for a∨d.) Therefore, after letting W ′

10 := {e∧m = a, f ∧m = b, e∧k = a, b∨ c =
i, a∨d = i}, we can assume that (T10;≤,∨,∧) is determined by W ∗+∪W ′

10. Even if
none of the dotted and dashed edges is considered, σ = 72.25. (Otherwise, if some
of these edges are also considered, σ can be slightly smaller; see Remark 7.8 and
(7.5); for example, σ = 72 if all these four edges are taken into account.) Finally,
(5.1) completes the proof of Lemma 7.12. �

Figure 7. The qn-lattices (Q`;≤,∨,∧), ` ∈ {1, . . . , 5}

Next, let Q1 be the qn-lattice determined by Figure 7 and the set

WQ := {a ∨ b = m, c ∨m = i, d ∨ m = j, e ∨ m = k} (7.6)

of jm-constraints; note that even if the dashed edge is removed from the figure, we
still assume that a < d. The general assumption for the following five lemmas is
that

the thick edges are bridges, a and b are the min-
imal elements ã and b̃ of (Lce;≤,∨,∧), i is a

minimal ã-entry, and k is a minimal b̃-entry.




 (7.7)

Lemma 7.13. If the nearlattice (Lce;≤,∨,∧) has exactly two minimal elements,
then the qn-lattice (Q1;≤,∨,∧) cannot be its sub-qn-lattice so that (7.7) holds.

Proof. Suppose the contrary. As usual, see the proof of Lemma 7.5 or that of
Lemma 7.10, after replacing ã and b̃ by appropriate meets if necessary, we assume
that c ∧ m = a and e ∧ m = b; however, then a < d need not hold. Lemma 7.4
allows us to assume that c ∧ k = a. Finally, using that d ≺ j (or that d ≥ ã), we
obtain that b ∨ d = j. Hence, the initial set of jm-constraints is

W := WQ ∪ {c ∧ m = a, e ∧ m = b, c ∧ k = a, b ∨ d = j}.

Observe that d < a is impossible since it would lead to d < m by transitivity.
Hence, based on the relation between a and b, there are only two cases. First, if
(C1): a < d, then either (C1a): d ∧ k = a, the only element in Q1 ∩ ↓d ∩ ↓k, and
σ = 77, or (C1b): d ∧ k =: x > a is a new element and σ = 71.75. Second, if (C2):
a ‖ d, then a ∧ d =: y ≥ ã, y ∨ b = m, and σ = 69.5. Thus, (5.1) completes the
proof. �

Next, let us consider the qn-lattice (Q2;≤,∨,∧) determined by Figure 7 and WQ

given in (7.6).

Lemma 7.14. If the nearlattice (Lce;≤,∨,∧) has exactly two minimal elements,
then the qn-lattice (Q2;≤,∨,∧) cannot be its sub-qn-lattice so that (7.7) holds.
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Proof. Suppose the contrary. Let v =: i ∨ j. By the same reasons as in the proof
of Lemma 7.13, we can work with the initial set

W := WQ ∪ {c ∧ m = a, e ∧m = b, c ∧ k = a, i ∨ j = v, d ∨ b = j}

again; we have to drop the assumption that a < d but we add that i < v and j < v.
Then σ = 69.5 completes the proof. �

The next qn-lattice is (Q3;≤,∨,∧), determined by Figure 7 and WQ; see (7.6).

Lemma 7.15. If the nearlattice (Lce;≤,∨,∧) has exactly two minimal elements,
then the qn-lattice (Q3;≤,∨,∧) cannot be its sub-qn-lattice so that (7.7) holds.

Proof. Suppose the contrary. Compared to the previous two proofs, the only dif-
ference is that now W := WQ ∪ {c∧m = a, e∧m = b, e ∧ i = b, b∨ d = j}. Since
d, i ∈ ↑ã, the meet d ∧ i exists. Using that Q3 ∩ ↓d ∩ ↓i ⊆ {c, i}, (C1): d ∧ i = c
with σ = 75, (C2): d ∧ i = a with σ = 74, and (C3): d ∧ i = x with σ = 78.75 are
the only cases. Hence (5.1) applies. �

For the qn-lattice (Q4;≤,∨,∧) determined by WQ from (7.6) and Figure 7, we
have the following lemma.

Lemma 7.16. If the nearlattice (Lce;≤,∨,∧) has exactly two minimal elements,
then the qn-lattice (Q4;≤,∨,∧) cannot be its sub-qn-lattice so that (7.7) holds.

Proof. Suppose the contrary. As in the proofs of Lemmas 7.13–7.15, we can work
with W := WQ ∪ {c ∧ m = a, e ∧ m = b, b ∨ d = j, e ∧ i = b, e ∧ j = b}, and
we drop the assumption that a < d. If (C1): d ∧ m = a, then σ = 79. If (C2):
d ∧ m =: x ≥ ã is a new element, then x ∨ b = m and σ = 70.5. Hence, (5.1)
completes the proof. �

Finally, for the qn-lattice (Q5;≤,∨,∧) determined by WQ from (7.6) and Fig-
ure 7, we have the following lemma.

Lemma 7.17. If the nearlattice (Lce;≤,∨,∧) has exactly two minimal elements,
then the qn-lattice (Q5;≤,∨,∧) cannot be its sub-qn-lattice so that (7.7) holds.

Proof. Suppose the contrary. As in the proofs of Lemmas 7.13–7.16, we can work
with W := WQ ∪ {c ∧ m = a, e ∧ m = b, b ∨ d = j, e ∧ i = b, e ∧ j = b}, and we
drop the assumption that a < d. Since (C1): c∧ d = a and (C2): c∧ d =: x, a new
element, give that σ = 82 and σ = 81.5, respectively, (5.1) applies. �

8. Our lemmas at work

Armed with the lemmas proved so far, we are ready to set off to prove our result.

Proof of Theorem 2.2. It has been proved in Czédli [13] that for every n ≥ 9, there
exists an n-element nonplanar lattice (L;≤,∨,∧), which is also a nearlattice, such
that σ(L;≤,∨,∧) = 83. Hence, the second part of the theorem needs no proof
here. We also know from [13] that whenever (L;≤,∨,∧) is a finite lattice with
σ(L;≤,∨,∧) > 83, then this lattice is planar. Therefore, it suffices to prove the
first part of the theorem only for nearlattices that are not lattices. For the sake
of contradiction, suppose that the theorem fails. Thus, Convention 5.1 will be in
effect. So the final target is to show that (Lce;≤,∨,∧) does not exist.
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First, assume that (Lce;≤,∨,∧) has at least three minimal elements, and pick

three distinct minimal elements, ã, b̃, and c̃. Let

k := |{{x, y} : x ∨ y = ã ∨ b̃ ∨ c̃ and {x, y} ⊆ {ã, b̃, c̃}}|.

It follows from Lemma 5.8 that k 6= 0. Similarly, Lemmas 6.1 and 6.2 yield that
k /∈ {1, 2}. Hence, k = 3; this means that for any three distinct minimal elements,

ã ∨ b̃ = ã ∨ c̃ = b̃ ∨ c̃ = ã ∨ b̃ ∨ c̃. (8.1)

Now let d̃ be an additional minimal element. Applying (8.1) first to the triplet

(ã, b̃, d̃), and then to (b̃, c̃, d̃), we have that ã∨ b̃ = b̃∨ d̃ = c̃∨ d̃, and it follows that
any two distinct minimal elements of (Lce;≤,∨,∧) have the same join. Therefore,
from now on, we can and we will rely on Definition 7.2. Next, we claim that

for every minimal element x̃ ∈ Lce, there exists an x̃-entry. (8.2)

Suppose the contrary. Then W (x̃) ∪ {m} is the interval [x̃, m], and it is planar by
Lemma 5.2. Observe that now the subset Lce \ W (x̃) is a subnearlattice. In order
to see this, let u, v ∈ Lce \W (x̃); then u ≥ ỹ and v ≥ z̃ for some minimal elements
ỹ and z̃ distinct from x̃. The intersection u ∧ v (if exists) cannot belong to W (x̃),
because otherwise x̃ ≤ u∧v ≤ u and ỹ ≤ u would give that m = x̃∨ ỹ ≤ u, we would
obtain m ≤ v similarly, whence m ≤ u∧ v would imply that u∧ v is outside W (x̃).
Since W (x̃) is an order ideal by Lemma 7.3, u∨ w is clearly outside W (x̃), and we
conclude that Lce \W (x̃) is, indeed, a subnearlattice. As a proper subnearlattice, it
is planar, again by Lemma 5.2. With (Lce \W (x̃);≤,∨,∧), (W (x̃) ∪ {m};≤,∨,∧),
and m playing the role of (L;≤,∨,∧), (K;≤,∨,∧) and u, Corollary 3.5 is applicable
and implies that (Lce;≤,∨,∧) is planar, which is a contradiction proving (8.2).

Clearly, for every minimal element x̃ of (Lce;≤,∨,∧),

if v is an x̃-entry and u is an x̃-anchor of v, then u ∨ m = v, (8.3)

since this follows from u ≺ v, m 6≤ u, and u < u ∨ m ≤ v. Next, we claim that

if ã and b̃ are distinct minimal elements of (Lce;≤,∨,∧), e is an

ã-entry, and f is a b̃-entry, then e and f are comparable elements.

}
(8.4)

For the sake of contradiction, suppose that (8.4) fails. Let c and d be an ã-anchor

of e and a b̃-anchor of f , respectively. Then c ∨ m = e and d ∨ m = f by (8.3).
We cannot have that c ≤ f since otherwise we would obtain that e = c ∨ m ≤ f .
Also, c 6≤ d, because otherwise c ≤ d ≤ f . Symmetrically, f 6≤ e and d 6≤ e. These
considerations show that the subposet {ã, b̃, j := m, c, d, e, f, i := e ∨ f} of (Lce;≤)
is isomorphic to (T1;≤); see Figure 5. This contradicts Lemma 5.7 and proves (8.4).

Next, we claim that

(Lce;≤,∨,∧) has only two minimal elements; let

us agree that they will be denoted by ã and b̃.
(8.5)

Suppose the contrary, and let ã, b̃, and c̃ be three distinct minimal elements. Pick
an entry for each of them. We know from (8.4) that these entries form a chain. Since
they are not necessarily distinct, the entries in question form a one-element, a two-
element, or a three-element chain C. Let d, e, and f be an ã-anchor, a b̃-anchor,
and a c̃-anchor of the corresponding entry, respectively, and define a := ã ∧ m,
b := b̃ ∧ m, and c := c̃ ∧ m. Since W (ã) is an order ideal, a ∈ W (ã). Similarly,

b ∈ W (b̃) and c ∈ W (c̃). By Lemma 7.3, {a, b, c} is a three-element antichain.
By (8.3), it is clear that, up to permutation of the elements a, b, c, the subset
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C∪{a, b, c, d, e, f} of Lce forms a sub-qn-lattice isomorphic to one of the qn-lattices
(S`;≤,∨,∧), ` ∈ {1, . . . , 4}, determined by Figure 4 and W ∪ W` in Example 4.4.
But this is a contradiction by Lemma 5.4, which proves (8.5).

Next, we are going to show that

ã and b̃ do not have a common entry, (8.6)

that is, no ã-entry is a b̃-entry. Suppose the contrary, and let i be a minimal
common entry of ã and b̃. In fact, since any two common entries are comparable
by (8.4), i is the least common entry of ã and b̃. Pick an ã-anchor c and a b̃-anchor

d of i. By Lemma 7.3, c ‖ d. Since ↑ã = M ∪ W (ã) = Lce \ W (b̃) is planar by
Lemma 5.2 and it is a lattice, we can fix a planar diagram D of (↑ã;≤,∨,∧). In
this diagram, the kernel M = ↑m = [m, 1Lce

] of (Lce;≤,∨,∧) is a region by Kelly
and Rival [46, Lemma 1.5]. If i was in the interior of this region, then no lower
cover of i could be outside M by Kelly and Rival [46, Lemma 1.2]. But we know
that c and d are lower covers of i outside M , and we conclude that

i is on the boundary of M , (8.7)

with respect to the fixed diagram D. By left-right symmetry, we can assume that

i is on the left boundary chain of M . (8.8)

We claim that
at least one of ã and b̃ has an entry dis-
tinct from the least common entry i.

}
(8.9)

For the sake of an additional contradiction, suppose that i is the only ã-entry and
the only b̃-entry. In order to prepare a forthcoming statement, (8.11), note that
the argument beginning here and lasting up to (8.11) will use less assumption than
what we have at present; it will use only that i is a minimal ã-entry.

Let x0 := i, let x1 be the rightmost lower cover of x0 that belongs to W (ã),
and for k > 1, let xk be the rightmost lower cover of xk−1 in the diagram D,
provided xk−1 is not the smallest element ã. Since W (ã) is an order ideal, xk is
automatically in W (ã). Denote the finite chain {x0, x1, x2, . . .} by X. We also
define another chain, Y , as follows. Let y0 = i, and let y1 be the unique lower
cover of y0 on the left boundary of M . That is, by (8.8), y1 is the leftmost lower
cover of i in M . Yet another way to define y1 is to say that y1 is the leftmost lower
cover of i that is to the right of x1. So, x1 and y1 are neighbouring lower covers of
i. As long as yk 6= ã, let yk+1 be the leftmost cover of yk in the diagram D. Let
xu = yv be the first place where, going downwards, the chains X and Y intersect
first. (This place exists, because the two chains intersect at ã.) Let X′ := X ∩ ↑xu

and Y ′ := Y ∩ ↑yv. By Kelly and Rival [46, Lemma 1.5], the interval [xu, i] is a
region in D. The chains X′ and Y ′ divide this region into three parts; with our
temporary terminology, into the left part of [xu, i] consisting of the elements on the
left of X′ (including the elements of X′), the right part of [xu, i] consisting of the
elements on the right of Y ′ (including the elements of Y ′), and the middle part of
[xu, i] consisting of those elements that are simultaneously strictly on the right of
X′ and strictly on the left of Y ′. Of course, everything here is understood modulo
the fixed diagram D of ↑ã. We claim that middle part of [xu, i] is empty. For the
sake of contradiction, suppose that h is an element of the middle part. Then there
is a maximal chain Z = {i = z0 � z1 � · · · � zt = h} in [z, i]. Since x1 and y1 are
neighbouring lower covers of i, z1 is either in the left part of [xu, i], or in the right
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part. However, if z1 is on the left part of [xu, i], then the whole Z remains in the
left part, because each of the xk+1 is the rightmost lower cover of xk for k ≥ 1 and
because Z cannot “jump over” X′ by Kelly and Rival [46, Lemma 1.2]. Similarly,
if z1 is in the right part of [xu, i], then so is the whole Z. So Z is either entirely in
the left part, or entirely in the right part, whereby Z cannot contain the element
h, which is in the middle part. This contradiction shows that the middle part is
empty and we have seen that

X′ ∪ Y ′ is a cell. (8.10)

Next, we show that m ∈ Y ′ but m /∈ X′; then, in particular, it appears that m
is not the least element of the cell given in (8.10). Since x1 ∈ W (ã) and W (x) is
an order ideal by Lemma 7.3, X′ \ {i} ⊆ W (ã) and m /∈ W (ã) yield that m /∈ X′.
Clearly, y0 = i ∈ M but yv = xu ∈ W (ã) is not in M . So there is a least subscript
k such that yk ∈ M but yk+1 /∈ M . Since we are in D, the diagram of ↑ã, we know

that yk+1 ≥ ã. Since yk+1 ≥ b̃ would lead to yk+1 ≥ ã∨ b̃ = m and yk+1 ∈ ↑m = M ,
we obtain by Lemma 7.3 that yk+1 ∈ W (ã). By the definition of Y ′, k is at least 1
and so yk < i. If we had that yk > m, then yk would be an ã-entry with ã-anchor
yk+1, but this is not possible since i is a minimal ã-entry. Hence yk 6> m. But
yk ∈ M = ↑m, and we conclude that m = yk ∈ Y ′, as required. By the definition
of Y and Y ′, the y` for ` < k are on the right boundary chain of M . Below, for
later reference, we summarize what we have just shown.

If i is a minimal ã-entry and it is on the left boundary chain of M ,
then there exists a cell in the fixed planar diagram of ↑ã such that
m and i are on the right boundary chain Y ′ of this cell, m is not
the smallest element of the cell, and Y ′ ∩ [m, i] is the same as the
intersection of [m, i] and the left boundary chain of M .





(8.11)

Next, we resume the latest assumption that i is the only ã-entry and the only b̃-
entry. However, we will not always fully exploit this assumption. For the sake of a
later reference, note in advance that

for the validity of the forthcoming (8.13), (8.14), and

(8.15), it suffices to assume that i is the unique b̃-entry,
(8.12)

that is, we will not use for a while that i is also the unique ã-entry. We claim that

whenever u ∈ W (b̃), then u ∨ m ∈ {m, i}. (8.13)

Indeed, take a maximal chain u = y0 ≺ y1 ≺ · · · ≺ ys = u ∨ m in the interval
[u, u∨m], and assume that u∨m 6= m, that is, u 6≤ m. Since y0 = u ∈ W (b̃) = ↑b̃\M

but ys = u ∨ m ∈ M , so ys /∈ W (b̃), there is a smallest subscript t such that

yt−1 ∈ W (b̃) but yt /∈ W (b̃). Since yt > yt−1 ≥ b̃ but yt /∈ W (b̃), we know from

Lemma 7.3 that b̃ is not the only minimal element in ↓yt. Hence, m = ã∨ b̃ ≤ yt and
yt ∈ M . This fact and yt−1 ≺ yt give that yt is a b̃-entry. Since u ≤ yt but u 6≤ m,

we obtain that yt 6= m, whereby yt is the same as i, the only b̃-entry. Hence, u ≤ i
and u∨m ≤ i. On the other hand, by the choice of our maximal chain, yt ≤ u∨m,
whence i = yt ≤ u ∨ m. Thus, u ∨ m = i, and we conclude (8.13). Next, armed
with (8.13), we claim that

(W (b̃) ∪ {m, i};≤,∨,∧) is a subnearlattice of (Lce;≤,∨,∧). (8.14)

In order to prove this, assume that x, y ∈ W (b̃)∪{m, i} and x ‖ y; we need to show

that x ∧ y (which exists since {x, y} ⊆ ↑b̃) and x ∨ y are in also in W (b̃) ∪ {m, i}.
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Since {m, i} is a chain but {x, y} is not, at least one of x and y is not in {m, i}.
So, we can assume that, in addition to x ‖ y, x ∈ W (b̃) and y ∈ W (b̃) ∪ {m, i}.
Since W (x̃) is an order ideal, x ∧ y is in W (x); suppose that x ∨ y is not. Then
x∨y ∈ M = ↑m by Lemma 7.3, whereby x∨y = x∨y∨m = (x∨m)∨(y∨m) ∈ {m, i}
follows from (8.13). This proves (8.14). By Lemma 5.2,

(W (b̃) ∪ {m, i};≤,∨,∧) is a planar nearlattice. (8.15)

If we had an element u ∈ W (b̃) ∪ {m, i} such that m < u < i, then (8.13) would
give that u = u∨m = i, which would contradict the inequality u < i. Hence, m is a
coatom in the nearlattice (W (b̃)∪{b̃, i};≤,∨,∧). Letting (m, i, m, ↑ã, W (b̃)∪{b̃, i})
play the role of (u, v, w, L, K), it follows from Corollary 3.6, (8.8), and (8.11) that
(Lce;≤,∨,∧) is planar, which is a contradiction. Completing the “encapsulated
indirect argument”, this proves (8.9).

Next, we continue our argument towards (8.6); i is still the least common entry.
We claim that

↓i \ {i} cannot contain both an ã-entry

and a b̃-entry simultaneously.

}
(8.16)

Suppose the contrary. Then there exist a minimal ã-entry j and a minimal b̃-entry
k such that j < i and k < i. Since i is the least common entry, j is not a b̃-entry
and k is not an ã-entry. Hence, these two entries, j and k, are distinct. Also, they
are comparable by (8.4). Since ã and b̃ play a symmetric role, we can assume that

k < j < i. In addition to the already picked ã-anchor c and b̃-anchor d of the
common entry i, choose an ã-anchor e of j and a b̃-anchor f of k. We know from
(8.3) that c∨m = i, d∨m = i, e∨m = j, and f∨m = k. Since c∨m = i > j = e∨m,
it follows that c 6≤ e, that is, e ‖ c or e < c. Similarly, f ‖ d or f < d. Of course, each
of c and e is incomparable with each of d and f by Lemma 7.3. These facts show
that, in (Lce;≤,∨,∧), the subset {ã, b̃, c, d, e, f, i, j, k, m} forms a sub-qn-lattice
isomorphic to (one of the four versions of) (T10;≤,∨,∧). Since this is impossible
by Lemma 7.12, we have proved (8.16).

We know from (8.9) that i is not the only entry. Below, in order to prove (8.6),
we are going to deal with two cases; namely, either i is a minimal entry, or it is not
minimal.

First, assume that i is a minimal entry, that is, neither an ã-entry, nor a b̃ entry
can be smaller than i. Since any other entry is comparable with i by (8.4) and

there exists another entry by (8.9), and since ã and b̃ play a symmetric role, we
can assume that there exists an ã-entry j such that j > i. (It may but need not

happen that j is also a b̃-entry.) Let e be an ã-anchor of j. Few lines after (8.6), we
mentioned that c ‖ d. Lemma 7.3 gives also that e ‖ d. Since i = c∨m = d∨m and
j = e∨m by (8.3), e 6≤ c. So c < e or c ‖ e. Using the just-mentioned consequences
of (8.3) and depending on whether c < e or c ‖ e, the qn-lattice (T5;≤,∨,∧) or
the qn-lattice (T7;≤,∨,∧) is a sub-qn-lattice of (Lce;≤,∨,∧) so that its minimal

elements are ã and b̃ and its thick edges are bridges, but this is impossible by
Lemmas 7.5 and 7.9.

Therefore, since the opposite case has just been excluded, i is not a minimal
entry. By the ã–b̃ symmetry, we can pick an ã-entry j such that j < i. It follows
from (8.16) that i is a minimal b̃-entry. Pick an ã-anchor e of j. In addition to c ‖ d,
Lemma 7.3 gives also that e ‖ d. By (8.3), the equalities i = c ∨ m and j = e ∨ m,
and d∨m = i hold; the first two of them together with j < i yield that e < c or e ‖ c.
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Hence, either the qn-lattice (T6;≤,∨,∧), or the qn-lattice (T8;≤,∨,∧) is a sub-qn-
lattice of (Lce;≤,∨,∧), but this is impossible by Lemmas 7.7 and Lemmas 7.10.
This proves the validity of (8.6).

By (8.2), there are at least one ã-entry and at least one b̃-entry. We claim that

there are at least two ã-entries or at least two b̃-entries. (8.17)

(This statement should not be confused with (8.9) where the existence of a common
entry was assumed.) For the sake of contradiction, suppose that (8.17) fails. Let i

and e be the unique ã-entry and b̃-entry with ã-anchor c and b̃-anchor d, respectively;
see, for example, T9 in Figure 6. We know from (8.4) that i and e are comparable.

Furthermore, they are distinct by (8.6). Thus, using that ã and b̃ play a symmetric
role, we can assume that e < i. As in (8.7) and (8.8), we can assume that i is on the
left boundary chain of M , with respect to the fixed diagram D of (↑ã;≤). Letting

e play the role of i, it follows from (8.12) and (8.15) that (W (b̃) ∪ {m, e};≤,∨,∧)
is a planar nearlattice. (In fact, it is a lattice.) If e is also on the left boundary of
M , then the argument just after (8.15), tailored to the present notation by letting
e play the role of i, shows that (Lce;≤,∨,∧) is planar, which is a contradiction.
If e is on the right boundary chain of M , then the planarity of (↑ã;≤,∨,∧) and

that of (W (b̃) ∪ {m, e};≤,∨,∧) trivially imply that (Lce;≤,∨,∧) is planar, which
is a contradiction again. Therefore, e is not on the boundary of M , with respect
to the fixed planar diagram D. In other terms, being not on its boundary, e is in
the “interior” of M . Hence, if we add e to the right boundary chain of M , which
is a maximal chain, what we obtain is no longer a chain. This means that there
is element g on the right boundary chain such that e ‖ g. It is visually clear and
follows rigorously from Kelly and Rival [46, Proposition 1.6] that e is to the left of
g, that is, g is to the right of e. By left–right symmetry, there is an element f on the
left boundary chain of M such that f is to the left of e. By an unpublished result of
J. Zilber, see Kelly and Rival [46, Proposition 1.7], “left” is transitive and implies
incomparability. Thus, f is to the left of g and {f, e, g} is an antichain. Observe
that i and f are comparable since both belong to the same (left boundary) chain,
but f 6≥ i since otherwise we would get that f ≥ e. Thus, f < i. By (8.3), we have

that {ã, b̃, m, c, d, e, f, g, i} forms a sub-qn-lattice of (Lce;≤,∨,∧) isomorphic to
(T9;≤,∨,∧); the meaning of the dashed edge in Figure 6 now depends on whether
g < i in (Lce;≤,∨,∧) or not. But this contradicts Lemma 7.11. Therefore, we
conclude the validity of (8.17).

Based on (8.2), (8.4), (8.6), and (8.17), we know that, apart from ã–b̃-symmetry,

there exist a minimal ã-entry i with ã-anchor c, another
ã-entry j with ã-anchor d, and a minimal b̃-entry k with
b̃-anchor e such that |{i, j, k}| = 3, i 6 ‖ k, j 6 ‖ k, i and j are

not b̃-entries, and k is not an ã-entry.





(8.18)

Note that there can be more ã-entries and b̃-entries, and an entry can have more
anchors than those mentioned in (8.18). However, we obtain by comparing (8.3)
and (8.18) with (7.6), (7.7), and Figure 7 that one of the qn-lattices (Qs;≤,∨,∧),
s ∈ {1, 2, . . . , 5}, is a sub-qn-lattice of (Lce;≤,∨,∧) so that (7.7) holds. But this is
a contradiction by Lemmas 7.13, 7.14, 7.15, 7.16, and 7.17. Now that all possible
cases have led to contradiction, it follows that (Lce;≤,∨,∧) does not exist. This
completes the proof of Theorem 2.2. �
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When reading the following proof, Kelly and Rival [46] or Czédli [13, Theorem
2.5], where the Kelly-Rival Theorem is cited, should be near; at the time of this
writing, both of these two papers are freely downloadable.

Proof of Remark 1.3. By Czédli [13, Remark 1.3], it suffices to show that whenever
(L;≤,∨,∧) is a nearlattice with at least two minimal elements and |L| ≤ 7, or
|L| = 8 and σ(L;≤,∨,∧) > 74, then (L;≤,∨,∧) is planar. Suppose the contrary,
that is, either |L| ≤ 7, or |L| = 8 and σ(L;≤,∨,∧) > 74, and (L;≤,∨,∧) is

nonplanar. Then the lattice (L(+0);≤,∨,∧) we obtain from (L;≤,∨,∧) by adding
a smallest element is nonplanar either. If |L| ≤ 7, then this nonplanar lattice
is necessarily the eight-element boolean lattice by the Kelly–Rival Theorem, see
[46], and then (L;≤,∨,∧) is (T2;≤,∨,∧) in Figure 5, which is planar. If |L| = 8,
then it is straightforward to see by the Kelly–Rival Theorem that there are two
possibilities. The first possibility is that (L(+0);≤,∨,∧) is one of the nine-element
lattices in Kelly and Rival’s list and then (L;≤,∨,∧), which is obtained from this
lattice, is planar simply because only minimal nonplanar lattices are included in the
list. The second possibility is that the eight-element boolean lattice (B8;≤,∨,∧) is

a subposet of (L(+0);≤,∨,∧); let u be the unique element of L(+0) \B8. If u is the
smallest element 0 of (L(+0);≤,∨,∧), then (L;≤,∨,∧) = (B8;≤,∨,∧) with σ = 74
by Czédli [13, Lemma 2.7], whereby this case is excluded.

If u 6= 0 is a doubly irreducible element of (L(+0);≤,∨,∧), then u ∈ L and
(L \ {u};≤,∨,∧) is a planar nearlattice, since it is seven-element, and it is trivial
and it follows also from Corollary 3.5 that (L;≤,∨,∧) is planar, too.

Figure 8. The case v = 1 in the proof of Remark 1.3

We are left with the situation when u 6= 0 is either join-reducible, or meet-
reducible. It is easy to see that u cannot be doubly reducible since there are no
antichains {x1, x2} and {y1, y2} in B8 such that xi ≤ yj for all i, j ∈ {1, 2}. First,

assume that u is join-reducible. Then u = x ∨ y in (L(+0);≤,∨,∧) such that x ‖ y
and u ≺ v where v is the join of x and y in (B8;≤,∨,∧). Assume that v 6= 1.
Since there is only a single two-element antichain {x′, y′} such that v = x′ ∨ y′

in (B8 ;≤,∨,∧), it follows easily that v is a nonzero doubly irreducible element in
(L(+0);≤,∨,∧). Hence, letting v play the role of u in the previous case, we obtain
that (L;≤,∨,∧) is planar. If v = 1, then Figure 8 shows that (L;≤,∨,∧) is planar.
The analogous details for the case when u is meet-reducible are omitted. �

9. Appendix 1: notes on our data files

How to test or create these data files. In general, an input file of our program
parses a whole hierarchy of subcases. Since, for each subcase, the file has to repeat



36 G. CZÉDLI

all jm-constraints of the parent case(s), the input file and also the output file are
often considerably longer than the proof of the corresponding statement given in
Sections 5–7. Since long files threaten with typing errors and the repeated use of
the copy-paste function of our word processor without some easy-to-follow strategy
threatens with even more involved errors, it is worth outlining a method that re-
duces the chance of these errors. The point is that instead of proofreading a long
output file, we can economically create an input file by following the corresponding
proof from Sections 5–7 and implementing a standard method of computer science
to our work with the help of a word processor. This method is for listing the leaves
of a tree by means of using a first in, first out data buffer (also called FIFO).
Roughly saying, we begin with a short text file describing the initial case (C); at
this moment, this description is the first half of the file and the second half consists
of a single comment line like \P0. Then we keep modifying the first half towards
the required input file while using the second part as a FIFO. When the second
half becomes empty, the first half is the input file. After describing the algorithm
below, its functioning will be explained for the tree of subcases of the (main) case
(C) given in Figure 9.

Figure 9. An example for the tree of subcases

Algorithm 9.1.

(i) Start with “ (C) 0©ê ”. Here ê is the end-of-file symbol, (C) refers to the
main case. The encircled 0 after the main case means that none of its
subcases has been processed yet. The underlining means the position of the
“cursor” in the text file we are creating. Also, the text before the cursor
is the “first part” of the file, while the text after the cursor is the “second
part”. Note that as long as the file is not finished, it contains exactly one
underlined encircled number, which is always the first encircled number; we
will refer to this number as the cursor or, shortly, c. The case preceding
the cursor will be denoted by (C~x). (At present, ~x is the empty string.)

(ii) If there is no cursor, then the input file is ready and the algorithm termi-
nates. Otherwise, the first encircled number will be the cursor; underline it
and go to the following step below.

(iii) Check if the case (C~x) right before the cursor has to be split into further
subcase(s) or not. (The answer is given in the corresponding proof, see
Sections 5–7. Note that when the cursor is 0, then the answer is affirmative
if and only if the σ-value of the case is larger than 83.)

(iv) If the answer for question (iii) is negative and c = 0, then delete the cursor
and go to (ii). Otherwise, go to the following step below.
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(v) If the answer for question (iii) is negative and c > 0, then delete both the
cursor and the case (C~x) preceding it, and go to (ii). Otherwise, go to the
following step below.

(vi) If the answer for question (iii) is positive, then right before (C~x), insert
the (c + 1)-th subcase (C~xyc+1) 0©, where (C~xyc+1) denotes the (c + 1)-th

subcase of (C~x). Change c© to j© where j := c + 1. Now the just inserted
0©, the first encircled number, is the new cursor; this is why it is underlined.
Go to (ii).

When working with the text file, then we write “\enddata” and a comment
line “\Pc” instead of ê and c©, respectively, while (C~x) corresponds to the text
starting with the last “\beginjob” command and ending with the “\endofjob”
command before the cursor. For the situation given by Figure 9; Algorithm 9.1
runs as follows.

(C) 0©ê

(C1) 0©(C) 1©ê

(C1a) 0©(C1) 1©(C) 1©ê

(C1a)(C1) 1©(C) 1©ê

(C1a)(C1b) 0©(C1) 2©(C) 1©ê

(C1a)(C1b.1) 0©(C1b) 1©(C1) 2©(C) 1©ê

(C1a)(C1b.1)(C1b) 1©(C1) 2©(C) 1©ê

(C1a)(C1b.1)(C1b.2) 0©(C1b) 2©(C1) 2©(C) 1©ê

(C1a)(C1b.1)(C1b.2)(C1b) 2©(C1) 2©(C) 1©ê

(C1a)(C1b.1)(C1b.2)(C1) 2©(C) 1©ê

(C1a)(C1b.1)(C1b.2)(C) 1©ê

(C1a)(C1b.1)(C1b.2)(C2) 0©(C) 2©ê

(C1a)(C1b.1)(C1b.2)(C2a) 0©(C2) 1©(C) 2©ê

(C1a)(C1b.1)(C1b.2)(C2a)(C2) 1©(C) 2©ê (9.1)

(C1a)(C1b.1)(C1b.2)(C2a)(C2b) 0©(C2) 2©(C) 2©ê (9.2)

(C1a)(C1b.1)(C1b.2)(C2a)(C2b)(C2) 2©(C) 2©ê

(C1a)(C1b.1)(C1b.2)(C2a)(C2b)(C) 2©ê

(C1a)(C1b.1)(C1b.2)(C2a)(C2b)(C3) 0©(C) 3©ê

(C1a)(C1b.1)(C1b.2)(C2a)(C2b)(C3)(C) 3©ê

(C1a)(C1b.1)(C1b.2)(C2a)(C2b)(C3)ê (9.3)

For example, we have obtained (9.2) from (9.1) by replacing the string (C2) 1© by

the string (C2b) 0©(C2) 2©. At the end, (9.3) lists the leaves of the tree in Figure 9
from left to right.

Note that although Algorithm 9.1 is good to organize our work and to see when
a case has to be split into subcases, it needs the user’s decision what these subcases
should be. Also, it is the user who has to prove that a subcase is meaningful; for
example the user but not the computer verifies whether a new element occurring
in the subcase is really distinct from previous elements.
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A sample input file. Below, we give the input file LmQ4.txt in connection with
Lemma 7.16. Since it contains only two cases, Algorithm 9.1 is not used. Command
names begin with “ \ ”; in particular, “\P” means (and begins) comment lines to
be printed in the output file. In a line, everything after a “ % ” character is
also a comment but it will not be printed. When listing edges and constraints,
comments begin with “\w”; these comments are written in the output file. The
lattice operations are denoted by + (join) and ∗ (meet). The second line of the
file, beginning with “ % ”, is superfluous; it was used as a “mile stone” to avoid
oversized lines.

\P Version of August 17, 2019

% E

\verbose=false

\subtrahend-in-exponent=8

\operationsymbols=+* % This command is obligatory.

\beginjob

\name

LmQ4/C1 d*m=a

\size

9

\elements

abmcdeijk

\edges

ac am be bm ci dj ek ij jk mi

ad \w C1

\constraints

a+b=m c+m=i d+m=j e+m=k, c*m=a e*m=b b+d=j e*j=b e*i=b

d*m=a \w C1

\endofjob

\beginjob

\name

LmQ4/C2 d*m=:x>=A

\size

10

\elements

abmcdeijkx

\edges

ac am be bm ci dj ek ij jk mi

xd xm

\constraints

a+b=m c+m=i d+m=j e+m=k, c*m=a e*m=b b+d=j e*j=b e*i=b

d*m=x x+b=m

\endofjob

\P Also done: LmQ4/C (all cases)

\enddata
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10. Appendix 2: output files

This appendix presents the output files of our computer program. These files
are integral parts of the proof of the main result of the paper; they are given in the
following order; for each of them, we give the name of the qn-lattice, the name of
the downloadable output file, and the relevant statement(s) in the paper.

• Q1, LmQ1-out.txt; see Lemma 7.13
• Q2, LmQ2-out.txt; see Lemma 7.14
• Q3, LmQ3-out.txt; see Lemma 7.15
• Q4, LmQ4-out.txt; see Lemma 7.16
• Q5, LmQ5-out.txt; see Lemma 7.17
• S1–S4, LmSi-out.txt; see Lemma 5.4
• T1, LmT1a-out.txt; see Lemma 5.5
• T ′

1, LmT1b-out.txt; see Lemma 5.6
• T2, LmT2-out.txt; see Lemma 5.8
• T3, LmT3-out.txt; see Lemma 6.1
• T4, LmT4-out.txt; see Lemma 6.2
• T5, LmT5-out.txt; see Lemma 7.5
• T6, LmT6-out.txt; see Lemma 7.7
• T7, LmT7-out.txt; see Lemma 7.9
• T8, LmT8-out.txt; see Lemma 7.10
• T9, LmT9-out.txt; see Lemma 7.11
• T10, LmT10-out.txt; see Lemma 7.12

Now, the output files are as follows. Except for the first one, some parts of the
headings (like the version of the program and the research grant) will be omitted
from them.

Q1, LmQ1-out.txt; see Lemma 7.13

Version of August 15, 2019

SUBLATTS ver. July 23, 2019 (start:=1:57:5.865

(verbose=FALSE) reports:

[ Supported by the Hungarian Research Grant KH 126581,

(C) Gabor Czedli, 2019 ]

L: LmQ1/C1a a<d d*k=a

|L|=9, L={abcdemkij}. Edges:

ac am be bm ci dj ek ij ki mk ; C

ad ; C1

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b c*k=a b+d=j ; C

d*k=a ; C1a

-- Result: |Sub(L)|=154 for the partial lattice

-- LmQ1/C1a a<d d*k=a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 77.0000000000000000 .

L: LmQ1/C1b a<d d*k=:x>a

|L|=10, L={abcdemkijx}. Edges:

ac am be bm ci dj ek ij ki mk ; C
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ad ; C1

xd xk ax ; C1b

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b c*k=a b+d=j ; C

d*k=x ; C1b

-- Result: |Sub(L)|=287 for the partial lattice

-- LmQ1/C1b a<d d*k=:x>a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 71.7500000000000000 .

Also done: LmQ1/C1 a<d

L: LmQ1/C2 a||d a*d=:y>=A

|L|=10, L={abcdemkijy}. Edges:

ac am be bm ci dj ek ij ki mk ; C

ya yd ; C2

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b c*k=a b+d=j ; C

a*d=y y+b=m ; C2

-- Result: |Sub(L)|=278 for the partial lattice

-- LmQ1/C2 a||d a*d=:y>=A. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 69.5000000000000000 .

Also done: LmQ1/C (all cases)

The computation took 0/1000 seconds.

Q2, LmQ2-out.txt; see Lemma 7.14

Version of August 16, 2019

L: LmQ2/C

|L|=10, L={abmcdeijkv}. Edges:

ac am bm be ci dj ek ki kj mk iv jv

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b c*k=a i+j=v d+b=j

-- Result: |Sub(L)|=278 for the partial lattice

-- LmQ2/C. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 69.5000000000000000 .

The computation took 0/1000 seconds.

Q3, LmQ3-out.txt; see Lemma 7.15

Version of August 16, 2019

L: LmQ3/C1 d*i=c

|L|=9, L={abmcdeijk}. Edges:

ac am be bm ci dj ek ik kj mi ; C

cd ; C1

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b e*i=b b+d=j ; C

d*i=c ; C1

-- Result: |Sub(L)|=150 for the partial lattice

-- LmQ3/C1 d*i=c. Thus,
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sigma(L) = |Sub(L)|*2^(8-|L|) = 75.0000000000000000 .

L: LmQ3/C2 d*i=a

|L|=9, L={abmcdeijk}. Edges:

ac am be bm ci dj ek ik kj mi ; C

ad ; C2

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b e*i=b b+d=j ; C

d*i=a ; C2

-- Result: |Sub(L)|=148 for the partial lattice

-- LmQ3/C2 d*i=a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 74.0000000000000000 .

L: LmQ3/C3 d*i=:x (new element)

|L|=10, L={abmcdeijkx}. Edges:

ac am be bm ci dj ek ik kj mi ; C

xd xi ; C3

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b e*i=b b+d=j ; C

d*i=x ; C3

-- Result: |Sub(L)|=315 for the partial lattice

-- LmQ3/C3 d*i=:x (new element). Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 78.7500000000000000 .

Also done: LmQ3/C (all cases)

The computation took 16/1000 seconds.

Q4, LmQ4-out.txt; see Lemma 7.16

Version of August 17, 2019

L: LmQ4/C1 d*m=a

|L|=9, L={abmcdeijk}. Edges:

ac am be bm ci dj ek ij jk mi

ad ; C1

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b b+d=j e*j=b e*i=b

d*m=a ; C1

-- Result: |Sub(L)|=158 for the partial lattice

-- LmQ4/C1 d*m=a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 79.0000000000000000 .

L: LmQ4/C2 d*m=:x>=A

|L|=10, L={abmcdeijkx}. Edges:

ac am be bm ci dj ek ij jk mi

xd xm

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b b+d=j e*j=b e*i=b

d*m=x x+b=m

-- Result: |Sub(L)|=282 for the partial lattice
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-- LmQ4/C2 d*m=:x>=A. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 70.5000000000000000 .

Also done: LmQ4/C (all cases)

The computation took 0/1000 seconds.

Q5, LmQ5-out.txt; see Lemma 7.17

Version of August 17, 2019

L: LmQ5/C1 c*d=a

|L|=9, L={abmcdeijk}. Edges:

ac am bm be ci dj ek ik jk mi mj ; C

ad ; C1

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b b+d=j e*i=b e*j=b ; C

c*d=a ; C1

-- Result: |Sub(L)|=164 for the partial lattice

-- LmQ5/C1 c*d=a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 82.0000000000000000 .

L: LmQ5/C2 c*d=x

|L|=10, L={abmcdeijkx}. Edges:

ac am bm be ci dj ek ik jk mi mj ; C

xc xd ; C2

-- Constraints:

a+b=m c+m=i d+m=j e+m=k c*m=a e*m=b b+d=j e*i=b e*j=b ; C

c*d=x ; C2

-- Result: |Sub(L)|=326 for the partial lattice

-- LmQ5/C2 c*d=x. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.5000000000000000 .

Also done: LmQ5/C (all cases)

The computation took 0/1000 seconds.

S1–S4, LmSi-out.txt; see Lemma 5.4

Version of August 11, 2019

L: S_1

|L|=8, L={abcdefmi}. Edges:

ad am be bm cf cm di ei fi mi

-- Constraints:

a+b=m a+c=m b+c=m d*m=a e*m=b f*m=c ; W

d+m=i e+m=i f+m=i ; W_1

-- Result: |Sub(L)|=77 for the partial lattice

-- S_1. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 77.0000000000000000 .

L: S_2

|L|=9, L={abcdefmij}. Edges:

ad am be bm cf cm di ei fj ji mj
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-- Constraints:

a+b=m a+c=m b+c=m d*m=a e*m=b f*m=c ; W

d+m=i e+m=i f+m=j ; W_2

-- Result: |Sub(L)|=139 for the partial lattice

-- S_2. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 69.5000000000000000 .

L: S_3

|L|=9, L={abcdefmij}. Edges:

ad am be bm cf cm dj ei fj ji mj

-- Constraints:

a+b=m a+c=m b+c=m d*m=a e*m=b f*m=c ; W

d+m=j e+m=i f+m=j ; W_3

-- Result: |Sub(L)|=139 for the partial lattice

-- S_3. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 69.5000000000000000 .

L: S_4

|L|=10, L={abcdefmijk}. Edges:

ad am be bm cf cm di ej fk ji kj mk

-- Constraints:

a+b=m a+c=m b+c=m d*m=a e*m=b f*m=c ; W

d+m=i e+m=j f+m=k ; W_3

-- Result: |Sub(L)|=259 for the partial lattice

-- S_4. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 64.7500000000000000 .

The computation took 0/1000 seconds.

T1, LmT1a-out.txt; see Lemma 5.5

Version of August 11, 2019

L: Lmt1a/C1 exists h||i h+i=:k new

|L|=10, L={abcdefijhk}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hk ik ; C1

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

h+i=k ; C1

-- Result: |Sub(L)|=287 for the partial lattice

-- Lmt1a/C1 exists h||i h+i=:k new. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 71.7500000000000000 .

L: Lmt1a/C2a exists h<i h<a and h<b and so a*b=h is assumed

|L|=9, L={abcdefijh}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

ha hb ; C2a

-- Constraints:
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a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

a*b=h ; C2a

-- Result: |Sub(L)|=147 for the partial lattice

-- Lmt1a/C2a exists h<i h<a and h<b and so a*b=h is assumed. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 73.5000000000000000 .

L: Lmt1a/C2b.1 exists h<i h>a h>b so h>a+b=j e+h=i

|L|=9, L={abcdefijh}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

ah bh jh ; C2b

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

e+h=i ; C2b.1

-- Result: |Sub(L)|=154 for the partial lattice

-- Lmt1a/C2b.1 exists h<i h>a h>b so h>a+b=j e+h=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 77.0000000000000000 .

L: Lmt1a/C2b.2 exists h<i h>a h>b so h>a+b=j e+h=:k<i

|L|=10, L={abcdefijhk}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

ah bh jh ; C2b

ek hk ki ; C2b.2

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

e+h=k ; C2b.2

-- Result: |Sub(L)|=266 for the partial lattice

-- Lmt1a/C2b.2 exists h<i h>a h>b so h>a+b=j e+h=:k<i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 66.5000000000000000 .

Also excluded: Lmt1a/C2b exists h<i, h>a h>b, so h>a+b=j

L: Lmt1a/C2c.1 exists h<i h||a h+a=:k<i is new

|L|=10, L={abcdefijhk}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

hk ak ki ; C2c.1

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

h+a=k ; C2c.1

-- Result: |Sub(L)|=298 for the partial lattice

-- Lmt1a/C2c.1 exists h<i h||a h+a=:k<i is new. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 74.5000000000000000 .

L: Lmt1a/C2c.2 exists h<i h||a h+a=c

|L|=9, L={abcdefijh}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2
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-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

h+a=c ; C2c.2

-- Result: |Sub(L)|=129 for the partial lattice

-- Lmt1a/C2c.2 exists h<i h||a h+a=c. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 64.5000000000000000 .

L: Lmt1a/C2c.3 exists h<i h||a h+a=j

|L|=9, L={abcdefijh}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

h+a=j ; C2c.3

-- Result: |Sub(L)|=151 for the partial lattice

-- Lmt1a/C2c.3 exists h<i h||a h+a=j. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 75.5000000000000000 .

L: Lmt1a/C2c.4 exists h<i h||a h+a=e

|L|=9, L={abcdefijh}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

h+a=e ; C2c.4

-- Result: |Sub(L)|=131 for the partial lattice

-- Lmt1a/C2c.4 exists h<i h||a h+a=e. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 65.5000000000000000 .

L: Lmt1a/C2c.5 exists h<i h||a h+a=f

|L|=9, L={abcdefijh}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

h+a=f ; C2c.5

-- Result: |Sub(L)|=135 for the partial lattice

-- Lmt1a/C2c.5 exists h<i h||a h+a=f. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 67.5000000000000000 .

L: Lmt1a/C2c.6 exists h<i h||a h+a=i

|L|=9, L={abcdefijh}. Edges:

ac aj bd bj ce df ei fi je jf ; C

hi ; C2

-- Constraints:

a+b=j c+j=e d+j=f e+f=i c*j=a d*j=b e*f=j ; C

h+a=i ; C2c.6

-- Result: |Sub(L)|=137 for the partial lattice
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-- Lmt1a/C2c.6 exists h<i h||a h+a=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 68.5000000000000000 .

Also excluded: Lmt1a/C2c exists h<i, h||a,

Also excluded: Lmt1a/C2 exists h<i

Also excluded: Lmt1a/C

The computation took 46/1000 seconds.

T ′
1, LmT1b-out.txt; see Lemma 5.6

Version of August 12, 2019

L: LmT1b/C

|L|=9, L={abcdefjig}. Edges:

ac aj bj bd ce df ei fi ge gf jg

-- Constraints:

c*j=a d*j=b c+g=e d+g=f e*f=g e+f=i a+b=j c+j=e d+j=f

-- Result: |Sub(L)|=162 for the partial lattice

-- LmT1b/C. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.0000000000000000 .

The computation took 0/1000 seconds.

T2, LmT2-out.txt; see Lemma 5.8

Version of August 12, 2019

L: LmT2/C1 exists d||i let d+i=:j

|L|=9, L={aAbBcCidj}. Edges:

aB aC bA bC cA cB Ai Bi Ci ; LmT2/C

dj ij ; C1

-- Constraints:

a+b=C a+c=B b+c=A A+B=i B+C=i C+A=i ; LmT2/C

A*C=b B*C=a A*B=c ; always see the proof

d+i=j ; C1

-- Result: |Sub(L)|=151 for the partial lattice

-- LmT2/C1 exists d||i let d+i=:j. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 75.5000000000000000 .

L: LmT2/C2a exists d<i d<a d<b d<c

|L|=8, L={aAbBcCid}. Edges:

aB aC bA bC cA cB Ai Bi Ci ; LmT2/C

di ; C2

da db dc ; C2a

-- Constraints:

a+b=C a+c=B b+c=A A+B=i B+C=i C+A=i ; LmT2/C

A*C=b B*C=a A*B=c ; always see the proof

a*b=d a*c=d b*c=d ; C2a see the proof

-- Result: |Sub(L)|=74 for the partial lattice

-- LmT2/C2a exists d<i d<a d<b d<c. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 74.0000000000000000 .
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L: LmT2/C2b.1 exists d<i d||a a+d=:e<i is a new element

|L|=9, L={aAbBcCide}. Edges:

aB aC bA bC cA cB Ai Bi Ci ; LmT2/C

di ; C2

ae de ei ; C2b.1

-- Constraints:

a+b=C a+c=B b+c=A A+B=i B+C=i C+A=i ; LmT2/C

A*C=b B*C=a A*B=c ; always see the proof

a+d=e ; C2b.1

-- Result: |Sub(L)|=155 for the partial lattice

-- LmT2/C2b.1 exists d<i d||a a+d=:e<i is a new element. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 77.5000000000000000 .

L: LmT2/C2b.2 exists d<i d||a a+d=B

|L|=8, L={aAbBcCid}. Edges:

aB aC bA bC cA cB Ai Bi Ci ; LmT2/C

di ; C2

-- Constraints:

a+b=C a+c=B b+c=A A+B=i B+C=i C+A=i ; LmT2/C

A*C=b B*C=a A*B=c ; always see the proof

a+d=B ; C2b.2

-- Result: |Sub(L)|=80 for the partial lattice

-- LmT2/C2b.2 exists d<i d||a a+d=B. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 80.0000000000000000 .

L: LmT2/C2b.3 exists d<i d||a a+d=C

|L|=8, L={aAbBcCid}. Edges:

aB aC bA bC cA cB Ai Bi Ci ; LmT2/C

di ; C2

-- Constraints:

a+b=C a+c=B b+c=A A+B=i B+C=i C+A=i ; LmT2/C

A*C=b B*C=a A*B=c ; always see the proof

a+d=C ; C2b.3

-- Result: |Sub(L)|=80 for the partial lattice

-- LmT2/C2b.3 exists d<i d||a a+d=C. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 80.0000000000000000 .

L: LmT2/C2b.4 exists d<i d||a a+d=i

|L|=8, L={aAbBcCid}. Edges:

aB aC bA bC cA cB Ai Bi Ci ; LmT2/C

di ; C2

-- Constraints:

a+b=C a+c=B b+c=A A+B=i B+C=i C+A=i ; LmT2/C

A*C=b B*C=a A*B=c ; always see the proof

a+d=i ; C2b.4

-- Result: |Sub(L)|=81 for the partial lattice

-- LmT2/C2b.4 exists d<i d||a a+d=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.0000000000000000 .
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Also done: LmT2/C2b exists d<i, d||a

Also done: LmT2/C2 exists d<i

Also done: LmT2/C

The computation took 31/1000 seconds.

T3, LmT3-out.txt; see Lemma 6.1

Version of August 12, 2019

L: LmT3/C1 p q<=d and u v<=e

|L|=10, L={abcdeipquv}. Edges:

ad bd be ce di ei ; C

ap pd aq qd cu ue cv ve ; C1

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

p*q=a u*v=c ; C1

-- Result: |Sub(L)|=253 for the partial lattice

-- LmT3/C1 p q<=d and u v<=e. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 63.2500000000000000 .

L: LmT3/C2a p q<=d not u<=e e+u=i

|L|=9, L={abcdeipqu}. Edges:

ad bd be ce di ei ; C

ap pd aq qd cu; /C2

ui ; C2a

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

p*q=a e*u=c ; /C2

e+u=i ; C2a

-- Result: |Sub(L)|=146 for the partial lattice

-- LmT3/C2a p q<=d not u<=e e+u=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 73.0000000000000000 .

L: LmT3/C2b p q<=d not u<=e e+u=:w is new

|L|=10, L={abcdeipquw}. Edges:

ad bd be ce di ei ; C

ap pd aq qd cu; /C2

ew uw ; C2b

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

p*q=a e*u=c ; /C2

e+u=w ; C2b

-- Result: |Sub(L)|=305 for the partial lattice

-- LmT3/C2b p q<=d not u<=e e+u=:w is new. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.2500000000000000 .

Also done: LmT3/C2 p,q<=d, not u<=e

L: LmT3/C3a neither p<=d nor u<=e d*p=a e*u=c d+p=e+u=i

|L|=8, L={abcdeipu}. Edges:
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ad bd be ce di ei ; C

ap cu ; C3

pi ui ; C3a

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

d*p=a e*u=c; C3

d+p=i e+u=i ; C3a

-- Result: |Sub(L)|=81 for the partial lattice

-- LmT3/C3a neither p<=d nor u<=e d*p=a e*u=c d+p=e+u=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.0000000000000000 .

L: LmT3/C3b neither p<=d nor u<=e d*p=a e*u=c d+p=x e+u=i

|L|=9, L={abcdeipux}. Edges:

ad bd be ce di ei ; C

ap cu ; C3

dx px ui ; C3b

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

d*p=a e*u=c; C3

d+p=x e+u=i ; C3b

-- Result: |Sub(L)|=163 for the partial lattice

-- LmT3/C3b neither p<=d nor u<=e d*p=a e*u=c d+p=x e+u=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.5000000000000000 .

L: LmT3/C3c.1 not p<=d not u<=e d*p=a e*u=c d+p=:x e+u=:y x+y=:z

|L|=11, L={abcdeipuxyz}. Edges:

ad bd be ce di ei ; C

ap cu ; C3

dx px ey uy ; C3c

xz yz; C3c.1

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

d*p=a e*u=c; C3

d+p=x e+u=y ; C3c

x+y=z ; C3c.1

-- Result: |Sub(L)|=519 for the partial lattice

-- LmT3/C3c.1 not p<=d not u<=e d*p=a e*u=c d+p=:x e+u=:y x+y=:z. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 64.8750000000000000 .

L: LmT3/C3c.2 not p<=d not u<=e d*p=a e*u=c d+p=:x e+u=:y x+y=i

|L|=10, L={abcdeipuxy}. Edges:

ad bd be ce di ei ; C

ap cu ; C3

dx px ey uy ; C3c

xi yi ; C3c.2

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

d*p=a e*u=c; C3
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d+p=x e+u=y ; C3c

x+y=i ; C3c.2

-- Result: |Sub(L)|=248 for the partial lattice

-- LmT3/C3c.2 not p<=d not u<=e d*p=a e*u=c d+p=:x e+u=:y x+y=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 62.0000000000000000 .

Also done:

LmT3/C3c neither p<=d nor u<=e, d*p=a e*u=c, d+p=:x, e+u=:y

L: LmT3/C3d neither p<=d nor u<=e d*p=a e*u=c d+p=e+u=:x

|L|=9, L={abcdeipux}. Edges:

ad bd be ce di ei ; C

ap cu ; C3

dx px ux ex ix ; C3d

-- Constraints:

a+b=d a+c=i b+c=e d+e=i d*e=b ; C

d*p=a e*u=c; C3

d+p=x e+u=x; C3d

-- Result: |Sub(L)|=142 for the partial lattice

-- LmT3/C3d neither p<=d nor u<=e d*p=a e*u=c d+p=e+u=:x. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 71.0000000000000000 .

Also done: LmT3/C3 neither p<=d nor u<=e, d*p=a e*u=c

Also done: LmT3/C

The computation took 47/1000 seconds.

T4, LmT4-out.txt; see Lemma 6.2

Version of August 13, 2019

L: LmT4/C1a.1a u<i v<i u+v=i p<d q<d e||d

|L|=10, L={abcdipeuvq}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

pd qd aq ; C1a.1

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*q=a ; C1a.1

d*e=b ; C1a.1a

-- Result: |Sub(L)|=306 for the partial lattice

-- LmT4/C1a.1a u<i v<i u+v=i p<d q<d e||d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.5000000000000000 .

L: LmT4/C1a.1b u<i v<i u+v=i p<d q<d f exists

|L|=11, L={abcdipeuvqf}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

pd qd aq ; C1a.1

bf ; C1a.1b
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-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*q=a ; C1a.1

e*f=b ; C1a.1b

-- Result: |Sub(L)|=607 for the partial lattice

-- LmT4/C1a.1b u<i v<i u+v=i p<d q<d f exists. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 75.8750000000000000 .

Also done: LmT4/C1a.1 u<i v<i, u+v=i, p<d q<d DUPLUM for a

L: LmT4/C1a.2a.1 u<i v<i u+v=i p not<d p*d=a p+d=i e f<d

|L|=10, L={abcdipeuvf}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

pi ; C1a.2a

ed bf fd ; C1a.2a.1

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2

p+d=i ; C1a.2a

e*f=b ; C1a.2a.1

-- Result: |Sub(L)|=288 for the partial lattice

-- LmT4/C1a.2a.1 u<i v<i u+v=i p not<d p*d=a p+d=i e f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.0000000000000000 .

L: LmT4/C1a.2a.2a u<i v<i u+v=i p not<d p*d=a p+d=i d*e=b d+e=i

|L|=9, L={abcdipeuv}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

pi ; C1a.2a

ei ; C1a.2a.2a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2

p+d=i ; C1a.2a

d*e=b ; C1a.2a.2

d+e=i ; C1a.2a.2a

-- Result: |Sub(L)|=163 for the partial lattice

-- LmT4/C1a.2a.2a u<i v<i u+v=i p not<d p*d=a p+d=i d*e=b d+e=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.5000000000000000 .

L: LmT4/C1a.2a.2b u<i v<i u+v=i p not<d p*d=a p+d=i d*e=b d+e=:x

|L|=10, L={abcdipeuvx}. Edges:
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ad bd ci di ap be cu ; C

cv ui vi ; C1

pi ; C1a.2a

dx ex ; C1a.2a.2b

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2

p+d=i ; C1a.2a

d*e=b ; C1a.2a.2

d+e=x ; C1a.2a.2b

-- Result: |Sub(L)|=307 for the partial lattice

-- LmT4/C1a.2a.2b u<i v<i u+v=i p not<d p*d=a p+d=i d*e=b d+e=:x. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.7500000000000000 .

Also done:

LmT4/C1a.2a.2 u<i v<i,u+v=i,p not<d p*d=a,p+d=i,d*e=b

Also done: LmT4/C1a.2a u<i v<i, u+v=i,p not<d p*d=a,p+d=i

L: LmT4/C1a.2b.1a u<i v<i u+v=i p*d=a p+d=:x x<i e<d f<d

|L|=11, L={abcdipeuvxf}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

px dx ; C1a.2b

xi ; C1a.2b.1

ed fd bf ; C1a.2b.1a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2

p+d=x ; C1a.2b

e*f=b ; C1a.2b.1a

-- Result: |Sub(L)|=493 for the partial lattice

-- LmT4/C1a.2b.1a u<i v<i u+v=i p*d=a p+d=:x x<i e<d f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 61.6250000000000000 .

L: LmT4/C1a.2b.1b u<i v<i u+v=i p*d=a p+d=:x x<i e*d=b

|L|=10, L={abcdipeuvx}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

px dx ; C1a.2b

xi ; C1a.2b.1

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2
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p+d=x ; C1a.2b

e*d=b ; C1a.2b.1b

-- Result: |Sub(L)|=306 for the partial lattice

-- LmT4/C1a.2b.1b u<i v<i u+v=i p*d=a p+d=:x x<i e*d=b. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.5000000000000000 .

Also done: LmT4/C1a.2b.1 u<i v<i,u+v=i,p*d=a,p+d=:x,x<i

L: LmT4/C1a.2b.2a u<i v<i u+v=i p*d=a p+d=:x i<x e<d f<d

|L|=11, L={abcdipeuvxf}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

px dx ; C1a.2b

ix ; C1a.2b.2

ed fd bf ; C1a.2b.2a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2

p+d=x ; C1a.2b

e*f=b ; C1a.2b.2a

-- Result: |Sub(L)|=489 for the partial lattice

-- LmT4/C1a.2b.2a u<i v<i u+v=i p*d=a p+d=:x i<x e<d f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 61.1250000000000000 .

L: LmT4/C1a.2b.2b u<i v<i u+v=i p*d=a p+d=:x i<x e*d=b

|L|=10, L={abcdipeuvx}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

px dx ; C1a.2b

ix ; C1a.2b.2

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2

p+d=x ; C1a.2b

e*d=b ; C1a.2b.2b

-- Result: |Sub(L)|=298 for the partial lattice

-- LmT4/C1a.2b.2b u<i v<i u+v=i p*d=a p+d=:x i<x e*d=b. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 74.5000000000000000 .

Also done: LmT4/C1a.2b.2 u<i v<i,u+v=i,p*d=a,p+d=:x, i<x

L: LmT4/C1a.2b.3 u<i v<i u+v=i p*d=a p+d=:x i||x and i+x=:y

|L|=11, L={abcdipeuvxy}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

px dx ; C1a.2b
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iy xy ; C1a.2b.3

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=i ; C1a

p*d=a ; C1a.2

p+d=x ; C1a.2b

i+x=y ; C1a.2b.3

-- Result: |Sub(L)|=526 for the partial lattice

-- LmT4/C1a.2b.3 u<i v<i u+v=i p*d=a p+d=:x i||x and i+x=:y. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 65.7500000000000000 .

Also done: LmT4/C1a.2b u<i v<i,u+v=i,p*d=a,p+d=:x

Also done: C1a.2 u<i v<i, u+v=i,p not<d p*d=a

Also done: LmT4/C1a u<i v<i, u+v=i

L: LmT4/C1b.1 u<i v<i u+v=:g p<d q<d

|L|=11, L={abcdipeuvgq}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

ug vg gi ; C1b

pd qd aq ; C1b.1

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=g ; C1b

p*q=a ; C1b.1

-- Result: |Sub(L)|=640 for the partial lattice

-- LmT4/C1b.1 u<i v<i u+v=:g p<d q<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 80.0000000000000000 .

L: LmT4/C1b.2a.1 u<i v<i u+v=:g p not<d d+p=i e<d f<d

|L|=11, L={abcdipeuvgf}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

ug vg gi ; C1b

pi ; C1b.2a

ed fd bf ; C1b.2a.1

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=g ; C1b

p*d=a ; C1b.2

d+p=i ; C1b.2a

e*f=b ; C1b.2a.1

-- Result: |Sub(L)|=517 for the partial lattice

-- LmT4/C1b.2a.1 u<i v<i u+v=:g p not<d d+p=i e<d f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 64.6250000000000000 .
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L: LmT4/C1b.2a.2 u<i v<i u+v=:g p not<d d+p=i d*e=b

|L|=10, L={abcdipeuvg}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

ug vg gi ; C1b

pi ; C1b.2a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=g ; C1b

p*d=a ; C1b.2

d+p=i ; C1b.2a

d*e=b ; C1b.2a.2

-- Result: |Sub(L)|=313 for the partial lattice

-- LmT4/C1b.2a.2 u<i v<i u+v=:g p not<d d+p=i d*e=b. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 78.2500000000000000 .

Also done: LmT4/C1b.2a u<i v<i,u+v=:g,p not<d, d+p=i

L: LmT4/C1b.2b.1 u<i v<i u+v=:g p not<d p+d=:x x<i

|L|=11, L={abcdipeuvgx}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

ug vg gi ; C1b

px dx ; C1b.2b

xi ; C1b.2b.1

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=g ; C1b

p*d=a ; C1b.2

p+d=x ; C1b.2b

-- Result: |Sub(L)|=612 for the partial lattice

-- LmT4/C1b.2b.1 u<i v<i u+v=:g p not<d p+d=:x x<i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.5000000000000000 .

L: LmT4/C1b.2b.2 u<i v<i u+v=:g p not<d p+d=:x i<x

|L|=11, L={abcdipeuvgx}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

ug vg gi ; C1b

px dx ; C1b.2b

ix ; C1b.2b.2

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=g ; C1b

p*d=a ; C1b.2

p+d=x ; C1b.2b
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-- Result: |Sub(L)|=608 for the partial lattice

-- LmT4/C1b.2b.2 u<i v<i u+v=:g p not<d p+d=:x i<x. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.0000000000000000 .

L: LmT4/C1b.2b.3 u<i v<i u+v=:g p not<d p+d=:x x+i=:y

|L|=12, L={abcdipeuvgxy}. Edges:

ad bd ci di ap be cu ; C

cv ui vi ; C1

ug vg gi ; C1b

px dx ; C1b.2b

xy iy ; C1b.2b.3

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

u*v=c ; C1

u+v=g ; C1b

p*d=a ; C1b.2

p+d=x ; C1b.2b

x+i=y ; C1b.2b.3

-- Result: |Sub(L)|=932 for the partial lattice

-- LmT4/C1b.2b.3 u<i v<i u+v=:g p not<d p+d=:x x+i=:y. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 58.2500000000000000 .

Also done: LmT4/C1b.2b u<i v<i,u+v=:g,p not<d,p+d=:x

Also done: LmT4/C1b.2 u<i v<i,u+v=:g,p not<d,

Also done: LmT4/C1b u<i v<i,u+v=:g

Also done: LmT4/C1 u<i v<i

L: LmT4/C2a.1a u||i i+u=:g p<d q<d p+q=d e<d f<d

|L|=11, L={abcdipeugqf}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

pd qd aq ; C2a

ed fd bf ; C2a.1a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*q=a ; C2a

p+q=d ; C2a.1

e*f=b ; C2a.1a

-- Result: |Sub(L)|=493 for the partial lattice

-- LmT4/C2a.1a u||i i+u=:g p<d q<d p+q=d e<d f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 61.6250000000000000 .

L: LmT4/C2a.1b u||i i+u=:g p<d q<d p+q=d e||d

|L|=10, L={abcdipeugq}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

pd qd aq ; C2a

-- Constraints:
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a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*q=a ; C2a

p+q=d ; C2a.1

e*d=b ; C2a.1b

-- Result: |Sub(L)|=290 for the partial lattice

-- LmT4/C2a.1b u||i i+u=:g p<d q<d p+q=d e||d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.5000000000000000 .

Also done: LmT4/C2a.1 u||i i+u=:g, p<d q<d,p+q=d

L: LmT4/C2a.2 u||i i+u=:g p<d q<d p+q=:x<d

|L|=11, L={abcdipeugqx}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

pd qd aq ; C2a

px qx xd ; C2a.2

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*q=a ; C2a

p+q=x ; C2a.2

-- Result: |Sub(L)|=650 for the partial lattice

-- LmT4/C2a.2 u||i i+u=:g p<d q<d p+q=:x<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.2500000000000000 .

Also done: LmT4/C2a u||i i+u=:g, p<d q<d

L: LmT4/C2b.1a u||i i+u=:g p*d=a p+d=i e<d f<d

|L|=10, L={abcdipeugf}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

pi ; C2b.1

ed fd bf ; C2b.1a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=i ; C2b.1

e*f=b ; C2b.1a

-- Result: |Sub(L)|=262 for the partial lattice

-- LmT4/C2b.1a u||i i+u=:g p*d=a p+d=i e<d f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 65.5000000000000000 .

L: LmT4/C2b.1b u||i i+u=:g p*d=a p+d=i e not< d

|L|=9, L={abcdipeug}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

pi ; C2b.1

-- Constraints:
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a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=i ; C2b.1

e*d=b ; C2b.1b

-- Result: |Sub(L)|=163 for the partial lattice

-- LmT4/C2b.1b u||i i+u=:g p*d=a p+d=i e not< d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.5000000000000000 .

Also done: LmT4/C2b.1 u||i i+u=:g, p*d=a, p+d=i

L: LmT4/C2b.2a u||i i+u=:g p*d=a p+d=g e<d f<d

|L|=10, L={abcdipeugf}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

pg ; C2b.2

ed fd bf ; C2b.2a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=g ; C2b.2

e*f=b ; C2b.2a

-- Result: |Sub(L)|=260 for the partial lattice

-- LmT4/C2b.2a u||i i+u=:g p*d=a p+d=g e<d f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 65.0000000000000000 .

L: LmT4/C2b.2b u||i i+u=:g p*d=a p+d=g e*d=b

|L|=9, L={abcdipeug}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

pg ; C2b.2

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=g ; C2b.2

e*d=b ; C2b.2b

-- Result: |Sub(L)|=159 for the partial lattice

-- LmT4/C2b.2b u||i i+u=:g p*d=a p+d=g e*d=b. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 79.5000000000000000 .

Also done: LmT4/C2b.2 u||i i+u=:g, p*d=a, p+d=g

L: LmT4/C2b.3a u||i i+u=:g p*d=a p+d=:x e<d f<d

|L|=11, L={abcdipeugxf}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

px dx ; C2b.3

ix ; C2b.3a
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ed fd bf ; C2b.3a

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=x ; C2b.3

e*f=b ; C2b.3a

-- Result: |Sub(L)|=494 for the partial lattice

-- LmT4/C2b.3a u||i i+u=:g p*d=a p+d=:x e<d f<d. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 61.7500000000000000 .

L: LmT4/C2b.3b.1 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=i

|L|=10, L={abcdipeugx}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

px dx ; C2b.3

ei ; C2b.3b.1

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=x ; C2b.3

d*e=b ; C2b.3b

d+e=i ; C2b.3b.1

-- Result: |Sub(L)|=289 for the partial lattice

-- LmT4/C2b.3b.1 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.2500000000000000 .

L: LmT4/C2b.3b.2 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=x

|L|=10, L={abcdipeugx}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

px dx ; C2b.3

ex ; C2b.3b.2

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=x ; C2b.3

d*e=b ; C2b.3b

d+e=x ; C2b.3b.2

-- Result: |Sub(L)|=291 for the partial lattice

-- LmT4/C2b.3b.2 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=x. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.7500000000000000 .

L: LmT4/C2b.3b.3 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=g

|L|=10, L={abcdipeugx}. Edges:

ad bd ci di ap be cu ; C
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ig ug ; C2

px dx ; C2b.3

eg ; C2b.3b.3

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=x ; C2b.3

d*e=b ; C2b.3b

d+e=g ; C2b.3b.3

-- Result: |Sub(L)|=283 for the partial lattice

-- LmT4/C2b.3b.3 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=g. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 70.7500000000000000 .

L: LmT4/C2b.3b.4 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=:y

|L|=11, L={abcdipeugxy}. Edges:

ad bd ci di ap be cu ; C

ig ug ; C2

px dx ; C2b.3

dy ey ; C2b.3b.4

-- Constraints:

a+b=d a+c=i b+c=i c+d=i ; C

i+u=g i*u=c ; C2

p*d=a ; C2b

p+d=x ; C2b.3

d*e=b ; C2b.3b

d+e=y ; C2b.3b.4

-- Result: |Sub(L)|=600 for the partial lattice

-- LmT4/C2b.3b.4 u||i i+u=:g p*d=a p+d=:x d*e=b d+e=:y. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 75.0000000000000000 .

Also done: LmT4/C2b.3b u||i i+u=:g, p*d=a, p+d=:x, d*e=b

Also done: LmT4/C2b.3 u||i i+u=:g, p*d=a, p+d=:x

Also done: LmT4/C2b u||i i+u=:g, p*d=a

Also done: LmT4/C2 u||i i+u=:g

All cases have been excluded.

The computation took 129/1000 seconds.

T5, LmT5-out.txt; see Lemma 7.5

Version of Aug 14, 2019

L: LmT5/C1a x||a x>A x*a=:y and y+b=m

|L|=10, L={abcdemijxy}. Edges:

am ac bm bd ce ci di ej ij mi ; C

yx ya ym ; C1a

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

x*a=y y+b=m ; C1a

-- Result: |Sub(L)|=267 for the partial lattice
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-- LmT5/C1a x||a x>A x*a=:y and y+b=m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 66.7500000000000000 .

L: LmT5/C1b.1 x||a x not>A a+x=m

|L|=9, L={abcdemijx}. Edges:

am ac bm bd ce ci di ej ij mi ; C

xm ; C1b.1

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

a+x=m ; C1b.1

-- Result: |Sub(L)|=149 for the partial lattice

-- LmT5/C1b.1 x||a x not>A a+x=m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 74.5000000000000000 .

L: LmT5/C1b.2 x||a x not>A a+x=i

|L|=9, L={abcdemijx}. Edges:

am ac bm bd ce ci di ej ij mi ; C

xi ; C1b.2

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

a+x=i ; C1b.2

-- Result: |Sub(L)|=149 for the partial lattice

-- LmT5/C1b.2 x||a x not>A a+x=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 74.5000000000000000 .

L: LmT5/C1b.3 x||a x not>A a+x=j

|L|=9, L={abcdemijx}. Edges:

am ac bm bd ce ci di ej ij mi ; C

xj ; C1b.3

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

a+x=j ; C1b.3

-- Result: |Sub(L)|=140 for the partial lattice

-- LmT5/C1b.3 x||a x not>A a+x=j. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 70.0000000000000000 .

L: LmT5/C1b.4 x||a x not>A a+x=:y is a new element

|L|=10, L={abcdemijxy}. Edges:

am ac bm bd ce ci di ej ij mi ; C

ay xy ; C1b.4

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

a+x=y ; C1b.4

-- Result: |Sub(L)|=305 for the partial lattice

-- LmT5/C1b.4 x||a x not>A a+x=:y is a new element. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.2500000000000000 .

Also done: LmT5/C1b x||a, x not>A

Also done: LmT5/C1 x||a
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L: LmT5/C2a x>a x||b b+x=m

|L|=9, L={abcdemijx}. Edges:

am ac bm bd ce ci di ej ij mi ; C

ax ; C2

xm ; C2a

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

b+x=m ; C2a

-- Result: |Sub(L)|=141 for the partial lattice

-- LmT5/C2a x>a x||b b+x=m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 70.5000000000000000 .

L: LmT5/C2b x>a x||b b+x=i

|L|=9, L={abcdemijx}. Edges:

am ac bm bd ce ci di ej ij mi ; C

ax ; C2

xi ; C2b

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

b+x=i ; C2b

-- Result: |Sub(L)|=153 for the partial lattice

-- LmT5/C2b x>a x||b b+x=i. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.5000000000000000 .

L: LmT5/C2c x>a x||b b+x=j

|L|=9, L={abcdemijx}. Edges:

am ac bm bd ce ci di ej ij mi ; C

ax ; C2

xj ; C2c

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

b+x=j ; C2c

-- Result: |Sub(L)|=144 for the partial lattice

-- LmT5/C2c x>a x||b b+x=j. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.0000000000000000 .

L: LmT5/C2d x>a x||b b+x=:y (new element)

|L|=10, L={abcdemijxy}. Edges:

am ac bm bd ce ci di ej ij mi ; C

ax ; C2

by xy ; C2d

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

b+x=y ; C2d

-- Result: |Sub(L)|=309 for the partial lattice

-- LmT5/C2d x>a x||b b+x=:y (new element). Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 77.2500000000000000 .
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Also done: LmT5/C2 x>a x||b

L: LmT5/C3 y||j y+j=:z

|L|=10, L={abcdemijyz}. Edges:

am ac bm bd ce ci di ej ij mi ; C

yz jz ; C3

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

y+j=z ; C3

-- Result: |Sub(L)|=294 for the partial lattice

-- LmT5/C3 y||j y+j=:z. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 73.5000000000000000 .

L: LmT5/C4

|L|=9, L={abcdemijy}. Edges:

am ac bm bd ce ci di ej ij mi ; C

my yj ; C4

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b e*i=c ; C

c*y=a d*y=b e*y=a ; C4

-- Result: |Sub(L)|=140 for the partial lattice

-- LmT5/C4. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 70.0000000000000000 .

All cases have been excluded

The computation took 47/1000 seconds.

T6, LmT6-out.txt; see Lemma 7.7

Version of August 14, 2019

L: LmT6/C

|L|=8, L={abcdeijm}. Edges:

ae am bd bm ci di ec ej ji mj

-- Constraints:

a+b=m c+m=i d+m=i e+m=j e*m=a d*m=b d*j=b c*j=e

-- Result: |Sub(L)|=80 for the partial lattice

-- LmT6/C. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 80.0000000000000000 .

The computation took 0/1000 seconds.

T7, LmT7-out.txt; see Lemma 7.9

Version of August 14, 2019

L: LmT7/C1 a||e a*e=:x b+x=m a+e=j

|L|=9, L={abcdeijmx}. Edges:

ac am bd bm ci di ej ij mi ; C

xa xe ; C1

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C
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a*e=x b+x=m a+e=j ; C1

-- Result: |Sub(L)|=159 for the partial lattice

-- LmT7/C1 a||e a*e=:x b+x=m a+e=j. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 79.5000000000000000 .

L: LmT7/C2a.1a a<e c*e=a e*i=a y||j j+y=:z

|L|=10, L={abcdeijmyz}. Edges:

ac am bd bm ci di ej ij mi ; C

ae ; C2

jz yz ; C2a.1a

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C

c*e=a ; C2a

e*i=a ; C2a.1

j+y=z; C2a.1a

-- Result: |Sub(L)|=286 for the partial lattice

-- LmT7/C2a.1a a<e c*e=a e*i=a y||j j+y=:z. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 71.5000000000000000 .

L: LmT7/C2a.1b.1 a<e c*e=a e*i=a y<j y||e e+y=j

|L|=9, L={abcdeijmy}. Edges:

ac am bd bm ci di ej ij mi ; C

ae ; C2

yj ; C2a.1b

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C

c*e=a ; C2a

e*i=a ; C2a.1

e+y=j ; C2a.1b.1

-- Result: |Sub(L)|=166 for the partial lattice

-- LmT7/C2a.1b.1 a<e c*e=a e*i=a y<j y||e e+y=j. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 83.0000000000000000 .

L: LmT7/C2a.1b.2a a<e c*e=a e*i=a y<j y<e a<y

|L|=9, L={abcdeijmy}. Edges:

ac am bd bm ci di ej ij mi ; C

ae ; C2

yj ; C2a.1b

ye ; C2a.1b.2

ay ; C2a.1b.2a

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C

c*e=a ; C2a

e*i=a ; C2a.1

-- Result: |Sub(L)|=140 for the partial lattice

-- LmT7/C2a.1b.2a a<e c*e=a e*i=a y<j y<e a<y. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 70.0000000000000000 .
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L: LmT7/C2a.1b.2b a<e c*e=a e*i=a y<j y<e A<=y<a y+b=m

|L|=9, L={abcdeijmy}. Edges:

ac am bd bm ci di ej ij mi ; C

ae ; C2

yj ; C2a.1b

ye ; C2a.1b.2

ya ; C2a.1b.2b

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C

c*e=a ; C2a

e*i=a ; C2a.1

y+b=m ; C2a.1b.2b

-- Result: |Sub(L)|=151 for the partial lattice

-- LmT7/C2a.1b.2b a<e c*e=a e*i=a y<j y<e A<=y<a y+b=m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 75.5000000000000000 .

L: LmT7/C2a.1b.2c a<e c*e=a e*i=a y<j y<e y||a a*y=:u u+b=m

|L|=10, L={abcdeijmyu}. Edges:

ac am bd bm ci di ej ij mi ; C

ae ; C2

yj ; C2a.1b

ye ; C2a.1b.2

ua uy um ; C2a.1b.2c

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C

c*e=a ; C2a

e*i=a ; C2a.1

a*y=u u+b=m ; C2a.1b.2c

-- Result: |Sub(L)|=231 for the partial lattice

-- LmT7/C2a.1b.2c a<e c*e=a e*i=a y<j y<e y||a a*y=:u u+b=m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 57.7500000000000000 .

Also done: LmT7/C2a.1b.2 a<e, c*e=a, e*i=a, y<j, y<e

Also done: LmT7/C2a.1b a<e, c*e=a, e*i=a, y<j

Also done: LmT7/C2a.1 a<e, c*e=a, e*i=a

L: LmT7/C2a.2 a<e c*e=a e*i=:v>a

|L|=9, L={abcdeijmv}. Edges:

ac am bd bm ci di ej ij mi ; C

ae ; C2

ve vi av ; C2a.2

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C

c*e=a ; C2a

e*i=v ; C2a.2

-- Result: |Sub(L)|=153 for the partial lattice

-- LmT7/C2a.2 a<e c*e=a e*i=:v>a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 76.5000000000000000 .

Also done: LmT7/C2a a<e, c*e=a
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L: LmT7/C2b a<e c*e=:x>a

|L|=9, L={abcdeijmx}. Edges:

ac am bd bm ci di ej ij mi ; C

ae ; C2

xc xe ax ; C2b

-- Constraints:

a+b=m c+m=i d+m=i e+m=j c*m=a d*m=b c+e=j b+e=j ; C

c*e=x ; C2b

-- Result: |Sub(L)|=164 for the partial lattice

-- LmT7/C2b a<e c*e=:x>a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 82.0000000000000000 .

Also done: LmT7/C2 a<e

Also done: LmT7/C (all cases)

The computation took 55/1000 seconds.

T8, LmT8-out.txt; see Lemma 7.10

Version of August 15, 2019

L: LmT8/C1 c||a c*a=:x>=A

|L|=9, L={abcdeijmx}. Edges:

ae am bd bm ci di ej ji mj ; C

xc xa ; C1

-- Constraints:

a+b=m c+m=i d+m=i e+m=j e*m=a d*m=b d*j=b c+e=i c+b=i; C

c*a=x ; C1

-- Result: |Sub(L)|=166 for the partial lattice

-- LmT8/C1 c||a c*a=:x>=A. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 83.0000000000000000 .

L: LmT8/C2a a<c c*j=a

|L|=8, L={abcdeijm}. Edges:

ae am bd bm ci di ej ji mj ; C

ac ; C2

-- Constraints:

a+b=m c+m=i d+m=i e+m=j e*m=a d*m=b d*j=b c+e=i c+b=i; C

c*j=a ; C2a

-- Result: |Sub(L)|=77 for the partial lattice

-- LmT8/C2a a<c c*j=a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 77.0000000000000000 .

L: LmT8/C2b a<c c*j=:x>a

|L|=9, L={abcdeijmx}. Edges:

ae am bd bm ci di ej ji mj ; C

ac ; C2

xc xj ax ; C2b

-- Constraints:

a+b=m c+m=i d+m=i e+m=j e*m=a d*m=b d*j=b c+e=i c+b=i; C
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c*j=x ; C2b

-- Result: |Sub(L)|=163 for the partial lattice

-- LmT8/C2b a<c c*j=:x>a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.5000000000000000 .

Also done: LmT8/C2 a<c

Also done: LmT8/C (all cases)

The computation took 16/1000 seconds.

T9, LmT9-out.txt; see Lemma 7.11

Version of August 15, 2019

L: LmT9/C1a.1 f+e=i f*e=m e*g=m

|L|=9, L={abcdefgim}. Edges:

ac am bd bm ci de ei fi mf me mg ; C

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=i ; C1

f*e=m ; C1a

e*g=m ; C1a.1

-- Result: |Sub(L)|=159 for the partial lattice

-- LmT9/C1a.1 f+e=i f*e=m e*g=m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 79.5000000000000000 .

L: LmT9/C1a.2 f+e=i f*e=m e*g=:x>m

|L|=10, L={abcdefgimx}. Edges:

ac am bd bm ci de ei fi mf me mg ; C

xe xg mx ; C1a.2

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=i ; C1

f*e=m ; C1a

e*g=x ; C1a.2

-- Result: |Sub(L)|=280 for the partial lattice

-- LmT9/C1a.2 f+e=i f*e=m e*g=:x>m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 70.0000000000000000 .

Also done: LmT9/C1a f+e=i, f*e=m

L: LmT9/C1b.1 f+e=i f*e=:y>m c*f=a

|L|=10, L={abcdefgimy}. Edges:

ac am bd bm ci de ei fi mf me mg ; C

yf ye my ; C1b

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=i ; C1

f*e=y ; C1b

c*f=a ; C1b.1

-- Result: |Sub(L)|=318 for the partial lattice

-- LmT9/C1b.1 f+e=i f*e=:y>m c*f=a. Thus,
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sigma(L) = |Sub(L)|*2^(8-|L|) = 79.5000000000000000 .

L: LmT9/C1b.2 f+e=i f*e=:y>m c*f=:z>a

|L|=11, L={abcdefgimyz}. Edges:

ac am bd bm ci de ei fi mf me mg ; C

yf ye my ; C1b

zc zf az ; C1b.2

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=i ; C1

f*e=y ; C1b

c*f=z ; C1b.2

-- Result: |Sub(L)|=596 for the partial lattice

-- LmT9/C1b.2 f+e=i f*e=:y>m c*f=:z>a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 74.5000000000000000 .

Also done: LmT9/C1b f+e=i, f*e=:y>m

Also done: LmT9/C1 f+e=i

L: LmT9/C2a.1 f+e=:p<i e*f=m f*g=m

|L|=10, L={abcdefgimp}. Edges:

ac am bd bm ci de ei fi mf me mg ; C

fp ep pi ; C2

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=p ; C2

e*f=m ; C2a

f*g=m ; C2a.1

-- Result: |Sub(L)|=327 for the partial lattice

-- LmT9/C2a.1 f+e=:p<i e*f=m f*g=m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 81.7500000000000000 .

L: LmT9/C2a.2 f+e=:p<i e*f=m f*g=:q>m

|L|=11, L={abcdefgimpq}. Edges:

ac am bd bm ci de ei fi mf me mg ; C

fp ep pi ; C2

qf qg mq ; C2a.2

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=p ; C2

e*f=m ; C2a

f*g=q ; C2a.2

-- Result: |Sub(L)|=552 for the partial lattice

-- LmT9/C2a.2 f+e=:p<i e*f=m f*g=:q>m. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 69.0000000000000000 .

Also done: LmT9/C2a f+e=:p<i, e*f=m

L: LmT9/C2b.1 f+e=:p<i e*f=:x>m c*f=a

|L|=11, L={abcdefgimpx}. Edges:
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ac am bd bm ci de ei fi mf me mg ; C

fp ep pi ; C2

xe xf mx ; C2b

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=p ; C2

e*f=x ; C2b

c*f=a ; C2b.1

-- Result: |Sub(L)|=622 for the partial lattice

-- LmT9/C2b.1 f+e=:p<i e*f=:x>m c*f=a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 77.7500000000000000 .

L: LmT9/C2b.2 f+e=:p<i e*f=:x>m c*f=:y>a

|L|=12, L={abcdefgimpxy}. Edges:

ac am bd bm ci de ei fi mf me mg ; C

fp ep pi ; C2

xe xf mx ; C2b

yc yf ay ; C2b.2

-- Constraints:

a+b=m c+m=i d+m=e c*m=a d*m=b b+c=i a+d=e ; C

f+e=p ; C2

e*f=x ; C2b

c*f=y ; C2b.2

-- Result: |Sub(L)|=1162 for the partial lattice

-- LmT9/C2b.2 f+e=:p<i e*f=:x>m c*f=:y>a. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.6250000000000000 .

Also done: LmT9/C2b f+e=:p<i, e*f=:x>m

Also done: LmT9/C2 f+e=:p<i

Also done: LmT9/C (all cases)

The computation took 46/1000 seconds.

T10, LmT10-out.txt; see Lemma 7.12

Version of August 15, 2019

L: LmT10/C

|L|=10, L={abcdefmkji}. Edges:

ae am bf bm ci di ej fk ji kj mk

-- Constraints:

a+b=m c+m=i d+m=i e+m=j m+f=k e*m=a f*m=b e*k=a b+c=i a+d=i

-- Result: |Sub(L)|=289 for the partial lattice

-- LmT10/C. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.2500000000000000 .

L: LmT10/C with all the four edges

|L|=10, L={abcdefmkji}. Edges:

ae am bf bm ci di ej fk ji kj mk

ec fd ac bd ; the four edges in addition

-- Constraints:
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a+b=m c+m=i d+m=i e+m=j m+f=k e*m=a f*m=b e*k=a b+c=i a+d=i

-- Result: |Sub(L)|=288 for the partial lattice

-- LmT10/C with all the four edges. Thus,

sigma(L) = |Sub(L)|*2^(8-|L|) = 72.0000000000000000 .

The computation took 15/1000 seconds.
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[5] Chajda, I., Kolař́ık, M.: A decomposition of homomorphic images of nearlattices. Acta Univ.

Palack. Olomuc. Fac. Rerum Natur. Math. 45, 43–51 (2006)
[6] C̄ırulis, J.: On JP-semilattices of Begum and Noor. Math. Bohem. 138, 181–184 (2013)

[7] Cornish, W. H., Noor, A. S. A.: Standard elements in a nearlattice. Bull. Austral. Math. Soc.
26, 185–213 (1982)

[8] Czédli, G.: Celebrating professor George A. Grätzer. Categories and General Algebraic Struc-
tures with Applications 11, 1–9, 2019

http://cgasa.sbu.ac.ir/article_87121_06b0f9dca7522e43041de4323fcf6938.pdf

[9] Czédli, G.: An interview with George A. Grätzer. Categories and General Algebraic Struc-

tures with Applications 11, 11–17, 2019
http://cgasa.sbu.ac.ir/article_87120_1fd822e28d8bb91a38c64df9fcb0b807.pdf

[10] Czédli, G.: A note on finite lattices with many congruences. Acta Universitatis Matthiae
Belii, Series Mathematics Online, 22–28 (2018)

http://actamath.savbb.sk/oacta2018003.shtml

[11] Czédli, G.: Finite semilattices with many congruences. Order 36, 233–247 (2019)

[12] Czédli, G.: Lattices with many congruences are planar. Algebra Universalis 80:16 (2019)

[13] Czédli, G.: Eighty-three sublattices and planarity. Algebra Universalis 80:45 (2019)
https://rdcu.be/bVoPh

[14] Czédli, G.: One hundred twenty-seven subsemilattices and planarity. Order, available online
at https://doi.org/10.1007/s11083-019-09519-x

[15] Czédli, G., Grätzer, G.: Planar Semimodular Lattices: Structure and Diagrams. Chapter
(pp. 91-130) in G. Grätzer and F. Wehrung (editors): Lattice Theory: Special Topics and
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[18] Czédli, G., Horváth, E. K.: : A note on lattices with many sublattices. Miskolc Mathematical

Notes 20 (2019), 839–848
[19] Czédli, G., Schmidt, E. T.: Slim semimodular lattices. I. A visual approach. Order 29, 481–

497 (2012)
[20] Grätzer, G.: General lattice theory, Birkhuser, Basel-Stuttgart, 1978

[21] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser Verlag, Basel (2011)
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